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Abstract—Generally, prediction requires significant and good 

quality input data that will give accurate prediction.  However, 

real-data are often noisy, inconsistent, and imbalanced.  If the 

classes are imbalanced, the class accuracy is unlikeable 

because the prediction tends to favor those in majority class 

since it has relatively significant class size.    To resolve the 

imbalance problem, a resampling algorithm is proposed which 

improves the prediction accuracy of each class.  The algorithm 

was tested in 4 different datasets each using different 

prediction and classification methodologies, such as Regression 

Analysis, Decision Tree, Rule Induction, and Artificial Neural 

Networks.   Results show that the framework works in either 

methodologies and prediction accuracy generally improves 

after resampling.  The framework was also compared to the 

existing sampling methodologies and results show that it is 

comparable with the ROS/RUS, but the resampling rate is 

minimized with the proposed framework.   

 

Keywords:Prediction model framework; Class imbalance 

problem; Data mining. 

I.  INTRODUCTION 

Prediction, pattern recognition, and classification 

problems are not new.  By definition, predictive analytics is 

the utilization of statistics, data mining, and game theory to 

analyze current and historical facts in order to make 

predictions about future events [1].  It enables decision 

makers to develop mathematical models to help them better 

understand the relationship among variables.  
One of the major issues in coming up with accurate 

predictions lies in the quality of input data, which are 

usually incomplete (lacking attribute values or certain 

attributes of interest, or containing only aggregate data), 

noisy (containing errors, or outlier values that deviate from 

the expected), inconsistent (e.g., containing discrepancies in 

the department codes used to categorize items), and 

imbalanced (occurs when one class is underrepresented in 

the data set).  Accordingly, low quality data will lead to low 

quality prediction and classification results [2]. This 

research mainly focuses on addressing imbalanced datasets.  

Generally, a two-class data set is said to be imbalanced 

(or skewed) when one of the classes, called the minority 

class, is heavily under-represented in comparison to the 

other class, called the majority class.  Dataset imbalance on 

the order of 100 to 1 is prevalent in fraud detection and 

imbalance of up to 100,000 to 1 has been reported in other 

applications [3].  In such a situation, most of the classifiers 

are biased towards the major classes and hence show very 

poor classification rates on minor classes. It is also possible 

that a classifier predicts everything as major class and 

ignores the minor class [4].  Class distribution, i.e., the 

proportion of instances belonging to each class in a data set, 

plays a key role in classification.  Data sets with skewed 

class distribution usually tend to suffer from class 

overlapping, small sample size or small disjuncts, which 

difficult classifier learning [5].  Furthermore, the evaluation 

criterion can lead to ignore minority class examples 

(treating them as noise) and hence, the induced classifier 

might lose its classification ability in this scenario.  In many 

applications, misclassifying a rare event can result in more 

serious problem than common event.  For example, in 

medical diagnosis in case of cancerous cell detection, 

misclassifying non-cancerous cells leads to some additional 

clinical testing but misclassifying cancerous cells leads to 

very serious health risks.  However, in classification 

problems with imbalanced data, the minority class examples 

are more likely to be misclassified than the majority class 

examples, due to their design principles; most of the 

machines learning algorithms optimize the overall 

classification accuracy which results in misclassification 

minority classes. 

Various studies have already been conducted that 

answers class imbalance problem.  Yet, the techniques are 

either simple or complex.  Simple techniques use either 

oversampling or undersampling or combination of both, but 

the techniques usually assume that a fully balanced dataset 

can be attained.  With this assumption, the chance of over-

fitting, particularly for oversampling, is highly possible.  In 

the case of undersampling, too much useful data that are 

excluded in the training set can make the prediction or 

classification inaccurate.   Multi-dimensional (n-dimension) 

data sets can be resolved using more sophisticated 

techniques which can be hard to interpret and would require 

a significant amount of processing cost. 

Against this background, there is a need to develop a 

prediction model framework that can pre-process and 

resolve the imbalance problem by utilizing a proposed 

iterative oversampling and undersampling methodology for 

n-dimensional datasets. 

We begin by presenting related works of others in 

Section 2.  In Section 3, we describe the proposed 

framework and the algorithm to resolve the class imbalance 
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problem.  Then, the results of the experimental runs and the 

analyses are discussed in Section 4.  Finally, conclusion and 

areas for future studies are described in Section 5. 

