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Abstract—Static and evolutionary clustering approaches exist that
enable dynamically adaptive cluster analysis of large networks.
These techniques are typically based on any of the traditional
techniques, such as k-means, spectral, Kerninghan-Lin, and other
partitioning or clustering algorithms. In this paper, we utilize
spectral clustering and k-means as the fundamental clustering
mechanisms but combine adaptive and evolutionary clustering to
capture problem dynamics. We apply our approach to analyze
a complex, dynamic multiple edge set network that was used
to model call data from the Ivory Coast compiled from France
Telecom/Orange anonymized call records over a 5 month period.
Our methods are used to identify important but non-evident
structural groupings, resolve community clusters, develop insights
based on the evolving structure and associated history, and
to make sense of the raw data, the ultimate objective for
Sensemaking technologies.
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I. INTRODUCTION
Large data sets frequently contain patterns that are difficult

to discern through observation alone. Data points in large
data sets are often grouped in one or more dimensions based
on similarities in data point values along those dimensions.
However, many tools exist to group data based on proximity
measures, such as Euclidean distance (where applicable), sil-
houette values, Saltines cosines, Pearson coefficients, or other
measures of equivalence [1] that help evaluate similarity or
dissimilarity between data points. Data clustering based on tra-
ditional algorithms, such as k-means, Spectral clustering, and
Kerninghan-Lin, or hybrid combinations of these methods, can
be a valuable tool to gain insight into many different types of
data sets [1]. Once clusters are determined, new measurements
can be classified more quickly based on proximity measures
and parameters of the known clusters. However, over time,
data groupings, clusters of data points, or even fundamental
underlying network structure can evolve resulting in drift of
parameters of the associated proximity measures. There has
been significant study of cluster drift and related concepts of
incremental and constrained clustering [2][3][4]. Evolutionary
clustering techniques have been developed to capture cluster
drift into clustering algorithms yet resist unduly perturbing
clustering based on noise within the data by incorporating
notions of expected smoothness in cluster parameters [2]. We
adapt these concepts to accomplish evolutionary clustering
analysis of a multiple edge set network used to model the
Ivory Coast France Telecom/Orange call records.

The rest of this paper is organized as follows. Section II

describes the technical details of adapting the evolutionary
clustering algorithms for analysis of a multiple edge set net-
work. Section III describes details of the data set and applying
the algorithms to this data set. Section IV presents results of
the multiple edge set network evolutionary clustering analysis.
Section V presents our conclusions. The acknowledgement and
references close the article.

II. TECHNICAL DETAILS
Now, we introduce our notation and review the basics of

clustering. We model the social network derived from the call
data by a graph G comprised of vertices V and edges E1 and
E2 that represent subprefectures and the 2 types of connections
between them, respectively.

G = (V,E1, E2) (1)

The edges that connect vertex pairs represent calls, E1, or
travel, E2, between those 2 paired subprefecture vertices. Even
though the call and travel records identify the originating and
terminating nodes in an edge, we construct an undirected graph
model for simplicity. These cell towers are geographically
distributed throughout the various subprefectures of the Ivory
Coast, so there is an additional layer of mapping between the
cell tower nodes and subprefecture nodes to which we applying
the clustering analysis. A community Si is comprised of a
cluster of nodes, disjoint to every other community, because
no vertex exists in more than one community.

V =
⋃
Si,∀i,j,i 6=jSi ∩ Sj = ∅ (2)

To cluster the subprefectures into communities, we can
assign each subprefecture, a, a feature vector, fa and directly
cluster the feature vectors into k clusters using the k-means
algorithm. A more robust approach, [5] computes spectral
decomposition

W = UΣV T (3)

of the N × N similarity matrix, W that is derived from the
feature vectors, fa,

Wij = e
−|(fi−fj)|2

2σ2 (4)

and then clusters the row space of the eigenvectors, U ,
corresponding to the largest k eigenvalues, by applying the k-
means algorithm to the k-element rows of [U1...Uk] to compute
k clusters. In [5], the parameter σ2 determines the decay of
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the affinity matrix values with distance in the feature space.
In our implementation, we calculate σ2 as the sample sum of
the variances of each feature.

