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Abstract—The purpose of this paper is to evaluate the perfor-
mance of two approaches based on Vector Evaluated Particle
Swarm Optimization (VEPSO) algorithm in two real world
applications, which are the environmental economic dispatch
problem and the optimization of a reinsurance contract portfolio.
The two tested algorithms are the canonical VEPSO and a new
version called VEPSO-N, where in the last one the global updating
on each swarm is done based on the archive. The performance is
evaluated using the following metrics: hypervolume, number of
solutions and coverage, showing that both approaches can present
good outcomes.

Keywords–Real World Applications; Reinsurance Contract Op-
timization; Environmental Economic Dispatch; Vector Evaluated
PSO; Multiobjective.

I. INTRODUCTION

Real world applications involve solving problems whose
objectives are normally in conflict. For example, in an oil-
based power plant, the lower the cost of generating energy,
the bigger the emission of pollutants. Thus, companies have
to figure out the best trade-off due to mainly environmental
regulations. In a financial investment, the bigger the risk, the
bigger the return. Therefore, investors are interested in smaller
risks and to obtain bigger returns.

Those kind of problems are called Multiobjective Op-
timization Problems (MOPs) and their solution lay in the
concept of Pareto Optimality, where solutions are character-
ized as a set of trade-off points. Gradient-based optimization
techniques [1] [2] can be used to detect Pareto optimal
solutions [3]; however, to do so the objectives have to be
aggregated in a single objective function, and only one solution
can be found per run [4], adding heavy computational cost
to the whole process. In the same sense, traditional mono-
objective evolutionary algorithms present the same kind of
problem, i.e., only one solution can be computed at the time.

Taking the computational cost into account,
swarm/evolutionary multiobjective algorithms (MOEA)

represent a viable alternative to solve MOPs. Indeed, MOEAs
have been recognized to be well-suited for this kind of
application because of their abilities to explore multiple
solutions in parallel and to find a widespread set of non-
dominated solutions in a single run [5]. Among the available
MOEAs based on PSO is the VEPSO [6], which was based
on Vector Evaluated Genetic Algorithm (VEGA) [7]. The
idea behind VEPSO is to evolve two separated swarms, one
per evaluation function, where considering two swarms, the
direction of a swarm is guided by the best solution (gbest)
found in the other one.

VEPSO has been successfully used in application ranging
from the optimization of radiometry array antenna [8], pass-
ing through the optimization of a steady-state performance
of a power system [9], to the optimization of the energy
communications for heterogeneous network through cognitive
sensing [10]. Its popularity can be mainly attributed to two
reasons: it is easy to implement and the parallelization can
be done in a straight-full way [4]. However, VEPSO might
stagnate in bad approximation of the Pareto front as we can
see in Matthysen et al. [11] and Lim et al. [12], where the
authors show an analysis of VEPSO and VEGA, and explain
why the canonical VEPSO tends to get trapped in sub-optimal
Pareto frontiers.

In this context, a modification has been proposed by Lim
et. al [13] in order to overcome problems with stagnation,
where the best solution of a particular swarm is updated using a
point stored in the archive, which contains only non-dominated
solutions, rather than the gbest from the second swarm as
in the canonical VEPSO algorithm. The main advantage of
this approach is to keep the same number of callings to the
evaluation function, therefore the comparison can be done in
terms of iterations.

Two applications are considered in this paper. The first
one is the Environmental Economic Dispatch problem (EED),
where we want to determine the lower cost of generate
energy using six generators and producing a smaller amount
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Figure 1. Estimated time for solving the RCO problem in R with different
levels of discretization

of pollutants at the same time. The second application is the
optimization of a Reinsurance Contract Portfolio (RCP) where,
from the insurance company perspective, we want to hedge
more risk and receive back more money in case of massive
claims.

In terms of EED application, Qu’s work [14] proposes a
multiobjective fast-evolutionary programming for dealing with
the problem; however, the Pareto frontiers are compared only
visually, i.e., he did not use proper metrics for comparison.
Abedinia’s work [15] deals with six and fourteen generators
but the evaluation is done based only on the best results also
without a proper metric. Farhat [16] did the same thing as
previous works considering 3 different emission functions.

Regarding RCP, the first two works to address this kind of
problem were [17] and [18]. Even though those two papers rely
on mono-objective functions, they proved that it is worth to use
evolutionary computation in this kind of application because
it saves a considerable amount of time if compared with the
enumeration method. Figure 1 shows the time required to
solve the problem using the enumeration method, for instance,
considering a 5% of discretization the enumeration method
demands much more than a week to execute.