II. RELATED WORKS 

Large numbers of approaches have previously been 

proposed to deal with the class-imbalance problem [6].  The 

approaches  are categorized into two groups: the internal 

approaches acting on the algorithm that create new 

algorithms or modify existing ones to take the class-

imbalance problem into consideration, and external 

approaches acting on the data that use unmodified existing 

algorithms, but resample the data presented to these 

algorithms so as diminish the effect caused by their class 

imbalance [1].  Internal approaches modify the learning 

algorithm to deal with the imbalance problem.  They can 

adapt the decision threshold to create a bias toward the 

minority class or introduce costs in the learning process to 

compensate the minority class.  Cost sensitive learning is 

probably the most well-known method of dealing with the 

class imbalance [3].  External approaches act on the data 

instead of the learning method.  They have the advantage of 

being independent from the classifier used.       

Sampling is the most popular means for overcoming the 

class imbalance problem [3].  Sampling is used as a means 

of altering the distribution of the minority class so that it is 

not under represented when training the learner.  There are 

three basic approaches to overcome the class imbalance 

problem.  These are over sampling of the minority class, 

under sampling of the majority class or the use of a hybrid 

approach based on both.   

A. Random Over-sampling (ROS) 

ROS [3] can be described as the random sampling of the 

minority class with replacement.  This randomly samples 

with replacement the minority class and adds them to the 

minority class sample set until the size of the minority class 

is the same size as the majority class.  With replacement 

means that after each resample, the samples are placed back 

in the ‘pot’ (the minority sample set) and can be resampled 

again.  Over-sampling can result in a number of problems, 

these include over-fitting of a model especially in the cases 

of noisy data.  Also, over-sampling does not result in more 

information being included in the training set, which can 

cause the production of overly complex models.   

B. Random Under-sampling (RUS) 

When under sampling [11] is used to overcome the 

problem of class imbalance, the number of majority class 

examples is reduced until the number of majority samples 

equals the number of minority samples.  When using this 

solution to the class imbalance problem, certain problems 

may arise from removing such a larger number of the 

majority class, due to a fact that a number of potentially 

useful samples from the majority class may be discarded.  

Under-sampling does offer a number of benefits to over-

sampling.  The main one being that it results in a smaller 

training set as compared to oversampling, thus resulting in 

shorter training times.   

C. Combination of ROS and RUS (ROS/RUS) 

ROS/RUS is a combination of random over-sampling 

and random under-sampling.  When this approach is used, 

the majority class would be under-sampled and the minority 

class would be over-sampled. 

D. Synthetic Minority Over-sampling Technique (SMOTE) 

The use of SMOTE algorithm [9] to artificially 

synthesize items belonging to the minority class has also 

been postulated as a means of overcoming the class 

imbalance problem.  When SMOTING a dataset, the class 

having the smaller number of examples is over-sampled 

through the synthesis of artificial instances, as opposed to 

over-sampling existing samples with replacement.  The 

class having the smaller number of examples is over-

sampled by the use of a kNN to add artificial instances along 

the line segments connecting some or the entire population 

of nearest neighbors.  The number of nearest neighbors to 

add is dependent on the level of over-sampling required. 

E. Cost-sensitive Learning 

Cost-sensitive learning framework incorporates both 

data level transformations (by adding costs to instances) and 

algorithm level modifications (by modifying the learning 

process to accept costs) [1].  It biases the classifier toward 

the minority class the assumption higher misclassification 

costs for this class and seeking to minimize the total cost 

errors of both classes.  The major drawback of these 

approaches is the need to define misclassification costs, 

which are not usually available in the data sets [5]. 

Several studies that used the abovementioned approaches 

have been done to answer the class imbalance problem.  

Some of which are discussed below: 

Kubat and Matwin [4] selectively under-sampled the 

majority class while keeping the original population of the 

minority class.  The minority examples were divided into 

four categories: some noise overlapping the positive class 

decision region, borderline samples, redundant samples and 

safe samples.  The borderline examples were detected using 

the Tomek links concept. 

