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Abstract— To discriminate two classes is essential in the science, 
technology, and industry. Fisher defined the linear discriminant 
function (Fisher’s LDF) based on the variance-covariance 
matrices. It was applied for many applications. After Fisher’s 
LDF, several LDFs such as logistic regression and a soft margin 
support vector machine (S-SVM) are proposed. But, there are 
serious two problems of the discriminant analysis. First, the 
numbers of misclassifications (NMs) or error rates by these 
LDFs may not be correct because these LDFs cannot 
discriminate cases on the discriminant hyper-plane correctly. 
Second, these LDFs cannot recognize the linear separable data 
properly. Only revised optimal LDF by integer programming 
(Revised IP-OLDF) resolves these problems. In this paper, we 
compare seven LDFs by 100-fold cross validation using 104 
different discriminant models. It is shown that the mean error 
rates of Revised IP-OLDF are better than other LDFs in the 
training and validation samples. 
 

Keywords- Fisher’s linear discriminant function; logistic 
regreesion; soft margin SVM; Revised IP-OLDF; minimum 
number of misclassifications; k-fold cross validation. 

I. INTRODUCTION 

To discriminate two classes or objects is essential in the 
science, technology, and industry. Fisher defined the linear 
discriminant function (LDF) to maximize the variance ratio 
(between classes/within class) [2]. If two classes satisfy the 
Fisher’s assumption that two classes belong to the normal 
distribution such as Ni (x: mi, ∑i) i=1, 2 and ∑1 = ∑2, the 
same LDF is formulated by the plug-in rule in (1). 

 
 Log (N1(x: m1, ∑1) / N2 (x: m2, ∑2)) = 0          (1) 
 

And it is defined by the variance-covariance matrices 
explicitly in (2).  
 

f(x) = {x-(m1+m2)/2}’∑ -1(m1-m2)                               (2) 
x: p-independent variables (p-features). 
m1/m2: mean vectors in class1/class2. 
∑: pooled variance-covariance matrix. 

 
Statistical software packages adapt this equation, and many 
useful methods such as the variable selection methods are 
developed. It was applied for many applications such as the 
medical diagnosis, genome discrimination, pattern 

recognition, the rating of stocks and the pass/fail 
determination of exams score [16] etc.  

The discriminant rule is very simple: If yi*f (xi) > 0, xi 
is classified to class1/class2 correctly. If yi*f(xi) < 0, xi is 
misclassified. This simplicity may hide the following 
problems:                                                                
1) Problem 1: If there are cases on the discriminant hyper 
-plane (f(xi)=0),  we cannot discriminate these cases 
correctly. This is the unresolved problem of discriminant 
analysis. Until now, most statistical user treats that these 
cases belong to class1 without any reason. Some 
statisticians explain that this is decided by the probability 
because statistics is a study, which is based on the 
probability.  But statistical software adopt former rule. And 
the medical doctors who use the discriminant analysis in 
the medical diagnosis are surprised and disappointed by 
the latter explanation. They devote heart and soul to 
discriminate the patient near by the discriminant hyper-
plane.  
 2) Problem 2: A hard margin SVM (H-SVM) defines the 
discrimination of linear separable data clearly. But there 
are few researches about it. First reason is that Fisher’s 
LDF, logistic regression and soft-margin SVM (S-SVM) 
cannot recognize linear separable data. Second reason is 
there are no good research data of linear separable data. 
Ranges of 18 error rates of Fisher’s LDF and quadratic 
discriminant function (QDF) are [2.2%, 16.7%] and [0.8%, 
8.5%] by the pass/fail determination of exams scores [18], 
nevertheless those are linear separable. 
These two problems are resolved by IP-OLDF and Revised 
IP-OLDF [19] [21]. 
3) Problem 3: The discriminant functions based on the 
variance-covariance matrices need to compute the inverse 
matrices. But if some variables are constant, those are not 
computed. The generalized inverse matrix technique may 
be expected to resolve this defect. But the serious problem 
is found in the special case in QDF [18]. 
      In this research, problem 4 is discussed. 
4) Problem 4: After Fisher’s LDF, many LDFs are 
proposed. There are few comparisons of these LDFs. In 
this research, seven LDFs are compared by k-fold cross 
validation using 104 different discriminant models of four 
data such as Fisher’s iris data [1], Swiss bank note data [3], 
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Cephalo Pelvic Disproportion (CPD) data [11], and the 
student data [14]. 