The remainder of this paper is organized as follows:
Section II outlines the fundamentals of multiobjective prob-
lems; Section III presents the PSO-based algorithms, including
VEPSO and the improved version called VEPSO-N; Sec-
tion IV-A shows how the performance evaluation is done,
the real world applications considered in this work and the
simulation results; finally, Section V presents the conclusions
and future works.

II. MULTIOBJECTIVE FUNDAMENTALS

A multiobjective optimization problem has to deal with
two or more conflicting objective function [5] at the same
time. These functions must be in conflict in order to build a
Pareto frontier, where there are no solutions better than others;
otherwise, the answer to the problem would be only one point
in the search space.

Thus, assuming that a solution to a MOP is a vector in
a search space X with m elements. A function f : X → Y
evaluates the quality of a solutions mapping it into an objective
space. Therefore, a multi-objective problem is defined as
presented in ( 1), where f is a vector of objective functions, m
is the dimension of the problem and n the number of objective
functions.

Max y = f(x) = (f1(x1, ..., xm), ..., fn(x1, ..., xm)) (1)

In order to determine whether a solution belongs to the
Pareto frontier or not, we need the concept of optimality,
which state that given two vectors x, x∗ ∈ < and x 6= x∗,
x dominates x∗ (denoted by x � x∗) if fi(x) is not worse
than fi(x∗),∀ i and ∃ at least one i where fi(x) > fi(x∗) in
maximization cases and fi(x) < fi(x∗) otherwise. Hence, a
solution x is said Pareto optimal if there is no solution that
dominates x, in such case, x is called non-dominated solution.
Mathematically, assuming a set of non-dominated solutions ℘,
a Pareto frontier(pf ) is represented as pf = {fi(x) ∈ <|x ∈
℘}

III. PSO-BASED ALGORITHMS

The particle swarm optimization was proposed by Kennedy
and Eberhart [19] in 1995. The algorithm consists of particles
which are placed into a search space, and move itself com-
bining its own history position and the global optimal solution
found so far. A particle position is represented in the search
space as XD

i = (x1i , x
2
i , ..., x

D
i ) and it is updated based on

its velocity V Di = (v1i , v
2
i , ..., v

D
i ), where D represents the

problem dimension. The new position is determined by means
of (2) and (3), where w represents the inertia weight, cl and
c2 are acceleration constants, rl and r2 are random number in
the range [0, 1], pdi is the best position reached by the particle
P , and gd is a vector which stores the global optima of the
swarm.

vdi = w × vdi + c1r1 × (pdi − xdi ) + c2r2 × (gd − xdi ) (2)

xdi = xdi + vdi (3)

The Algorithm 1 outlines how PSO works. Initially, the
swarm is created at random, where each particle has to be
within the domain [adi , b

d
i ]. Then particles are evaluated in

order to initialize the P matrix and the gd vector, which are
the best experience of each particle and the best solution that
has been found so far, respectively. Thereafter, the velocity
and the position of a particle are updated within a loop that
obeys some stop criteria. In the pseudo code presented in the
Algorithm 1, the stop criteria is a certain number of iterations.

A. VEPSO

The VEPSO algorithm is a multiobjective heuristic based
on Vector Evaluated Genetic Algorithms (VEGA) [7]. The
main idea behind this algorithm is to “evolve” two indepen-
dent swarms and exchange information between them, i.e.,
assuming two swarms S1 and S2, and two functions to be
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Generate a swarm of particles X of size s from [adi , b
d
i ] ;

for i = 1 to swarm size do
Evaluate swarm
Update the best position g
Update p of the particles
for j = 1 to D do

Update velocity V using (2)
Update position X using (3)

end
end
Verify if the current g is better than the best of the
current swarm
Algorithm 1: Particle Swarm Optimization (PSO)

optimized f1 and f2, being solved by S1 and S2, respectively.
The swarm S1 updates its velocity using the best particle of
S2 (g2). On the other hand, S2 updates its velocity based on
the best particle of S1 (g1). Then, an archive is held after
each iteration joining both swarms in order to obtain only the
non-dominated solutions.