Japkowicz [8] discussed the effect of imbalance in a 

dataset.  She evaluated three strategies: under-sampling, 

resampling and a recognition-based induction scheme.  She 

experimented on artificial 1D data in order to easily measure 

and construct concept complexity. Two resampling methods 

were considered.  Random resampling consisted of 

resampling the smaller class at random until it consisted of 

as many samples as the majority class and focused 

resampling consisted of resampling only those minority 

examples that occurred on the boundary between the 

minority and majority classes.  Random under-sampling was 

considered, which involved under-sampling the majority 

class samples at random until their numbers matched the 
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number of minority class samples; focused under-sampling 

involved under-sampling the majority class samples lying 

further away.  She noted that both the sampling approaches 

were effective, and she also observed that using the 

sophisticated sampling techniques did not give any clear 

advantage in the domain considered. 

Another study used the cost-sensitive learning, as cited 

by Chawla [9]. He compares the “meta-cost” approach to 

each of majority under-sampling and minority over-

sampling.  He finds that meta-cost improves over either, and 

that under-sampling is preferable to minority over-sampling. 

Error-based classifiers are made cost-sensitive. The 

probability of each class for each example is estimated, and 

the examples are relabeled optimally with respect to the 

misclassification costs. The relabeling of the examples 

expands the decision space as it creates new samples from 

which the classifier may learn [3]. 

Estrabooks [6] used the external approach to resolve the 

class imbalance problem.  Resampling was conducted using 

the following strategies:  over-sampling consisted of 

copying existing training examples at random and adding 

them to the training set until a full balance was reached.  

Under-sampling consisted of removing existing examples at 

random until a full balance was reached.  The results 

suggested the neither over-sampling nor the under-sampling 

strategy is always the best one to use, and finding a way to 

combine them could perhaps be useful, especially if the bias 

resulting from each strategy is of a different nature [4].  

Furthermore, the study suggested that resampling to full 

balance is generally not the optimal resampling rate, at least 

when the test set is balanced.  The optimal resampling rate 

varies from domain to domain and resampling strategy to 

resampling strategy.  In general, over-sampling changes its 

effect gradually and in a stable manner with different rates, 

while under-sampling does so radically and in an unstable 

manner. 

Brennan [3] made a survey on the methods for 

overcoming the class imbalance problem in fraud detection.  

RapidMiner, R and Weka were used to study the various 

methods for overcoming the class imbalance problem. All 

the sampling methodologies and the cost-sensitive learning 

method were applied in three different datasets such as car 

insurance fraud dataset, consumer fraud insurance dataset, 

and thyroid disease dataset.  For all datasets used, the data 

methods proved to be superior to the algorithmic methods.  

The data methods surveyed were found to be simple to 

implement and at least some of them were highly effective.  

They also proved easier to implement and did not lead to 

sizable increases in training time or resources needed.  

SMOTE, ROS, and ROS/RUS proved to be the best 

performing methods for treating the imbalance in the data.  

However, ROS may be criticized as a method as it can lead 

to over-fitting a model as it over trains a model to recognize 

a small number of minority classes.  SMOTE addresses this 

by creating artificial replicants and thereby creating a less 

specific feature space for the minority group.  However, if 

the SMOTE algorithm has proved ineffectual at replicating 

the characteristics of the minority class, it will result in a 

situation where the minority class sample qualities are too 

similar to those of the majority class.  This result in the 

problem of “class mixture” and the resulting model will 

misclassify classes of the minority class as members of the 

majority class. 

This study focuses on the data methodologies (external 

approach) because of the advantages that it offers and 

literature argued that this approach is better than the 

algorithmic methodologies (internal approach).  However, 

the existing data methodologies only assume a random 

sampling technique that fully balances the number of 

examples in the majority and minority classes.   

Furthermore, literature suggests that external approach 

may be divided into two types of categories.  First, there are 

approaches that focus on studying what the best data for 

inclusion in the training set [10], and second, there are 

approaches that focus on studying what the best proportion 

of positive and negative examples to include in training set 

[11].  The work of Estrabooks [6] focused on the second 

category by creating a framework that deals with the 

proportion question.  This study attempts to answer both 

questions.  The suggested framework provides the best rate 

at which with the combined over-sampling and under-

sampling methodology will provide good prediction 

accuracy even without fully balancing the number of 

examples in the minority and majority classes.  At the same 

time, it will provide a methodology in determining the data 

for inclusion in the training set for the over-sampling and 

the data for exclusion in the training set for the under-

sampling methodology. 

III. PROPOSED ALGORITHM 

This research proposes a combination of oversampling 

and undersampling methodologies to determine the 

appropriate number of samples in each class that will give 

higher class accuracy.   