II. LINEAR DISCRIMINANT FUNCTIONS COMPARED    

IN THIS RESEARCH 

After Fisher’s LDF, QDF and the multi-class 
discrimination using the Maharanobis distance are proposed 
in the statistical approach. These methods are formulated by 
the variance-covariance matrices. In this research, only seven 
LDFs in this chapter are compared by 100-fold cross 
validation in order to approach problem 4. 

A. Logistic Regression 

In the medical diagnosis, the discriminant methods are 
very important and useful. But, real data scarcely satisfy the 
Fisher’s assumption, especially in the epidemiological study. 
Therefore, the logistic regression in (3) was developed by 
Framingham sturdy. 
 

Log (Pi/(1-Pi)) = b1x1+…+bpxp+b0                             (3) 
P1 / P2: the probability of the normal / ill class. 
(x1,…,xp)  or x: p-features (independent variables) vector. 
(b1,…,bp) or b: p-discriminant coefficients vector. 
b0: the constant of LDF. 
n: the number of cases (n1/n2: the normal / ill class) 

B. Support Vector Machine 

The regression and discriminant analyses are easily 
approached by the mathematical programming (MP) because 
MP can find the minimum / maximum (global optimal) value 
of function. Before SVM, there are many researches of Lp-
norm discriminant functions by linear programming (LP). 
Stam summarized these researches and sorrowed “statistical 
users rarely use these functions” [22]. Statistical users use 
SVM because there are many evaluations of SVM by the real 
data. On the other hand, there are no evaluations of the MP-
based discriminant functions before SVM. Vapnik proposed 
three kinds of SVM, such as H-SVM, S-SVM and kernel 
SVM [23]. H-SVM in (4) indicates the discrimination of 
linear separable data definitely. Cases xi are classified 
correctly by the support vectors (SVs). The object function 
minimizes (1/ the distance between two SVs). This is to 
maximize the distance between two SVs. It has been proven 
that the generalization ability of H-SVM is good.  
 
 MIN = ||b||2/2;       yi* (xi’b+ b0) ≥ 1;         (4) 

   yi = 1 / -1 for xi ∊ class1/class2. 
                                           

Real data are rarely linear-separable. Therefore, S-SVM 
has been defined in (5). S-SVM permits certain cases that are 
not discriminated by SV (yi*f (xi) < 1). The second objective 
is to minimize the summation of distances of misclassified 
cases (Σei) from SV. These two objects are combined by 
defining “penalty c.” The Markowitz portfolio model to 
minimize risk and maximize return is as same as S-SVM. 
However, the return is incorporated in the constraint, and the 
objective function minimizes only risk. The decision maker 

chooses a good solution on the efficient frontier. On the 
contrary, S-SVM does not have a rule to determine c. 
Nevertheless, it can be solved by an optimization solver. In 
this research, we try to evaluate two S-SVMs (c =104 and 1). 
 

      MIN = ||b||2/2 + c* Σei ;     yi* ( xi’b+ b0) ≥ 1 -  ei ; (5) 
ei : non-negative decision variable. 
c: penalty c to combine two objectives. 

C. Heuristic-OLDF and IP-OLDF 

Shinmura and Miyake [10] developed the heuristic 
algorithm of OLDF based on MNM criterion affected by 
Warmack and Gonzalez [24]. This OLDF solved only five 
features (5-vars) model of CDP data because of the lack of 
the CPU power.  

SAS was introduced into Japan in 1978 [6]. LINDO was 
introduced into Japan in 1983. Several regression models are 
formulated by MP [8]. Least-squares method can be solved 
by QP, and Least Absolute Value (LAV) regression is solved 
by LP. Without a survey of previous research, the formulation 
of IP-OLDF [12][13] can be defined as in (6).  