For evolutionary clustering, the silhouette metric is then
used to determine the strength of community structure in an
induced clustering, where the silhouette value [6] of one node
or subprefecture, i, is defined as

silhouette (i) =
b(i)− a(i)

max(a(i), b(i))
(5)

where a(i) is the average dissimilarity of i with the other
subprefectures in its cluster and b(i) is the minimum of the
dissimilarities of i with all clusters that do not include i.
Dissimilarity between 2 subprefectures is measured by the
distance between their feature vectors. For instance, the dissim-
ilarity between 2 feature vectors can simply be the Euclidean
distance. The silhouette value for the entire clustering of nodes
into k communities is simply the mean of the node silhouette
values

silhouette(k) = meani(silhouette(i)) (6)

Note that silhouette values range from -1 to 1, where 1
represents a strong community structure, -1 represents weak
community structure, and 0 represents that the induced clus-
tering is on the border with another viable clustering.

Then, we use a modified version of spectral clustering [2]
to add temporal smoothness to clusterings. Before the modified
version is discussed, we define some basic quantities. Given
two subsets V1 and V2 of node set V , the association be-
tween the two subsets is assoc(V1, V2) =

∑
i∈V1,j∈V2

W (i, j)
and the k-way average association between k clusters is

AA =
k∑

l=1

assoc(Vl,Vl)
|Vl| . The modified spectral clustering

[2] minimizes negated average association cost between two
clusterings in adjacent time steps defined by

CostNA = αNAt|Zt + βNAt−1|Zt (7)

NA = Tr(W )−
k∑

l=1

assoc(Vl, Vl)

|Vl|
= Tr(W )− Tr(ZTWZ)

(8)
to obtain a clustering of the nodes at time t that is consistent
with the network at time t−1. α and β, α+β = 1, define the
snapshot and temporal weights, respectively. Zt is the n × k
matrix that defines the partitioning at time t where Z(i, j) = 1
if and only if node i belongs to cluster j. Substituting equation
8 into equation 7 yields

CostNA = Tr(αWt + βWt−1)− Tr(ZT
t (αWt + βWt−1)Zt)

(9)
Minimizing CostNA is equivalent to maximizing
Tr(ZT

t (αWt + βWt−1)Zt) and optimizing Zt turns
out to be equivalent to applying spectral clustering to
W = αWt + βWt−1 [2], where W is the similarity matrix
used in equation 5. Thus, by applying k-means to the rows of
the matrix containing k eigenvectors corresponding to the top
k eigenvalues of W = αWt + βWt−1 yields the clustering at
time t that maximizes both the snapshot and temporal quality.

III. APPLICATION TO DATA SET
A. Description of Data Set

This section of the paper is based on Blondel and Esch
[7]. The data was organized into multiple sets. This research
focused on Data Sets 1 and 2 in the Data For Development
(D4D) collection. Data Set 1 consisted of antenna to antenna
call records that include number of calls and duration of calls
between any pairs of antennas, accumulated for each hour.
Data Set 2 consists of records that identify cell phone tower
indices for 500,000 randomly sampled callers but provided
for only a 2 week duration. Data Set 3 consists of records that
identify subprefecture indices for 50,000 randomly sampled
callers for the entire 5 month duration of the D4D data. We
decided to use Data Set 2 instead of Data Set 3 to model the
traveler activity since the tower communication was recorded
on a tower to tower basis. The data set also includes additional
files that provide geographical location of antennas and sub-
prefecture geographical center locations, enabling a mapping
between antennas and the nearest subprefectures centers and
thereby a graphical geographical depiction of result data.

B. Applying the Algorithms
We cluster the 255 subprefectures using temporal informa-

tion with antenna call and/or cell phone user data. For example,
if the feature vector was constructed entirely by antenna calls
and time, then the feature vector for a would be defined as
follows

fa(t, b) = nCalls(t, a, b) (10)

where nCalls(t, a, b) represents the length of total cell phone
tower communication between subprefectures a and b over a
time period t. We then cluster all the feature vectors using
spectral clustering as implemented by Ng and Jordan [5]
(except we do not set the diagonals of the similarity matrix
to 0) and the standard k-means algorithm. Given that k-means
clustering does not account for noise and correlations in data,
we quantify spectral clustering’s effectiveness in clustering
noisy and correlated data by comparing the performance of
the two approaches. We implement the algorithms for cluster
numbers, k, from 2 to 12 and compute the silhouette value of
each clustering. The upper cluster number 12 was empirically
determined from silhouette values that yield low numbers
beyond 10 clusters. Once an optimum clustering is obtained,
one can make inferences about relationships between the
clustering features and established Ivory Coast information
such as geographical, cultural, and political facts.