Suppose we have a dataset represented by matrix A with 

a set of row r and column c.  The rows represent examples 

and the columns are the attributes of the examples with d 

dimensions.  Thus, the matrix element rrc is the value of 

example with ID r in the attribute with ID c.  Consider such 

a matrix A, with n rows and m columns, defined by its set of 

rows, R = {r1, …, rn}, and its set of columns, C = {c1, …, 

cm}.  Thus, matrix A can be denoted by (R, C). This study 

provides a framework that can predict variable y, which is 

directly or indirectly affected by the attributes defined by C 

= { c1, …, cm}.  If after discretizing the predictor variable y, 

matrix A can be partitioned into k classes with n1 elements 

in class 1… nk elements in class k, where n1, n2, …, nk are 

not uniformly distributed.   We can define a majority class if 

nk = nmaximum, otherwise nk is called minority class.  

Discussed below is the proposed resampling algorithm to 

resolve the class imbalance problem. 
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Algorithm 

If matrix A, the original dataset, is divided into k classes: 

{C1, C2, …, Ck; n1, n2, …, nk} 

S% = resampling rate 

m = number of minority class samples 

M = number of majority class samples 

nt = number of examples in class k at ith iteration. 

nt-1 = number of examples in class k at previous iteration 

 

1 Initialize S% = 0. 

2 Choose class Ck, where Ck  A 

3      If Ck is minority class, then oversample the Ck class. 

4           For the array of original minority class samples 

of size m, assign a two-digit number, initialized 

to 01. 

5           Generate random numbers, between 0 to 1, equal 

to the required oversample size. 

6           Use the first two digits to create the synthetic 

sample of size nk from the generated random 

numbers. 

7      If Ck is majority class, then undersample the Ck 

class. 

8           Compute   
    

(       )
. 

9           For the array of original majority class samples 

of size M, eliminate every ith instance from the 

data set. 

10  

11 Predict y 

12 Compute over-all accuracy and class accuracy 

13 While class accuracy improves 

14      Increment S% 

15      Go to 3 

16  

17 Stop 

 

Resampling has been conducted using the following 

strategies: oversampling consisted of copying existing 

training examples at random and adding them to the training 

set; while undersampling consisted of removing existing 

examples at random until the desired number of samples is 

reached.  For example, if datasets initially has 1000 samples 

in majority class and 50 samples in minority class, that is at 

S = 0%. Using a 10% resampling rate will contain 1000 – 

[0.10*(1000-50)] = 905 majority class examples and 

   (         )      samples in the minority class. 

Lines 4 – 6 of the abovementioned algorithm show how 

oversampling is being done.  Oversampling starts by 

assigning a two-digit number to each of the original 

minority examples, since the number of minority class is 

usually less than 100, for most situations.  However, the 

user can redefine it depending on the number of minority 

examples.  By generating random numbers, which is equal 

to the desired number of examples defined by S%, copy the 

examples at random and add them to the training set. 

Conversely, lines 8 – 9 show the undersampling procedure.  

Computing the i determines the dataset that will be excluded 

from the original majority class.  The datasets will therefore 

be resampled by simultaneously reducing the number of 

majority examples and increasing the number of minority 

examples.  Thus, the algorithm will make the dataset 

approximately uniformly distributed without abruptly 

changing the class size, hence, overfitting can be avoided, as 

well as removing the important data in the majority class 

can also be prevented.  The algorithm terminates if the class 

accuracy starts to plateau, meaning, the accuracy stops 

improving.  Iterating it further will not improve the 

accuracy.  It therefore implies that the iteration stops at the 

same time, that is, to minimize the computational time of 

the algorithm.  By applying a combination of undersampling 

and oversampling, the initial bias of the learner towards the 

majority class is avoided. 

This study assumes that the framework can be applied to 

any classification/prediction methodologies.  Some 

methodologies that have been investigated are regression, 

decision tree induction, rule induction, and artificial neural 

network. 

The performance of the prediction/classification is 

evaluated by a confusion matrix [3], as illustrated in Figure 

1. 