        MIN = Σ ei;  yi * (xi’b+1) >= - M* ei  ;                      (6) 
ei: 0/1 integer variable corresponding to xi.                     
M: 10,000 (Big M constant). 

This notation is defined on p-dimensional coefficients space 
because the constant of LDF is fixed to 1. In pattern 
recognition, the constant is a free variable. In this case, the 
model is defined on (p+1)-coefficients space, and we cannot 
elicit the same deep knowledge as with IP-OLDF. This 
difference is very important. IP-OLDF is defined on both p-
dimensional data and coefficients spaces. This is very 
important to find new facts of the discriminant analysis [14]. 
We can understand new knowledge of the discriminant 
analysis about the relation between the NMs and LDFs 
clearly. This relation tells us the following new facts and 
shows a clue of problem solving. 
1)  Fact 1: Optimal Convex Polyhedron  

The linear equation Hi(b) = yi*(xi’b+1) = 0 divides p-
dimensional coefficients space into plus and minus half-
planes (Hi(b)  > 0, Hi(b)  < 0). If bj is in the plus half-plane, 
fj(x) = yi*(bj’x+1) discriminates xi correctly because fj(xi) = 
yi*(bj’ xi+1) = yi*(xi’bj+1) > 0. On the contrary, if bj is 
included in the minus half-plane, fj(x) cannot discriminate xi 
correctly because fj(xi) = yi*(bj’ xi+1)= yi*(xi’bj+1) < 0. The 
n linear equations Hi(b) divide the coefficients space into a 
finite number of convex polyhedrons. Each interior point of 
a convex polyhedron has a unique NM that is equal to the 
number of minus half-planes of n linear equations. We define 
the “Optimal Convex Polyhedron (OCP)” as that for which 
NM is equal to MNM.  
2)  Fact 2: MNM q ≥ MNM (q+1)  

Let us MNMq be MNM of q-vars model, and MNM(q+1) 
be MNM of (q+1)-vars model adding one variable to the 
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former. The proof is very easy. The OCP of q-vars model is 
concluded in (q+1)-discriminant coefficients space. At least, 
we know there exits the convex polyhedron in (p+1)-
coefficients space, NM of which is MNM q. 
3) Fact 3: Two kinds of the discrimination                                                                       

If MNMq =0, all MNMs including these q-features are 
zero. IP-OLDF found Swiss bank note data is linear separable 
by 2-features such as (X4, X6). It consisted of two kinds of 
bills: 100 genuine and 100 counterfeit bills. There were six 
features: X1 was the length of the bill; X2 and X3 were the 
width of the left and right edges; X4 and X5 were the bottom 
and top margin widths; X6 was length of the image diagonal. 
A total of 63 (=26-1) models were investigated. We had better 
considered about two types of discriminations: 16 linearly 
separable discriminant models, and other 47 models. This 
data is adequate whether or not LDFs can discriminate 
linearly separable data correctly.                                                         

D. Revised IP-OLDF 

The Revised IP-OLDF in (7) can find the true MNM 
because it can directly find the interior point of the OCP. This 
means there are no cases where Hi(b) = 0. And only Revised 
IP-OLDF is free from problem 1. If xi is discriminated 
correctly, ei = 0 and yi*( xi’b+ b0) >= 1. If xi is misclassified, 
ei = 1 and yi*( xi’b+ b0) >= -9999. It is expected that all 
misclassified cases will be extracted to alternative SV, such 
as yi*( xi’b+ b0) = -9999. Therefore, the discriminant scores 
of misclassified cases become large and negative, and there 
are no cases where yi*( xi’b+ b0) = 0. Revised IP-OLDF can 
resolves first and second problems. Therefore, it is ready to 
be compared with other LFDs by 100-fold cross validation. 

 
MIN = Σei ;        yi* ( xi’b+ b0) >= 1 - M* ei ;     (7)   
b0: free decision variables. 
 