To compare the similarity of two clusterings, C1 and C2,
over the same network, we first define the similarity score of
a node, i, to be

SimilarityScore(i) =
|C1(i)

⋂
C2(i)|

|C1(i)
⋃
C2(i)|

(11)

where C1(i) and C2(i) denote i’s community in clusterings C1

and C2, respectively. Taking the mean of the similarity score
over all nodes in the network yields the similarity score of the
two clusterings, SimilarityScore(C1, C2).

IV. RESULTS
A. Clustering on Antenna Communication Edge Set Network

Cluster analysis was accomplished using feature vectors
representing antenna communication between subprefectures
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over 1 week from February 3, 2012 to February 9, 2012.
We used two different sets of feature vectors. We defined the
first set of feature vectors to be the cumulative activites of
subprefectures over the 1 week period. For this section, we
define activity to be antenna communication. Thus, a feature
vector of a single subprefecture, a, would be a 255 dimensional
vector, ga, where ga(b) is the total length of calls beween
subprefectures a and b accumulated over the entire week. We
defined the second set of feature vectors to be the dynamic or
evolutionary activity of the subprefectures over the 1 week
period with a time interval of 24 hours. Thus, the feature
vector for subprefecture a would be fa where fa(b, n) is the
total length of calls between subprefectures a and b on day n.
Although the Ivory Coast regions have different populations,
there is no population data on individual subprefectures so we
were not able to normalize the feature vectors by population.
Clustering was implemented using spectral clustering and k-
means on the two sets of feature vectors. Figure 1 shows
the result of spectral clustering on the dynamic subprefecture
activities using 3 clusters.

We then applied adaptive spectral clustering to each of
the 7 days from February 3, 2012 to February 9, 2012 as
adopted from [2], for cluster sizes k = 2 to 12. A feature
vector for a subprefecture, a, for a single day, n, would be
defined as ha(b) = fa(b, n) for fa defined above. We used
a snapshot cost, α, of 0.8 and a temporal cost, β, of 0.2. We
computed the similarity score for each day with respect to both
the cumulative and dynamic antenna communication activity
clusters (through spectral clustering) over the February 3 to 9
interval. The similarity score of a day, n, was computed by
averaging the similarity score of n’s 11 clusters from k = 2
to 12 with either the evolutionary or cumulative clustering for
February 3 to 12. The evolutionary and cumulative clusterings
for the week serve as a common average to compare to
each day. The results are plotted in Figure 2. Note that the
day similarity scores are all relatively high and curves show
oscillatory patterns.

Figure 1. Example of Spectral Clustering using Subprefecture Communica-
tion Data

Figure 2. Similarity between Single Day Clusterings and Average Clusterings
for the Week (Networks formed from Communication Data)

B. Clustering on Travel Edge Set Network
Cluster analysis was also achieved using the edge set

corresponding to travel between subprefectures using spectral
clustering and k-means. The second data set provides the loca-
tion and times of cell phone users throughout the Ivory Coast.
By geolocating the cell phone users by subprefectures, one
can track when and where they travel between subprefectures.
The cumulative and dynamic feature vectors were also formed
from traveler data (D4D Data Set 2) between February 3, 2012
and February 9, 2012 (the dynamic travel vectors also with a
time increment of 24 hours). The result of applying k-means
when k = 3 to the dynamic traveler data can be seen in Figure
3. Despite the nice appearance of the 3 tight clusters, the
clustering had a low silhouette score of -0.26.

Over all 12 spectral clusterings, the one with k = 2
clusters yielded the highest silhouette value in cases of antenna
communication activity, as described in the last section, and
traveler activity. Both k = 2 clusterings isolated the red subpre-
fecture are seen in Figure 4. This subprefecture corresponds to
Abidjan’s location, the largest city and economic center of the
Ivory Coast (355 of the 1031 cell phone towers were mapped
to this subprefecture). Abidjan’s prominant role would explain
why its cell phone tower communication and traveler data are
very different from other subprefectures. This does not imply
that the other 254 subprefecture are similar, just that none of
them are similar to Abidjan. In all clustering algorithms we
used, we ran k-means numerous times with different initial
random centroid placements to ensure Abidjan is a true singlet
cluster. The silhouette scores of the remaining clusterings
will be discussed in the next section. Figure 5 shows the
similarity score for each day of the week using traveler activity
in the feature vectors. The similarity scores are all higher
than corresponding antenna communication similarity scores
shown in Figure 2, indicating that travel does not seem to
change as much as antenna communication from day to day.
Both evolutionary and cumulative curves follow the same
oscillatory pattern, unlike in Figure 2, implying that cumulative
and dynamic traveler behavior are more consistent than the
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corresponding communication behavior.