 
 Predicted 

Negative 
Predicted 
Positive 

Actual Negative TN FP 

Actual Positive FN TP 

Figure 1. Confusion Matrix 
The confusion matrix is a useful tool for analyzing how 

well the classifier can recognize examples of different 

classes.  The columns are the Predicted class and the rows 

are the Actual class.  In the confusion matrix, TN is the 

number of negative examples correctly classified (True 

Negatives), FP is the number of negative examples 

incorrectly classified as positive (False Positives), FN is the 

number of positive examples incorrectly classified as 

negative (False Negatives) and TP is the number of positive 

examples correctly classified (True Positives).  Predictive 

accuracy is the performance measure generally associated 

prediction or classification algorithms and is defined as: 

 

          
     

           
 (1) 

In the context of balanced datasets and equal error costs, 

it is reasonable to use error rate as a performance metric.  

Error rate is 1 – Accuracy. 

IV. RESULTS AND DISCUSSION 

A. Test Case Data 

The proposed algorithm has been tested on four test data 

sets with various features.  The first two data sets are 

original datasets while the last two data sets are from 

Knowledge Extraction based on Evolutionary Learning 
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(KEEL) Data Repository [14]. Table I lists down the four 

data sets and their corresponding properties, while Figure 2 

shows the distribution histogram of the classes of each 

dataset.  
TABLE I – COMPARISON OF TEST CASE DATA 

 

Data Set Number of 

Instances 

Number of 

Predictor 

Variables 

Number of 

Classes 

Proportion 

of Class 

Imbalance 

Crop Yield 1,003 21 3 10:1:1 

Credit 
Risk 

348 19 2 3:1 

Ecoli 336 7 2 16:1 

Yeast 1,489 8 10 90:50:10:1 

 

(a) (b) 

 

(c) 

 

(d) 
Figure 2. Class Distribution of each Data Set Before Resampling (a) Crop 

Yield, (b) Credit Risk, (c) Ecoli, and (d) Yeast 

B. Prediction 

     As mentioned in the previous section, various 

prediction/classification methodologies have been applied, 

such as regression analysis, decision tree, rule induction 

technique, and artificial neural network.  Data mining 

algorithms are applied using Waikato Environment for 

Knowledge Analysis (WEKA) version 3.6.10 [14] software 

for decision tree, rule induction, and neural network. It 

includes a wide variety of learning algorithms and 

preprocessing tools.  Minitab 16 has been used to implement 

the regression analysis.   

The performance of the applied data mining algorithms 

is estimated by the 10-fold cross validation. Data are 

randomly partitioned into 10 blocks, one block is held out 

for the test purpose and the model is built on the remaining 

nine blocks. This method is then repeated for other blocks.  

After repeating the calibration and validation processes with 

ten different combinations, the results (prediction accuracy 

and MAE) obtained with these ten different validation 

datasets are summarized by calculating the mean value and 

95% confidence interval.  It should be noted, however, that 

the calibration and validation dataset are independents 

throughout the procedure. 

C. Resampling Rate 

Resampling rate is a parameter that will be selected by 

the user (user-specified).  Choosing the appropriate 

resampling rate and its increment size define the 

computational time in achieving the balanced dataset.  

Selecting a low increment size might mean a slow 

convergence while incrementing it at high values might 

show a very fast convergence, which in effect might not 

give the best resampling size.  Figure 2 shows the summary 

of the analysis. 

It is gleaned from Fig. 3 that incrementing it at 1% 

shows a very slow convergence, which is after 29 runs.  

However, having a step increment of 20% shows a very fast 

convergence, which only took 3 runs.  This is not good 

because it will not give us the appropriate resampling size. 

A resampling size is said to be appropriate if it is not 

exceedingly under-sampled nor oversampled.  Generally, 

increment size of the resampling rate depends on how large 

or small is the gap of the majority class and the minority 

class.  The smaller the gap between the majority and 

minority class means small increment size for resampling 

rate can be used.  However, if the disparity is high, higher 

size increment is suggested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Convergence at Different Resampling Rate 

D. Resampling Size 

After identifying the increment size of the resampling 

rate, we can now determine the appropriate resampling size.  