B. VEPSO-N

The VEPSO-N uses the idea behind Lim’s work [13] where
an archive with non-dominated solutions is maintained, then
each swarm updates its own global best (gbest) using the best
result in its respective function. Mathematically, considering
two swarms S1 and S2, and A = {a1, a2, ..., an} as being
the set of non-dominated solutions, if f(ai) presents the best
solutions regarded to S1 and f(aj) shows the best solutions
regarded to S2, then ai and aj replace gS1

best and gS2

best,
respectively. In other words, we use the best solutions in the
archive for updating the global best on each swarm.

IV. EXPERIMENTS

A. Performance Evaluation and Parameters

In this section, we discuss the experimental evaluation of
EED and RCP optimization problems as follows. Firstly, the
number of non-dominated points found in the Pareto frontier
after 31 trials were determined. Secondly, the hypervolume,
which is the volume of the dominated portion of the objective
space, as presented in (4), was measured, where for each
solution i ∈ Q a hypercube vi is constructed. Having computed
each vi, we can calculate the final hypervolume by the union
of all of them.

hv = volume(

|Q|⋃
i=1

vi) (4)

Thirdly, the dominance relationship between Pareto fron-
tiers (coverage) obtained with different algorithms was calcu-
lated as depicted in (5). Roughly speaking, the coverage is the
ratio between the number of solutions dominated by A divided
by the number of elements from set B [27]. If C(A,B) = 1
then all solutions in A dominate B. Therefore, C(A,B) = 0
means the opposite.

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(5)

The parameters used in all experiments for PSO algorithms
were: c1 = c2 = 0.5 + log(2); numbers of particles = 50; w0

= 0.9; wf = 0.1, where w has a linear updating based on (6)
as proposed by Nikabadi and Ebadzadeh [22], where w0 is
the initial weight, wf is the final one, NG is the number of
iterations and i depicts the current generations. Moreover, all
study cases are executed using 500, 1000 and 2000 iterations;
the initialization was done as recommended by Clerc [23]; and,
we are not narrowing the archive size.

w = (w0 − wf )×
NG
i

(6)

All the parameters were chosen empirically and all tests
have been conducted using R version 2.15.0 [24] and RStu-
dio [25] on a Windows 7 64-bit Operating System running on
an Intel i7 3.4 Ghz processor, with 16 GB of RAM.

B. Real World Applications

1) Environmental Economic Dispatch: The environmental
economic dispatch involves the optimization of both fuel cost
and pollution emission simultaneously as presented in (7) and
(8), where Pi is the power used on the ith generator, ai, bi,
ci, αi, βi and γi are coefficients presented in Tables I and II.

min Fc =

n∑
i=1

(aiP
2
i + biPi + ci) (7)

min E =

n∑
i=1

(αiP
2
i + βiPi + γi) (8)

subject to

max∑
min

Pi ≥ Pd (9)

Pmin ≤ Pi ≤ Pmax (10)

The constraint presented in (9) represents the required
demand, i.e., the sum of all powers has to be equal or greater
than a specific demand, and the constraint shown in (10)
depicts the operation boundaries of each generator which
are also presented in Tables I and II. The coefficients and
boundaries where obtained from Singh and Kumar [26], and,
at this stage, we are not considering the power loss. Moreover,
we are taking into account demands equals to 500 MW and
700 MW.

TABLE I. GENERATORS AND COST COEFFICIENTS

Pmin Pmax a b c
5 50 0.01 2 10
5 60 0.012 1.5 10
5 100 0.004 1.8 20
5 120 0.006 1 10
5 100 0.004 1.8 20
5 60 0.01 1.5 10

Table III shows the average results in terms of number of
solutions and hypervolume for a EED problem comprises of 6
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TABLE II. GENERATORS AND EMISSION COEFFICIENTS

Pmin Pmax α β γ
5 50 0.00419 0.32767 13.85932
5 60 0.00419 0.32767 13.85932
5 100 0.00683 -0.54551 4 0.26690
5 120 0.00683 -0.54551 40.26690
5 100 0.00461 -0.51116 42.89553
5 60 0.00461 -0.51116 42.89553

generators and a demand of 500 MW, following the legend I
for VEPSO and II for VEPSO-N. As expected, increasing the
number of iterations the number of non-dominated solutions
also increases in both algorithms. We can also observe the
number of solutions in VEPSO-N is smaller than in VEPSO.
On the other hand, the average hypervolume is better in
VEPSO-N, showing that the Pareto frontier might be better
on the respective algorithm.