If ei is a non-negative real variable, we utilize Revised 

LP-OLDF, which is an L1-norm LDF. Its elapsed runtime is 
faster than that of Revised IP-OLDF. If we choose a large 
positive number as the penalty c of S-SVM, the result is 
almost the same as that given by Revised LP-OLDF because 
the role of the first term of the objective value in equation (5) 
is ignored.    

Revised IPLP-OLDF is a combined model of Revised 
LP-OLDF and Revised IP-OLDF. In the first step, Revised 
LP-OLDF is applied for all cases, and ei is fixed to 0 for cases 
that are discriminated correctly by Revised LP-OLDF. In the 
second step, Revised IP-OLDF is applied for cases that are 
misclassified in the first step. Therefore, Revised IPLP-
OLDF can obtain an estimate of MNM faster than Revised 
IP-OLDF [20]. 

It is regretful that all LDFs except for Revised IP-OLDF 
are not free from problem 1. 

III. THE ROLL OF DATA IN THE RESEARCH 

This basic research started after 1997 and ended in 2012. 
There are the following reasons why it needed sixteen years.  

1) IP solver requested huge computation time before 2000 
[20]. Therefore, it was too earlier to start from 1997. 
2) IP-OLDF may not find true MNM if data is not in general 
position.  This is not confirmed without the survey using the 
student data. Ibaraki and Muroga defined the same Revised 
IP-OLDF already [4]. But, it is very difficult to find 
mechanism why it can find the true MNM without the 
examination by real data and previous research of IP-OLDF.   

In the first stage of this basic sturdy, the iris and CPD data 
were used for the evaluation of IP-OLDF and comparison 
with Fisher’s LDF and QDF. IP-OLDF finds new facts such 
as: 1) the relation of NMs and LDFs, and 2) OCP, 3) MNM 
decreases monotonously. In the second stage, IP-OLDF finds 
that Swiss bank note data is linear separable. The student data 
reveals the defect of IP-OLDF that relates to problem 1. Even 
now, many researchers are not aware of this problem. 
Revised IP-OLDF resolved to find the interior point of the 
OCP directly.  

After 2009, we started the applied research of linear 
separable data.  I negotiated with the National Center for 
Univ. Entrance Examination (NCUEE), and got research data 
consisting of 105 exams in 14 subjects over three years. It 
was confirmed that error rates of LDFs except for Revised IP-
OLDF cannot definitely recognize the linear separable data. 
More specifically, those of Fisher’s LDF and QDF are very 
high.  Eighteen pass/fail determinations of my statistical 
lectures are used for the research data. Tests have 100 items 
with 10 choice that are categorized four testlets scores such 
as: T1, T2, T3 and T4. If the pass mark is 50 points, a trivial 
LDF such as f = T1 + T2 + T3 + T4 - 50 can discriminate the 
pass/fail classes completely by the rule: f ≥ 0 or f < 0.  
Students on the discriminant hyper-plane (f=0) are classified 
in the pass class because the discriminant rule is defined by 
four features definitely. Discrimination by 100 items finds 
serious problem 3 about the algorithm of the generalized 
inverse matrices of QDF. By the discrimination using four 
testlets, the error rates of Fisher’s LDF and QDF are very high, 
and this is confirmed by 100-fold cross validation [15] [17].  

IV. K-FOLD CROSS-VALIDATION 

Re-sampling samples are generated from 4 real data sets. 
These are analyzed by 100-fold cross validation. Fisher’s LDF 
and logistic regression are analyzed by JMP [7]. JMP division 
of SAS Institute Japan supports us to develop the program. 
Other LDFs are analyzed by LINGO [9]. LINDO Systems Inc. 
supports us to develop the program that is showed in [18][21]. 
The most important interest is the mean error rates of seven 
LDFs in the training and validation samples. 