As mentioned above, a good resampling size will give the 

user an approximately balanced class size that is not overly 

undersampled nor oversampled, thus, overfitting can be 

precluded. Table II shows the different results of the 

resampling runs.  
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TABLE II – RESAMPLING RUNS 

 

Resampling 

Size 

Data Sets 

Crop Yield Credit Risk Ecoli Yeast 

Class A 568 232 269 370 

Class B 328 115 67 344 

Class C 323 - - 288 

Class D - - - 224 

Class E - - - 132 

Class F - - - 128 

Class G - - - 116 

Class H - - - 120 

Class I - - - 108 

Class J - - - 96 

Ressampling 

Rate 

5% 2% 5% 5% 

Number of 

Resampling 

Runs to 

Converge 

8 4 7 6 

 

     It is shown in Table II that the resampling rate of 5% 

implies that each run increases the undersampling or 

oversampling rate by 5%.  Most of the data sets in this 

research use a resampling rate of 5%.  The number of 

resampling runs shows the number of runs by which the 

accuracy graph converges. After that run, the next runs show 

very little improvement in each class accuracy, that is the 

graph starts to plateau.  Hence, it is considered as the 

appropriate resampling size for each data set.  Fig. 4 shows 

the improved class distribution after resampling. 

 

 

(a) 

 

(b) 

 

(c) (d) 
Figure 4. Class Distribution of each Data Set After Resampling (a) Crop 

Yield, (b) Credit Risk, (c) Ecoli, and (d) Yeast 

 

     The class accuracy generally improves for each data set 

after resampling, using any of the prediction/classification 

methodologies.  Figure 5a to Figure 5d show the 

comparison of the overall accuracy and class accuracy 

before and after the resampling using the regression 

analysis, decision tree induction, rule induction, and 

artificial neural network. 

 

 
Figure 5a. Comparison of Over-all and Class Accuracy Before and After 

Resampling Using Regression Analysis 

 

Regression analysis is implemented using Minitab 16 

software.  Since the predictor variable is discretized, general 

regression is used.  A regression model is developed 

initially using the original dataset (before resampling) for 

each dataset.  For the Crop Yield dataset, although the 

overall accuracy is almost 80%, investigating the class 

accuracy shows that Class B is the problematic class since 

only 42% was correctly classified examples.  Class C is also 

problematic since it only 57% was correctly classified.  The 

low prediction accuracy for these classes is caused by the 

fact that Classes B and C are both minority class.  Credit 

Risk dataset has little problem on class A accuracy since the 

accuracy is almost 66% as compared to class B accuracy 

which is 84%.  Notice that Class A is the minority class in 

this case, hence low accuracy is explained by this fact.  For 

the Ecoli dataset, Class B has the lowest accuracy, which is 

only 33% as compared to Class A accuracy of 93%.  It is 

because Class B is the minority class.  For Yeast dataset, 

five classes have class accuracy of below 50%, which are 

Classes C, E, G, H, and I, Class G being the most 

problematic with class accuracy of only 1.19%. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 5b. Comparison of Over-all and Class Accuracy Before and After 
Resampling Using Decision Tree Induction Technique 
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The datasets are also analyzed using decision tree 

technique.  The situation before resampling is almost the 

same  as that of the previous technique, except that the 

prediction accuracy is relatively higher in using this 

technique.  However, the minority classes are still the 

classes with low class accuracy.  To resolve the imbalance, 

the proposed framework is then applied, this time using 

decision tree technique.  Decision tree technique is applied 

using C4.5 algorithm, which is a built-in algorithm in 

WEKA.  As can be seen in Figure 5b, class accuracy is 

again improved significantly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5c. Comparison of Over-all and Class Accuracy Before and After 

Resampling Using Rule Induction Technique 

Rule Induction technique is also employed to the 4 

datasets to determine if the framework can also be applied.  

JRip algorithm is used under this technique, which is also 

implemented using WEKA.  Similarly, the situation is also 

the same with respect to class accuracy.  Minority classes 

have the low accuracy.  Resampling the class size again 

improves the class accuracy as shown in Figure 5c. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5d. Comparison of Over-all and Class Accuracy Before and After 

Resampling Using Artificial Neural Network 

Another commonly used technique in classification is 

the Artificial Neural Network (ANN) [2].  Backpropagation 

algorithm is used under this technique.  Same scenario can 

be observed even this technique is used, the minority classes 

are the classes that have the low accuracy.  The framework 

is again applied, this time using the ANN.  As can be seen 

in Figure 5d, the class accuracy also improved by 

resampling the class size. 

E. Validation 

The performance of the proposed framework is 

compared to the existing sampling methodologies used in 

resolving the class imbalance problem.  As discussed in the 

literature, ROS, RUS, ROS/RUS, and the SMOTE are the 

most commonly used under resampling techniques.  ROS 

has been implemented by randomly creating a number of 

replicants of the minority class without replacement until it 

is equal to the number of samples of the majority class.  

