
Scalable System for Textual Analysis of Stock Market Prediction

Roy Guanyu Lin
Department of Computer Science

National Taiwan University

Taipei, Taiwan

yesimroy@gmail.com

Tzu-Chieh Tsai
Department of Computer Science

National Chengchi University

Taipei, Taiwan

ttsai@cs.nccu.edu.tw

Abstract—Stock Market Prediction is a problem that people

deal with when they want to predict market trend. For short-

term investment, news is one of the most important factors that

has influence on stock price. Based on this idea, our target

issue is to build a scalable stock market prediction system,

which can process Chinese news articles in order to produce a

prediction model. With this system, we can speed up the model

training process and take into account more training source,

e.g., posts from China’s microblog service, Sina Weibo. Also,

with the emergence of cloud computing, a scalable system can

lease more resources from cloud to serve the growing work.

Our solution about building this system is using mature open

source project, such as Hadoop for parallel computing,

Mahout for scalable machine learning, and Jieba for Chinese

text segmentation. We provide a basic algorithm for stock

trend prediction, build the software stack, collect the news in

Taiwan during March 2009 to May 2014 and also run some

experiments to evaluate scalability of this system. The result

shows that in this application, Jieba Chinese text Segmentation

tool can scale well with multiprocessing, namely, 80 percent

faster with four parallel processes compared to sequential

mode. However, Mahout does not show significant speedup in

this scenario.

Keywords-distributed system; scalability; stock market

prediction

I. INTRODUCTION

Stock Market Prediction is a hot topic. There are several

ways to deal with this issue. Some examples are fundamental
analysis, technical analysis, hybrid analysis, and textual-
based analysis. For short-term investments, news can
dramatically affect stock price. One of the most famous
example is the fake twitter post that Barack Obama had been
injured in an explosion, causing the S&P 500 to decline
0.9%. The existing related works about textual analysis
targeted the issues for chasing the prediction accuracy
[1][2][3]. They use history textual information to train a
prediction model, providing an algorithm to get better
prediction accuracy. However, our goal is different; we focus
on the scalability of Stock Market Prediction System not on
the accuracy of prediction model. Because the amount of
data has been exploding, we need a scalable platform to deal
with large data sets to meet analysis requirement [11].
Textual analysis based stock market trend prediction needs a
system with text processing function and machine learning

function. However, the traditional tools are not scalable, e.g.,
CKIP service for Chinese text segmentation broadly used in
Taiwan [22] is hard to scale. Therefore, we would like to
build a scalable system using mature open source project.
There are some benefits of it. First of all, this kind of system
saves cost without paying any licensing fees. Second, with
scalable system, we can extend the capacity of the system to
deal with bigger data set for meeting user requirement, e.g.
job completion within given deadline. Third, we can use
cloud resource on demand to extend the capacity in pay-as-
you-go manner [4].

With the emergence of cloud computing, we can bundle
our scalable application into a VM image which is stored on
cloud, and launch the instances from the image on demand to
start the service. Also, we can adapt application capacity by
configuring the amount of cloud resources leased according
to workload. In this way, imagine that you have just an old
laptop and an access to internet, you can still easily process a
big amount of computation by using cloud resources. The
amount of cloud resource you need depends on the data input.
The way you pay is as you go. You do not have to buy a
computer just for some temporary computations. This may
save you money. However, deploying scalable system on
cloud involves some issues, like how to extend the capacity
from cloud, how to save cost when using the cloud resources
[5][6]. Same questions appear with our platform, but these
questions should be asked after the completion of system and
the modeling of system performance [7].

The progress we have made is as follows. First, we create
crawlers to collect the data used for stock market prediction,
e.g., history news articles and history stock quotes in Taiwan.
Second, we design the scalable system for stock market
prediction, and build the system based on basic textual
analysis based prediction algorithm. Third, we evaluate our
main function components, Chinese segmentation tool and
machine learning tool. The plan for system performance
modeling would be our next goal after finishing the
implementation of the algorithm.

The rest of this paper is organized as follows. Section 2
provides an overview description of system workflow,
system software stack, and scalability issues. In Section 3,
we talk about the basic algorithm of the stock market
prediction. In Section 4, we show the preliminary scalability
evaluation for Chinese text segmentation and classification
model training. Finally, in Section 5, we illustrate future
directions and make a conclusion.

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

mailto:yesimroy@gmail.com
mailto:yesimroy@gmail.com
mailto:ttsai@cs.nccu.edu.tw
mailto:ttsai@cs.nccu.edu.tw

II. OVERVIEW OF THE SYSTEM

In this section, we introduce the workflow of our system,

the system software stack, and the scalability issues.

