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Abstract—Stock Market Prediction is a problem that people 

deal with when they want to predict market trend. For short-

term investment, news is one of the most important factors that 

has influence on stock price. Based on this idea, our target 

issue is to build a scalable stock market prediction system, 

which can process Chinese news articles in order to produce a 

prediction model. With this system, we can speed up the model 

training process and take into account more training source, 

e.g., posts from China’s microblog service, Sina Weibo. Also, 

with the emergence of cloud computing, a scalable system can 

lease more resources from cloud to serve the growing work. 

Our solution about building this system is using mature open 

source project, such as Hadoop for parallel computing, 

Mahout for scalable machine learning, and Jieba for Chinese 

text segmentation. We provide a basic algorithm for stock 

trend prediction, build the software stack, collect the news in 

Taiwan during March 2009 to May 2014 and also run some 

experiments to evaluate scalability of this system. The result 

shows that in this application, Jieba Chinese text Segmentation 

tool can scale well with multiprocessing, namely, 80 percent 

faster with four parallel processes compared to sequential 

mode. However, Mahout does not show significant speedup in 

this scenario. 

Keywords-distributed system; scalability; stock market 

prediction 

I.  INTRODUCTION  

 
Stock Market Prediction is a hot topic. There are several 

ways to deal with this issue. Some examples are fundamental 
analysis, technical analysis, hybrid analysis, and textual-
based analysis. For short-term investments, news can 
dramatically affect stock price. One of the most famous 
example is the fake twitter post that Barack Obama had been 
injured in an explosion, causing the S&P 500 to decline 
0.9%. The existing related works about textual analysis 
targeted the issues for chasing the prediction accuracy 
[1][2][3]. They use history textual information to train a 
prediction model, providing an algorithm to get better 
prediction accuracy. However, our goal is different; we focus 
on the scalability of Stock Market Prediction System not on 
the accuracy of prediction model. Because the amount of 
data has been exploding, we need a scalable platform to deal 
with large data sets to meet analysis requirement [11]. 
Textual analysis based stock market trend prediction needs a 
system with text processing function and machine learning 

function. However, the traditional tools are not scalable, e.g., 
CKIP service for Chinese text segmentation broadly used in 
Taiwan [22] is hard to scale. Therefore, we would like to 
build a scalable system using mature open source project. 
There are some benefits of it. First of all, this kind of system 
saves cost without paying any licensing fees. Second, with 
scalable system, we can extend the capacity of the system to 
deal with bigger data set for meeting user requirement, e.g. 
job completion within given deadline. Third, we can use 
cloud resource on demand to extend the capacity in pay-as-
you-go manner [4]. 

With the emergence of cloud computing, we can bundle 
our scalable application into a VM image which is stored on 
cloud, and launch the instances from the image on demand to 
start the service. Also, we can adapt application capacity by 
configuring the amount of cloud resources leased according 
to workload. In this way, imagine that you have just an old 
laptop and an access to internet, you can still easily process a 
big amount of computation by using cloud resources. The 
amount of cloud resource you need depends on the data input. 
The way you pay is as you go. You do not have to buy a 
computer just for some temporary computations. This may 
save you money. However, deploying scalable system on 
cloud involves some issues, like how to extend the capacity 
from cloud, how to save cost when using the cloud resources 
[5][6]. Same questions appear with our platform, but these 
questions should be asked after the completion of system and 
the modeling of system performance [7].  

The progress we have made is as follows. First, we create 
crawlers to collect the data used for stock market prediction, 
e.g., history news articles and history stock quotes in Taiwan. 
Second, we design the scalable system for stock market 
prediction, and build the system based on basic textual 
analysis based prediction algorithm. Third, we evaluate our 
main function components, Chinese segmentation tool and 
machine learning tool. The plan for system performance 
modeling would be our next goal after finishing the 
implementation of the algorithm. 

The rest of this paper is organized as follows. Section 2 
provides an overview description of system workflow, 
system software stack, and scalability issues. In Section 3, 
we talk about the basic algorithm of the stock market 
prediction. In Section 4, we show the preliminary scalability 
evaluation for Chinese text segmentation and classification 
model training. Finally, in Section 5, we illustrate future 
directions and make a conclusion. 
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II. OVERVIEW OF THE SYSTEM 

 

In this section, we introduce the workflow of our system, 

the system software stack, and the scalability issues. 

A. System workflow 

 

We want to build a system for stock market prediction 

application, which we can use in Taiwan. We list some 

requirements for this system. First, we want to have real data 

to prove the feasibility of the system. To achieve this, we 

implemented crawlers to collect the history data, including 

structured data like stock prices and unstructured data like 

news articles.  Second, because we want to make a 

prediction model from Chinese news articles, our system 

should have the ability to process Chinese Text. Similar 

ideas were shown in [1][2], but we deal with Chinese words, 

not English words. Third, we want to use machine learning 

technique [10] to train our prediction model, so that 

machines can learn how to classify a future news a good, bad, 

or unchanged for the company price. We will describe more 

details in Figure 1. 

 

 
Figure 1. Workflow of the System. 