TABLE III. NUMBER OF SOLUTIONS AND HYPERVOLUME FOR EED
PROBLEM CONSIDERING A DEMAND OF 500 MW

500 it 1000 it 2000 it
I II I II I II

#NS 67.64 57.61 177.13 62.93 399.42 74.71
HV 1.8e6 1.96e6 1.91e6 2.46e6 1.74e6 2.09e6

Table IV shows the coverage metrics in the final Pareto
frontier, which indicate that VEPSO presents better solutions,
particularly with 2000 iterations, where VEPSO dominates
74% of the solutions. Figure 2 shows the final Pareto frontier
after 31 trials, where we can see that VEPSO tends to find out a
better Pareto frontier. When 2000 iterations are used, VEPSO-
N presents an extension of the Pareto frontier; even though,
those points are not interesting because they are dominated
points. Also, we have to point out that VEPSO-N tends to
concentrate its solutions in the beginning of the Pareto frontier
when 500 iterations are used, which is not good in terms of
diversity.

TABLE IV. COVERAGE FOR EED PROBLEM WITH DEMAND OF 500
MW

500 it 1000 it 2000 it
I II I II I II

I - 0.25 - 0.28 - 0.74
II 0.07 - 0.23 - 0.25 -

Table V presents the average results in terms of number
of solutions and hypervolume for a EED problem comprises
of 6 generators and a demand of 700 MW, following the
legend I for VEPSO and II for VEPSO-N. The problem is
harder to be solved because the demand constraint is stronger.
Nonetheless, the number of solutions increase as we increase
the number of iterations. However, this increment is clearly
bigger in VEPSO than in VEPSO-N. On the other hand, the
hypervolume in VEPSO-N is better indicating that its solutions
might be slightly better. Figure 3 shows the final Pareto frontier
after 31 trials. Visually, it seems that the final frontier is better
for VEPSO which is confirmed in Table VI, excepting for 500
iterations where VEPSO-N dominates 36% of the solutions,
whereas VEPSO dominates 29%.

Summarizing, VEPSO seems to cover better the final
Pareto frontier than VEPSO-N for demands of 500 and 700
MW. On the other hand, when the demand constraint is
harder (700 MW), VEPSO-N presented best results with lower
number of iterations.

Figure 2. Pareto frontier after 31 executions for EED and demand of 500

TABLE V. NUMBER OF SOLUTIONS AND HYPERVOLUME FOR EED
PROBLEM CONSIDERING A DEMAND OF 700 MW

500 it 1000 it 2000 it
I II I II I II

#NS 141.9 93.6 323.81 103.94 546.58 137.42
HV 4.8e6 4.9e6 4.8e6 5.3e6 5.3e6 5.4e6

TABLE VI. COVERAGE FOR EED PROBLEM WITH DEMAND OF 700
MW

500 it 1000 it 2000 it
I II I II I II

I - 0.29 - 0.35 - 0.37
II 0.36 - 0.30 - 0.13 -

2) Reinsurance Contract Optimization: The reinsurance
process consists of hedging risk from the insurance company to
a bigger one, called reinsurance company. The main purpose of
doing so is to survive in case of massive claims mainly caused
by natural catastrophes. The reinsurance contract optimization
problem consists of given a treaty structure to figure out the
best combination of placements or shares in order to transfer

45Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics



Figure 3. Pareto frontier after 31 executions for EED and demand of 700

the maximum of risk, and at the same time, to receive the
maximum return when facing massive claims. Therefore, the
main purpose of a RCO problem is to find out the best
combination of shares or placements which maximize both the
transfered risk and the expected return. Figure 4 is an example
of a structure with two different solutions in terms of shares.

The Equation 11 represents the RCO in terms of an
optimization problem, where V aR is a risk metric, R is a
function based on a combination of shares pi, and E is the
expected value. For further details about the problem refer to
[17] and [20].

maximize f1(x) = V aRα(R(π))
maximize f2(x) = E[R(π)]

(11)

Table VII shows the average number of solutions and the
average hypervolume (all hypervolume values are multiplied
by 1 × 1015) for the RCO problem consisting of 7 layers of
real anonymized data and a discretization of 5% obtained by

Figure 4. Structure and two solutions with different placements

rounding solutions. The following legends are I for VEPSO
and II for VEPSO-N. Again, the number of solutions increase
as we increase the number of iterations for both approaches;
however, in this particular experiment, VEPSO-N presented
a greater number of solutions for 500 and 2000 iterations,
nonetheless the average hypervolumes were smaller, indicating
that VEPSO could present better solutions.