A. System workflow

We want to build a system for stock market prediction

application, which we can use in Taiwan. We list some

requirements for this system. First, we want to have real data

to prove the feasibility of the system. To achieve this, we

implemented crawlers to collect the history data, including

structured data like stock prices and unstructured data like

news articles. Second, because we want to make a

prediction model from Chinese news articles, our system

should have the ability to process Chinese Text. Similar

ideas were shown in [1][2], but we deal with Chinese words,

not English words. Third, we want to use machine learning

technique [10] to train our prediction model, so that

machines can learn how to classify a future news a good, bad,

or unchanged for the company price. We will describe more

details in Figure 1.

Figure 1. Workflow of the System.

First, we grab the history data from different sources, and

collect these history information in order to evaluate our
prediction model. We gathered news articles about Taiwan
from the Internet. Because there is no good interface for
collecting the news we need, we made automated crawlers
using Ruby on Rails (RoR) [12] projects, such as Mechanize
[13] and Watir [14]. We collected 566,114 news from 2010
to 2014, totally 2.3GB, and history stock quotes from
Taiwan Stock Exchange Corporation (TSE). However, the
history stock quote from TSE is daily based, which is too
coarse-grain for us. We need finer-grain data if we want to
design a more accurate model, so we wrote a program to
record per-minute based stock quotes. Based on these two
history information, news articles and stock quotes, we can
do our prediction model training. The model training process
will be described in section three. In this process, we need
some tools dealing with Chinese Text Segmentation,
classification model training, and also scripts for data pre-

processing and post-processing. After we get a news
classification model, once a news appear, the system will be
triggered, and output whether the news make the company
price go up, down, or stay unchanged. The next part will
explain the software stack we plan to build. Then, some
scalability issues will be discussed.

B. System Software Stack Design and Implementation

Our system architecture is presented in Figure 2. The

orange part are the local resources, which can be physical
servers or virtualized servers. The purpose of this design is to
provide a better utilization of the physical servers. The blue
part stands for cloud resources, and we take Amazon for
example as our service provider. Amazon Web Services
(AWS) [15] provides a lot of web services. Amazon EC2 [16]
is one of them, which belongs to IaaS service model. Cloud
computing has three service models, e.g., infrastructure as a
service (IaaS), platform as a service (PaaS), and software as
a service (SaaS) [9]. EC2 provides lots of different
specifications of virtual machine to customers. Amazon S3
[17] provides key-value storage service, which can be easily
integrated with other products within Amazon. Amazon
Elastic MapReduce is the service which offer better
abstraction, omitting the steps of building a MapReduce
runtime environment. The red part, is a famous scalable
Hadoop ecosystem.

We choose Hadoop ecosystem to meet machine learning
tool requirement. Mahout is the machine learning library,
which is also an Apache project [18], resides on the Hadoop
MapReduce stack [19]. This project has three main functions,
namely, recommendation, classification, and clustering. In
this paper, we use the function of classification. Last, for the
green part, it means those scripts for data pre-processing and
post-processing, and RoR crawlers.

In the current progress, the crawler implementation have
already finished, and we collect 566,114 articles of 2.3GB in
size. The software stack has been setup. However, the
implementation of the basic stock market prediction is still
under development. Which the algorithm will be explained
later.

Figure 2. System Software Stack.

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

C. Scalability Issues

Scalability is the ability of a system to handle a growing

amount of work. We parallel our computation tasks to get

system scalability. Chinese segmentation is one of the main

function components, and we discuss scalability of this part

as our first step. In our system, data is stored in Hadoop

Distributed File System (HDFS). HDFS provides file

replication, which can maintain several copies on different

machines. Also, due to the nature of data independence for

each news articles, the computation can be parallelized. In

short, with data replication and data independence, we can

parallel Chinese segmentation jobs on those nodes with data

copies.

Jieba project [20] originally provides a module to parallel

Chinese segmentation process. It cuts a file into several

lines, and distributes the lines to several workers in order to

increase the throughput. However, when we use this module

on our 566,114 Chinese news articles, sized 2.3G, the

response time increases from 68 minutes to 99 minutes,

shown in Figure 3. Figure 3 compares the completion time

of a Chinese segmentation job between sequential mode and

parallel mode with 2, 4, and 24 workers. The reason is that

each news article is short, the overhead of separating lines to

workers is higher than the benefit of parallel computation on

multiple workers. Therefore, we change the way from line

parallelism to file parallelism, distributing news article files

into many workers (processes), as shown in Figure 4.

Figure 3. Performance Evaluation of Original Multi-Processes Scaling Up.

In section four, we evaluate the performance of scaling up

(vertical scaling) and scaling out (horizontal scaling) of file

parallelism version of Chinese text segmentation process

using Jieba tool, and describe a problem we met for

classification model training using Mahout.