RUS has been implemented by simply choosing a random 

sample of the majority class which matches the number of 

minority class examples.  The ROS/RUS involves the 

combination of the two prior methods until the number of 

minority samples equals the number of majority samples in 

the ratio 50/50.  SMOTE has been implemented through 

WEKA, where it consists of reiterating the framework until 

the prediction accuracy stops improving.   

The proposed framework is also compared to one of the 

most commonly used algorithmic technique, which is the 

cost-sensitive learning (CSL).  Cost-sensitive learning has 

been implemented using Cost-Sensitive Rough Sets 

(COSER) in WEKA.   

The methodologies are compared based on the 

oversampling rate, undersampling rate, elapsed time, and 

prediction accuracy.  Oversampling rate is the percentage by 

which the minority class is oversampled to be equal to that 

of the majority class, while the undersampling rate is the 

percentage by which the majority class is undersampled to 

be equal to the minority class.  Certainly, we want to 

minimize both the undersampling rate and the oversampling 

rate in the shortest possible time, so that both the overfitting 

and loss of data issues are avoided.  Elapsed time refers to 

the total time by which the methodology used is able to 

reach the predicted accuracy.  Times are measured in 

minutes.  The prediction accuracy is the performance 

measure used in comparing the methodologies.  The results 

are summarized in Table III. 

Examination of the table shows that ROS has the best 

prediction accuracy.  Similarly, ROS has the shortest 

elapsed time among all the dataset tested.  The success of 

the ROS method can be explained by the fact that all the 

members of the majority class are being utilized and the 

random replication of the minority class until it is balanced 

with the majority class.  This redistribution of the class size 

provides the prediction/classification learner sufficient 

samples to be able to train a model to recognize the minority 

class, and not treating them as noise.  However, the near 

perfect performance of the ROS method must be tempered 

by the fact that oversampling can result in overfitting [3]. 
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TABLE IV – COMPARISON WITH THE EXISTING 

METHODOLOGIES 
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  ROS 1.00 - 1013.75% 2.54 0.9716 

RUS 1.00 90.14% - 4.23 0.7561 

Hybrid 1.00 49.94% 199.75% 4.89 0.9262 

SMOTE 1.19 - 750.00% 16.71 0.8315 
CSL 0.40 - - 40.25 0.8815 

Proposed  1.76 29.96% 247.26% 24.35 0.9310 

C
r
e
d

it
 R

is
k

  ROS 1.00 - 289.88% 0.72 0.9893 

RUS 1.00 65.50% - 1.46 0.6157 

Hybrid 1.00 50.00% 144.94% 1.18 0.9012 

SMOTE 2.35 - 23.60% 0.53 0.7647 

CSL 0.125 - - 26.87 0.6667 

Proposed  2.02 10.08% 224.35% 2.74 0.9345 

E
co

li
  

ROS 1.00 - 1580.00% 1.63 0.9914 

RUS 1.00 93.67% - 1.84 0.2354 

Hybrid 1.00 50.00% 790.00% 2.26 0.8831 

SMOTE 7.90 - 100.00% 0.90 0.8324 
CSL 0.05 - - 18.29 0.6502 

Proposed  4.01 14.87% 335.00% 3.82 0.9137 

Y
e
a

st
  

ROS 1.00 - 9240.00% 20.78 0.9865 

RUS 1.00 89.18% - 31.52 0.5327 

Hybrid 1.00 50.00% 462.00% 25.66 0.8329 

SMOTE 4.96 - 1820.00% 42.69 0.5634 
CSL 0.005 - - 153.74 0.3160 

Proposed  3.85 19.91% 192.00% 45.21 0.8208 

   

RUS delivered the poorest prediction accuracy among 

the dataset tested.  The effect of reducing the number of 

majority samples results in the learner not having enough 

majority samples to train an effective model.  This is due to 

the learner not being exposed to enough of the majority 

samples in the training set and ignoring most of the 

population of the majority class examples, as they are 

simply discarded, while training the model [3].   

The ROS/RUS tends to have good performance in terms 

of prediction accuracy and elapsed time. It is because, to a 

less extent, only some of the majority examples are being 

removed, causing the synthesis of a less than perfect model.  