TABLE VII. NUMBER OF SOLUTIONS AND HYPERVOLUME FOR RCO
PROBLEM WITH 7 LAYERS

500 it 1000 it 2000 it
I II I II I II

#NS 1394 2152.52 4677.13 4360.06 11650 16360.65
HV 2.26 2.21 2.26 2.2 2.26 2.26

Figure 5 depicts the final Pareto frontier for RCO problem
using 7 layers for 500, 1000 and 2000 iterations, respectively.
Visually, solutions seem to be very similar, perhaps with a
little advantage to VEPSO, specially when 2000 iterations are
taking into account. Thus, Table VIII presents the coverage
metrics on the final Pareto frontier, where VEPSO dominates
4% more solutions with 500 iterations, and gets worse with
1000 iterations dominating 6% less solutions. This scenario
is confirmed with 2000 iterations where VEPSO-N could
dominate even more points, i.e., 30%.

TABLE VIII. COVERAGE FOR RCO PROBLEM WITH 7 LAYERS

500 it 1000 it 2000 it
I II I II I II

I - 0.31 - 0.21 - 0.17
II 0.27 - 0.27 - 0.30 -

In order to increase the difficulty of solving this opti-
mization problem, 8 layers were synthetically added to the
previous 7 layers structure. Table IX shows the results in terms
of the average number of solutions and average hypervolume
(all hypervolume values are multiplied by 1× 1015) when 15
layers are considered. Again, the number of solutions increase
as the number of iterations; however, in this particular case,
VEPSO and VEPSO-N presented similar results, excepting for
2000 iterations where VEPSO reached more non-dominated
points. On the other hand, VEPSO presented better average
hypervolume, indicating better solutions.

Figure 6 represents the final Pareto frontier for RCO
problem using 15 layers for 500, 1000 and 2000 iterations,
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Figure 5. Reinsurance contract optimization Pareto frontier after 31 execu-
tions using 7 layers

TABLE IX. NUMBER OF SOLUTIONS AND HYPERVOLUME FOR RCO
PROBLEM WITH 15 LAYERS

500 it 1000 it 2000 it
I II I II I II

#NS 186.68 453.9 1001.97 2214.1 3916.8 3299.7
HV 4.57 4.1 4.6 4.1 4.55 4.2

respectively. Solving the problem with more layers is clearly
more difficult. Nonetheless, both algorithms presents visually
similar results. Thus, Table X shows the coverage for the
algorithms where we can see that differences in this particular
case are evident in the following cases: (i) VEPSO-N with 500
iterations dominating 55% of VEPSO solutions; (ii) VEPSO
with 1000 iterations dominating 56% of VEPSO-N points;
and, VEPSO with 2000 iterations dominating 44% of VEPSO
against 33% in VEPSO-N.

Figure 6. Reinsurance contract optimization Pareto frontier after 31 execu-
tions using 15 layers

TABLE X. COVERAGE FOR RCO PROBLEM WITH 15 LAYERS

500 it 1000 it 2000 it
I II I II I II

I - 0.23 - 0.56 - 0.44
II 0.55 - 0.22 - 0.33 -

V. CONCLUSION

This paper presented a study about the performance of
the canonical VEPSO and the algorithm called VEPSO-N in
solving multiobjective world real problems. The comparison
shows that both approaches are suitable for finding out non-
dominated points; however, the traditional VEPSO has an
advantage in the EED problems, since present more solutions
in the search space and tends to dominate more points as well,
for example, using 2000 iterations VEPSO domains 70% of
the solutions from VEPSON-N with a demand of 500 MW
against 25% in the way around. Further, when a demand of
700 MW is considered, VEPSO domains 37% of the solutions
from VEPSO-N using 2000 iterations.
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In RCO, VEPSO-N tends to present more solutions than
VEPSO with less layers, and dominates up to 30% of the
solutions from VEPSO. This behavior is similar when solving
the problem with 15 layers using 500 and 1000 iterations;
nevertheless, VEPSO-N is overcame when 2000 iterations are
used, since VEPSO starts to domain 44% of points against
%33 of VPSON-N.

Future work includes a comparison against other mod-
ern approaches, such as Vector Evaluated Differential Evo-
lution (VEDE) [28], Strength Pareto Evolutionary Algo-
rithm (SPEA2) [29] and Multiobjective Evolutionary Algo-
rithm/Distributed (MOEA/D) [27], hybridization of VEPSO
with other metaheuristics and a parallel version.
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