 
First, we grab the history data from different sources, and 

collect these history information in order to evaluate our 
prediction model. We gathered news articles about Taiwan 
from the Internet. Because there is no good interface for 
collecting the news we need, we made automated crawlers 
using Ruby on Rails (RoR) [12] projects, such as Mechanize 
[13] and Watir [14]. We collected 566,114 news from 2010 
to 2014, totally 2.3GB, and history stock quotes from 
Taiwan Stock Exchange Corporation (TSE). However, the 
history stock quote from TSE is daily based, which is too 
coarse-grain for us. We need finer-grain data if we want to 
design a more accurate model, so we wrote a program to 
record per-minute based stock quotes. Based on these two 
history information, news articles and stock quotes, we can 
do our prediction model training. The model training process 
will be described in section three. In this process, we need 
some tools dealing with Chinese Text Segmentation, 
classification model training, and also scripts for data pre-

processing and post-processing. After we get a news 
classification model, once a news appear, the system will be 
triggered, and output whether the news make the company 
price go up, down, or stay unchanged. The next part will 
explain the software stack we plan to build. Then, some 
scalability issues will be discussed. 
 

B. System Software Stack  Design and Implementation 

 
Our system architecture is presented in Figure 2. The 

orange part are the local resources, which can be physical 
servers or virtualized servers. The purpose of this design is to 
provide a better utilization of the physical servers. The blue 
part stands for cloud resources, and we take Amazon for 
example as our service provider. Amazon Web Services 
(AWS) [15] provides a lot of web services. Amazon EC2 [16] 
is one of them, which belongs to IaaS service model. Cloud 
computing has three service models, e.g., infrastructure as a 
service (IaaS), platform as a service (PaaS), and software as 
a service (SaaS) [9]. EC2 provides lots of different 
specifications of virtual machine to customers. Amazon S3 
[17] provides key-value storage service, which can be easily 
integrated with other products within Amazon. Amazon 
Elastic MapReduce is the service which offer better 
abstraction, omitting the steps of building a MapReduce 
runtime environment. The red part, is a famous scalable 
Hadoop ecosystem. 

We choose Hadoop ecosystem to meet machine learning 
tool requirement. Mahout is the machine learning library, 
which is also an Apache project [18], resides on the Hadoop 
MapReduce stack [19]. This project has three main functions, 
namely, recommendation, classification, and clustering. In 
this paper, we use the function of classification. Last, for the 
green part, it means those scripts for data pre-processing and 
post-processing, and RoR crawlers. 

In the current progress, the crawler implementation have 
already finished, and we collect 566,114 articles of 2.3GB in 
size. The software stack has been setup. However, the 
implementation of the basic stock market prediction is still 
under development. Which the algorithm will be explained 
later. 

 
Figure 2. System Software Stack. 
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C. Scalability Issues 

 

Scalability is the ability of a system to handle a growing 

amount of work. We parallel our computation tasks to get 

system scalability. Chinese segmentation is one of the main 

function components, and we discuss scalability of this part 

as our first step. In our system, data is stored in Hadoop 

Distributed File System (HDFS). HDFS provides file 

replication, which can maintain several copies on different 

machines. Also, due to the nature of data independence for 

each news articles, the computation can be parallelized. In 

short, with data replication and data independence, we can 

parallel Chinese segmentation jobs on those nodes with data 

copies.  

Jieba project [20] originally provides a module to parallel 

Chinese segmentation process. It cuts a file into several 

lines, and distributes the lines to several workers in order to 

increase the throughput. However, when we use this module 

on our 566,114 Chinese news articles, sized 2.3G, the 

response time increases from 68 minutes to 99 minutes, 

shown in Figure 3. Figure 3 compares the completion time 

of a Chinese segmentation job between sequential mode and 

parallel mode with 2, 4, and 24 workers. The reason is that 

each news article is short, the overhead of separating lines to 

workers is higher than the benefit of parallel computation on 

multiple workers. Therefore, we change the way from line 

parallelism to file parallelism, distributing news article files 

into many workers (processes), as shown in Figure 4.  

 

 

 
Figure 3. Performance Evaluation of Original Multi-Processes Scaling Up. 

 

In section four, we evaluate the performance of scaling up 

(vertical scaling) and scaling out (horizontal scaling) of file 

parallelism version of Chinese text segmentation process 

using Jieba tool, and describe a problem we met for 

classification model training using Mahout. 

 

 
 

Figure 4. Original Jieba Line Parallelism and our Inter-File Parallelism. 

 

III. BASIC STOCK MARKET PREDICTION ALGORITHM 

 

In this section, we introduce our basic market prediction 

algorithm. Now, we use Chinese text articles to predict 

whether the stock price goes up, down, or stay unchanged of 

our target companies. In the future, we will take social 

media information, e.g., microblog posts, into consideration. 

The implementation of the algorithm is still under 

development. By building this algorithm we would like to 

prove the feasibility of our system for stock trend prediction. 

The overall process of the system is as follows. The 

process consists of two parts. The first part is training the 

news classification model, and the second part is using the 

classification model to classify new text articles for 

predicting the stock trend.  