Figure 4. Original Jieba Line Parallelism and our Inter-File Parallelism.

III. BASIC STOCK MARKET PREDICTION ALGORITHM

In this section, we introduce our basic market prediction

algorithm. Now, we use Chinese text articles to predict

whether the stock price goes up, down, or stay unchanged of

our target companies. In the future, we will take social

media information, e.g., microblog posts, into consideration.

The implementation of the algorithm is still under

development. By building this algorithm we would like to

prove the feasibility of our system for stock trend prediction.

The overall process of the system is as follows. The

process consists of two parts. The first part is training the

news classification model, and the second part is using the

classification model to classify new text articles for

predicting the stock trend.

For the second part, assume that we already have a

classification model. When a news appears, news sensor

detects the events and triggers news classification for each

company to see whether this article makes the company

stock price up/down, or just stay unchanged. How we get

the model of news classification is described below.

The process of training classification model described in

Figure 5. At the beginning, with a target company, the script

automatically gets history stock quotes from database, filters

dates by variation. The variation now is set to 25% variation

for an hour. If the stock price goes up over 25% between

time points, then we label the time interval “up”, vice versa.

If it is between -25% and +25%, we label the time interval

“unchanged.” In this way, we can get time intervals labeled

“up”, “down”, or “unchanged”. Then the script searches the

news articles related to the company with time and label

input, and then tags the articles with label “up”, “down”, or

“unchanged”. After labeling, the script triggers Chinese text

segmentation. Also, we provide our customized Chinese

dictionary to make the segmentation more accurate and do

noise filtering. At last, we input the article set with featured

words and labels into Mahout Naïve Bayes classification

training process [21]. Before training, the script splits

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

dataset into training set and test set. After we get a model,

the script evaluates the model by test set and reports the

prediction accuracy of classification model.

Figure 5. Model Training Process for News Classification.

IV. PRELIMINARY EXPERIMENTS

We did some experiments for evaluating the scalability of

file-parallelism version of Jieba and Classification tool

Mahout. The experiment environment is using Ubuntu

12.04 OS, running on one 24 cores 16G RAM server, and

three 8 cores 8G RAM server.

We use Jieba Python version to process 2.3G Chinese

news, totaled 566,114 articles. We use process pool to

create many parallel processes to segment the news articles.

Figure 6 shows the result of scale-up performance

improvement on the 24 cores server. Compared to

sequential version, four processes parallelism is 80% faster.

In addition to scale-up (vertical scaling) experiments, we

still made scale-out (horizontal scaling) experiments. Figure

7 shows the scale-out experiment of processing 2.3G news

articles on the 8 cores 8GB server in sequential mode. We

split data into two copies and three copies using scripts to

three servers, and test the performance. As our expectations,

the performance improvement is almost linear; for the

constant module, loading time is small compared to

workload computation. In the future, we think about

integrating job parallelism with HDFS. HDFS default stores

three copies for every chunk; so, we do not need to write

one more script to deal with the data split action.

We did several experiments to test the scalability of

Mahout. The experiment is conducted on one node, two

nodes, and three nodes runtime environment. However, we

could not get a significant performance improvement. To

find out the reason, we decompose the auto script into small

steps for Mahout Naïve Bayes Classification and record its

latency. We found that the first step, seqdirectory, the

command of which makes the files in HDFS sequential,

always produces just one map task in the job. It means we

cannot parallel the computation in this step. Usually, the

number of map tasks is related to the number of chunks in

HDFS. Our data size is more than 640MB. If it combines all

the small files into a big one, it should at least have 10

chunks with default chunk size 64MB. We have not found a

solutions yet. We tried to configure Hadoop several times,

but failed. Now, we are still tracing Mahout source code for

solving the problem. The latency of every steps in Naïve

Bayes classification is depicted in Figure 8.

Figure 6. Performance Evaluation of File Parallelism Scaling Up.

Figure 7. Performance Evaluation of File Parallelism Scaling Out.

Figure 8. Performance Evaluation of Mahout Naive Bayes Classification.

V. FUTURE DIRECTION AND CONCLUSION

In this paper, after the preliminary result, we proved that

Jieba can scale well with our file parallelism version, i.e.,

scaling-up with four cores gets 80% faster compared to one

core environment and scaling-out makes linear improvement.

The main factors of scalability are the nature of data

independence and data replication. Text segmentation

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

process can be executed in a parallel way. However, the

performance improvement of Mahout is limited by the first

step, i.e., file sequential process. Because the bottleneck has

huge impact on overall response time of classification model

training process, we have to deal with it in the future. We are

still solving this problem by tracing Mahout source code. It

is worth mentioning that Mahout starts to move its focus on

Spark [8], a new popular large scale data processing project

stating faster processing speed because of in-memory

computation. We will use Spark to solve the scalability issue

of machine learning function in another way.