This technique is also better than ROS since it will avoid the 

chance of overfitting since the minority class will not be 

overly sampled. 

SMOTE is also ineffectual at creating artificial replicants 

of the minority class.  This is due to the artificial replicants 

it created based on the minority class are too similar to the 

majority class [2].   

The cost-sensitive learning has not proved to be capable 

of improving the prediction accuracy across all the datasets 

used.  They tend to be poor at differentiating the majority 

from the minority class and misclassifying the majority 

class as minority class members (false positives).  This led 

to poor decision of the model.  It has also been difficult to 

implement than the resampling methods.  As for each 

learner, the cost ratio of the majority to the minority class 

misclassification cost, had to be derived empirically.  It 

explains the long elapsed time for cost-sensitive learning 

methodology.  Furthermore, time complexity tends to 

increase as the number of classes and the proportion of class 

imbalance increase. 

The proposed framework is almost comparable to that of 

the hybrid technique.  It can predict with a higher degree of 

accuracy and at the same time avoids the possibility of 

overfitting, as in the case of ROS.  It is a better technique 

since it aims to determine the best class size that will give a 

higher prediction accuracy even without overly 

oversampling nor overly undersampling the classes. 

However, one limitation of the framework is that it takes 

longer time in realizing good prediction accuracy.  It is 

because the algorithm takes more iterations than the simple 

ROS, RUS, and ROS/RUS since it does not require the 

classes to be fully balanced.  Hence, it tries to determine the 

appropriate size for each class so that overfitting can be 

avoided.  Furthermore, it tries to determine the appropriate 

sample to be included in the resampled class.  In general, the 

proposed prediction framework for imbalanced dataset 

shows satisfactory performance as compared to the existing 

methodologies. 

V. CONCLUSION AND AREAS FOR FURTHER STUDY 

Literature proved that sampling methodologies are better 

than the algorithmic methodologies in resolving the class 

imbalance problem.  Among the sampling methodologies 

being used are Random Oversampling (ROS), Random 

Undersampling (RUS) Hybrid technique (ROS/RUS), and 

the SMOTE.  Nevertheless, the existing approaches for 

sampling have disadvantages.  The questions on how much 

should we oversample and undersample, and which data 

must be included/excluded in the dataset still exist.  Hence, 

the proposed prediction framework is developed to provide 

answers to these issues.  This study generally aims to 

develop a prediction model framework that can pre-process 

data and resolve the imbalance problem by utilizing a 

proposed iterative oversampling and underampling 

methodology for n-dimensional data sets. 

The framework consists of pre-processing component, 

which consists of data discretization and data resampling.  

The resampling algorithm is an iterative one which attempts 

to determine the best data to include/exclude in the training 

set and to determine the appropriate resampling rate.  The 

appropriate resampling rate is a user-defined parameter 

which can be determined by computing the prediction 

accuracy for each resampling size.  It is said appropriate if 

the increase in prediction accuracy started to stabilize at that 

point.  Based on the analysed data, resampling rate generally 

depends on the gap of the majority and minority class.  The 

smaller the gap between the majority and minority class 

means small increment size for resampling rate can be used.  

However, if the disparity is high, higher size increment is 

suggested. 

Four datasets have been used, which are the crop yield 

dataset, credit risk dataset, ecoli dataset, and yeast dataset, 
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to test the performance of the framework.  The prediction 

component of the framework attempts to investigate if the 

framework can be applied in any prediction/classification 

methodologies.  Regression analysis, decision tree (DT), 

rule induction, and artificial neural networks (ANN) have 

been used as prediction/classification methodologies.  The 

study reveals that the framework can be applied to any of 

the methodologies mentioned, though it works well in rule 

induction technique because it provides the highest overall 

and class accuracy. 

The framework is also compared to the existing 

approaches in resolving class imbalance.  The analysis 

reveals that the proposed framework is comparable to the 

hybrid technique, but the main difference is that the 

framework minimizes the oversampling and undersampling 

rate, but still gives good prediction accuracy.   

For the future, there are different ways in which this 

study could be expanded.  First, the procedure in 

determining the appropriate resampling size can be 

established.  A mathematical model that can give the 

optimum resampling size can be done.  Second, other 

performance measure, aside from prediction accuracy, can 

be investigated.  Finally, prediction framework based 

algorithmic methodologies (internal approach) can also be 

studied. 
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