For the second part, assume that we already have a 

classification model. When a news appears, news sensor 

detects the events and triggers news classification for each 

company to see whether this article makes the company 

stock price up/down, or just stay unchanged. How we get 

the model of news classification is described below. 

The process of training classification model described in 

Figure 5. At the beginning, with a target company, the script 

automatically gets history stock quotes from database, filters 

dates by variation. The variation now is set to 25% variation 

for an hour. If the stock price goes up over 25% between 

time points, then we label the time interval “up”, vice versa. 

If it is between -25% and +25%, we label the time interval 

“unchanged.” In this way, we can get time intervals labeled 

“up”, “down”, or “unchanged”. Then the script searches the 

news articles related to the company with time and label 

input, and then tags the articles with label “up”, “down”, or 

“unchanged”. After labeling, the script triggers Chinese text 

segmentation. Also, we provide our customized Chinese 

dictionary to make the segmentation more accurate and do 

noise filtering. At last, we input the article set with featured 

words and labels into Mahout Naïve Bayes classification 

training process [21]. Before training, the script splits 
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dataset into training set and test set. After we get a model, 

the script evaluates the model by test set and reports the 

prediction accuracy of classification model. 

 

 
Figure 5. Model Training Process for News Classification. 

 

IV. PRELIMINARY EXPERIMENTS 

We did some experiments for evaluating the scalability of 

file-parallelism version of Jieba and Classification tool 

Mahout. The experiment environment is using Ubuntu 

12.04 OS, running on one 24 cores 16G RAM server, and 

three 8 cores 8G RAM server. 

We use Jieba Python version to process 2.3G Chinese 

news, totaled 566,114 articles. We use process pool to 

create many parallel processes to segment the news articles. 

Figure 6 shows the result of scale-up performance 

improvement on the 24 cores server. Compared to 

sequential version, four processes parallelism is 80% faster. 

In addition to scale-up (vertical scaling) experiments, we 

still made scale-out (horizontal scaling) experiments. Figure 

7 shows the scale-out experiment of processing 2.3G news 

articles on the 8 cores 8GB server in sequential mode. We 

split data into two copies and three copies using scripts to 

three servers, and test the performance. As our expectations, 

the performance improvement is almost linear; for the 

constant module, loading time is small compared to 

workload computation. In the future, we think about 

integrating job parallelism with HDFS. HDFS default stores 

three copies for every chunk; so, we do not need to write 

one more script to deal with the data split action. 

We did several experiments to test the scalability of 

Mahout. The experiment is conducted on one node, two 

nodes, and three nodes runtime environment. However, we 

could not get a significant performance improvement. To 

find out the reason, we decompose the auto script into small 

steps for Mahout Naïve Bayes Classification and record its 

latency. We found that the first step, seqdirectory, the 

command of which makes the files in HDFS sequential, 

always produces just one map task in the job. It means we 

cannot parallel the computation in this step. Usually, the 

number of map tasks is related to the number of chunks in 

HDFS. Our data size is more than 640MB. If it combines all 

the small files into a big one, it should at least have 10 

chunks with default chunk size 64MB. We have not found a 

solutions yet. We tried to configure Hadoop several times, 

but failed. Now, we are still tracing Mahout source code for 

solving the problem. The latency of every steps in Naïve 

Bayes classification is depicted in Figure 8. 

 

 
Figure 6. Performance Evaluation of File Parallelism Scaling Up. 

 

 
Figure 7. Performance Evaluation of File Parallelism Scaling Out. 

 

 
Figure 8. Performance Evaluation of Mahout Naive Bayes Classification. 

 

V. FUTURE DIRECTION AND CONCLUSION 

In this paper, after the preliminary result, we proved that 

Jieba can scale well with our file parallelism version, i.e., 

scaling-up with four cores gets 80% faster compared to one 

core environment and scaling-out makes linear improvement. 

The main factors of scalability are the nature of data 

independence and data replication. Text segmentation 
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process can be executed in a parallel way. However, the 

performance improvement of Mahout is limited by the first 

step, i.e., file sequential process. Because the bottleneck has 

huge impact on overall response time of classification model 

training process, we have to deal with it in the future. We are 

still solving this problem by tracing Mahout source code. It 

is worth mentioning that Mahout starts to move its focus on 

Spark [8], a new popular large scale data processing project 

stating faster processing speed because of in-memory 

computation. We will use Spark to solve the scalability issue 

of machine learning function in another way. 

In addition to Mahout and Jieba, we will also evaluate 

another components in our system to prove scalability as 

soon as we finish building our system. Also, we will use 

queueing theory to build system performance modeling. 

With performance model, we can adapt system resource to 

make performance meet user requirements. Also, we will 

consider the issues about offloading to cloud. For example, 

when will we need extra resources, how to offload 

computations to cloud, and how to use cloud resources in a 

cost-aware way. 

Although the work is not finished yet, we believe this is a 

good issue worth discussing. The era of big data is coming, a 

scalable system for this kind of application is needed. 

Because we may develop new prediction algorithm based on 

bigger data source, e.g., social media information, with the 

sharing of the experience, we believe it is helpful to give 

readers a hint to build a scalable system for textual analysis 

based stock market trend prediction.   
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