In addition to Mahout and Jieba, we will also evaluate

another components in our system to prove scalability as

soon as we finish building our system. Also, we will use

queueing theory to build system performance modeling.

With performance model, we can adapt system resource to

make performance meet user requirements. Also, we will

consider the issues about offloading to cloud. For example,

when will we need extra resources, how to offload

computations to cloud, and how to use cloud resources in a

cost-aware way.

Although the work is not finished yet, we believe this is a

good issue worth discussing. The era of big data is coming, a

scalable system for this kind of application is needed.

Because we may develop new prediction algorithm based on

bigger data source, e.g., social media information, with the

sharing of the experience, we believe it is helpful to give

readers a hint to build a scalable system for textual analysis

based stock market trend prediction.

REFERENCES

[1] Fung, Gabriel Pui Cheong, Jeffrey Xu Yu, and Wai Lam.

"Stock prediction: Integrating text mining approach using
real-time news." Computational Intelligence for Financial
Engineering, 2003. Proceedings. 2003 IEEE International
Conference on. IEEE, 2003.

[2] Schumaker Robert P., and Hsinchun Chen. "Textual analysis
of stock market prediction using breaking financial news: The
AZFin text system." ACM Transactions on Information
Systems (TOIS) 27.2 (2009): 12.

[3] Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D.,
& Allan, J. "Mining of concurrent text and time series."
KDD-2000 Workshop on Text Mining. 2000.

[4] Armbrust, Michael, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee et al. "A

view of cloud computing." Communications of the ACM 53.4
(2010): 50-58.

[5] Sharma, U., Shenoy, P., Sahu, S., & Shaikh, A. (2011, June).
"A cost-aware elasticity provisioning system for the cloud."
Distributed Computing Systems (ICDCS), 2011 31st
International Conference on. IEEE, 2011.

[6] Guo, T., Sharma, U., Wood, T., Sahu, S., & Shenoy, P. J.
"Seagull: intelligent cloud bursting for enterprise
applications." Proceedings of the Usenix Annual Technical
Conference (short paper). 2012.

[7] Ganapathi, A., Chen, Y., Fox, A., Katz, R., & Patterson, D.
"Statistics-driven workload modeling for the cloud."Data
Engineering Workshops (ICDEW), 2010 IEEE 26th
International Conference on. IEEE, 2010.

[8] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., &
Stoica, I. "Spark: cluster computing with working
sets."Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing. 2010.

[9] Mell, Peter, and Tim Grance. "The NIST definition of cloud
computing." (2011).

[10] Naïve Bayes Classification. (2014)Retrieved July 3 , 2014,
from http://nlp.stanford.edu/IR-book/html/htmledition/naive-
bayes-text-classification-1.html

[11] Manyika, James, et al. "Big data: The next frontier for
innovation, competition, and productivity." (2011).

[12] Ruby on Rails Web Framework. (2014). Retrieved July 2,
2014, from http://rubyonrails.org/

[13] Mechanize Ruby Gem. (2014). Retrieved July 2, 2014, from
https://rubygems.org/gems/mechanize

[14] Watir Ruby Gem. (2014). Retrieved July 2, 2014, from
https://rubygems.org/gems/watir

[15] Amazon Web Service. (2014). Retrieved July 3, 2014, from
http://aws.amazon.com/

[16] Amazon Web Service Elastic Compute Cloud (EC2). (2014).
Retrieved July 3, 2014, from http://aws.amazon.com/ec2/

[17] Amazon Web Service S3. (2014). Retrieved July 3, 2014,
from http://aws.amazon.com/s3/

[18] Apache Mahout Project. (2014). Retrieved July 4, 2014, from
https://mahout.apache.org/

[19] Apache Hadoop Project. (2014). Retrieved July 4, 2014, from
http://hadoop.apache.org/

[20] Jieba Project for Chinese Text Segmentation. (2014).
Retrieved July 4, 2014, from https://github.com/fxsjy/jieba

[21] Mahout Naïve Bayes. (2014). Retrieved July 5, 2014, from
https://mahout.apache.org/users/classification/bayesian.html

[22] CKIP Chinese Text Segmentation Tool. (2014). Retrieved
July 3, 2014, from http://ckipsvr.iis.sinica.edu.tw/

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://rubyonrails.org/
https://rubygems.org/gems/mechanize
https://rubygems.org/gems/watir
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
https://mahout.apache.org/
http://hadoop.apache.org/
https://github.com/fxsjy/jieba
https://mahout.apache.org/users/classification/bayesian.html
http://ckipsvr.iis.sinica.edu.tw/