Figure 3. Example of k-means using Subprefecture Travel Data

Figure 4. Spectral Clustering when k = 2 in cases of Subprefecture
Communication and Travel Data

C. Multiple Edge Set Clustering
We concatenated the antenna communication and traveler

feature vectors in the previous two sections to see the effect
of our clustering methods on a network with more than
one edge type. In Figure 6, we see the similarity scores
computed for February 3 to February 9 using combined tower
communication and traveler features. Both evolutionary and
cumulative curves show less noisy patterns than in Figures 5
and 2 and we see a clear dip and minimum for both curves at
Day 4. In Figures 7 and 8, we plot the silhouette values for
each number of clusters for each combination of clustering

Figure 5. Similarity between Single Day Clusterings and Average Clusterings
for the Week (Networks formed from Traveler Data)

algorithm and feature type. In Figure 7, we cluster cumulative
activity and in Figure 8, we cluster the dynamic activity, both
from February 3 to 9. Both plots are very similar, showing
there is little difference between the strength of community
structure between cumulative and evolutionary activity. There
is a dramatic increase in silhouette values, the green curves,
for the travel data from k-means to spectral clustering in
Figures 7 and 8. The same is not true for the communication
features and the combined communication and travel features
(the red and blue curves). For both the red and blue points,
spectral clustering silhouette values are very close to k-means
silhouette values though there is marginal improvement when
the number of clusters is more than 6. The improvement of
spectral clustering over k-means depends substantially on the
geometry of the feature values [5]; so, it is likely the case that
the geometry of the antenna communication feature vectors is
more conducive to k-means than the traveler feature vectors.

V. CONCLUSION
We applied clustering techniques to antenna communica-

tion and traveler data from February 3 to 9, 2012 between
255 Ivory Coast subprefectures. The optimum clustering for
all feature and clustering algorithm combinations occurs when
the number of clusters is 2 due to the unique central position
of Abidjan (see Figure 4). While the cluster similarities scores
were relatively high throughout the week in all cases, there was
a smoother pattern seen in the case when communication and
traveler features are combined though more work needs to be
done to verify the cause of this. The consistency of the commu-
nity structure over time can also be seen through the proximity
between the strengths of the evolutionary and cumulative
community structures (see Figures 7 and 8). Spectral clustering
dramatically improved the community structure over k-mean
clustering in the traveler feature space. However, the com-
munity structure over the combined traveler/communication
feature space is only marginally better on average than that
over the communication feature space. By adapting dynamic
clustering techniques for networks with multiple edge sets,



DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2 104

Figure 6. Similarity between Single Day Clusterings and Average Clusterings
for 2/3 to 2/9 (Networks formed from Communication and Traveler Data)

Figure 7. Silhouette Values of Cumulative Activity (2/3 to 2/9) Clusterings
over Different Data Features and Algorithms

we were able to make sense of key spatial and temporal
network attributes and propose new questions about clustering
in heterogeneous networks.
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Figure 8. Silhouette Values of Dynamic Activity (2/3 to 2/9) Clusterings
over Different Data Features and Algorithms

REFERENCES
[1] M. Newman, Networks, An Introduction. Oxford: Oxford University

Press, 2010.
[2] Y. Chi, X. Song, D. Zhou, K. Hino, and B. Tseng, “Evolutionary spectral

clustering by incorporating temporal smoothness,” in KDD Proceedings
of 13th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Aug 2007, pp. 1–5.

[3] P. Grindrod and D. Higham, “Evolving graphs: Dynamical models,
inverse problems, and propagation,” in Proceedings of the Royal Society
A, 2009, pp. 753–770.

[4] H. Jo, R. Pan, and K. Kaski, “Emergence of bursts and communities in
evolving weighted networks,” PLOS ONE, 2011, pp. 1–3.

[5] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in Neural Information Processing Systems (NIPS),
vol. 14, 2002, pp. 1–6.

[6] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Computational and Applied Mathematics,
vol. 20, 1987, pp. 53–65.

[7] V. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, and E. Huens,
“Data for development: The d4d challenge on mobile phone data,”
arXiv:1210.0137v1 [cs.CY], Sep 2012, pp. 5–9.