A. 100-fold cross validation of CPD 

CPD data consisted of two classes: 180 pregnant women 
whose babies were born by natural delivery and 60 pregnant 
women whose babies were born by Caesarean section. There 
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were 19 features such as: X1 was the pregnant woman’s age, 
X7 was the shortest anteroposterior distance, X8 was the fetal 
biparietal diameter, and X9 was X7-X8, X12 was X13-X14 
(small normal random noise are added to X9 and X12), X13 
was the area at the pelvic inlet, X14 was the area of the fetal 
head, and X19 was the lateral conjugate. X9 and X12 cause 
the multicolinearity. About 19 models selected by the forward 
stepwise method from 1-vat to 19-vars, NM of QDF is as 
follows: 22→20→22→18→18→16→15→9→9→ 8→9→ 
21→17→16 →17→21→19→17→16. From 11–features to 
12-features, NM increases 9 to 21 because X14 enter the 11-
vars model and 12-vars model includes (X12, X13, X14). On 
the other hand, MNM decreases monotonously. 

TABLE I.  CPD DATA 

OLDF M1 M2

1-19 0.04  3.70 

1-5,7-19 0.06  3.68 

1,2,4,5,7-19 0.08  3.72 

1,2,4,5,7-9,11-19 0.13  3.86 

1,2,4,5,7,9,11-19 0.18  3.73 

1,2,4,5,7,9,11-15,17-19 0.26  3.59 

1,2,4,5,7,9,12-15,17-19 0.44  3.76 

1,2,5,7,9,12-15,17-19 0.56  3.88 

1,2,5,7,9,12,13,15,17-19 0.57  3.74 

1,2,5,7,9,12,15,17-19 0.63  3.71 

1,2,5,7,9,12,15,17-18 0.82  3.70 

1,2,7,9,12,15,17-18 1.66  4.81 

1,2,9,12,15,17-18 1.88  4.67 

2,9,12,15,17-18 2.24  4.68 

9,12,15,17-18 3.24  6.12 

9,12,15,18 3.54  5.56 

9,12,18 4.35  6.06 

9,12 4.81  5.99 

12 7.80  9.15 

 M1Diff. M2Diff.

SVM4 [0.08, 2.56] [0.08, 1.07]

 0.45 0.39

SVM1 [1.03, 2.56] [0.28, 1.43]

 1.76 1.43

LP [0.07, 2.56] [0, 1.28]

 0.45 0.28

IPLP [-0.01(1), 0.05] [-0.25(10), 0.11]

 0 0.02

Logistic [0.18, 2.94] [0.23, 1.52]

 0.97 0.63

LDF [2.95, 7.69] [1.68, 5.92]

  7.52 5.69

 

We examine 19 different models of CPD data selected by 
the forward stepwise method because there are over 500,000 
models (=219-1). Table Ⅰ shows the results by 100-fold cross 
validation. ‘OLDF’ is the result of Revised IP-OLDF. First 
column of ‘OLDF’ shows 19 models from 19-vars model to 
1-var model. “M1 and M2” are the mean error rates for the 
training and validation samples.  Those are computed by mean 
of 100 error rates of 19 different models. Therefore, M1 
decreases monotonously as same as MNM. M1 of the full 
model is always minimum. The minimum value of M2 is 
3.59% of 14-vars model.  Therefore, we compare Revised IP-
OLDF with six LDFs by this model.  

“SVM4, SVM1, LP, IPLP, Logistic and LDF” are the 
results of S-SVM (c=104 and 1), Revised LP-OLDF, Revised 
IPLP-OLDF, logistic regression and Fisher’s LDF, 
respectively. “M1 Diff. and M2Diff.”  are the difference of 
( (M1/M2 of six LDFs) - (M1/M2 of OLDF) ). First row shows 
the ranges of 19 models. Second row shows the “M1Diff. & 
M2Diff.” of the 14-vars model. “M2Diff.” of LDF is 5.96%, 
and it is too bad. “M2Diff.” of SVM1 is 1.43%, and it is worse 
than those of SVM4, LP and logistic. If we choose large value 
of penalty c such as 10000, the role of ||b||2/2 in (5) is less 
meaning, and it may be similar to Revised LP-OLDF. 

Only one ‘M1Diff.’ of IPLP is -0.01%. This means that 
Revised IPLP-OLDF is not free from problem 1 because M1 
of Revised IP-OLDF is the minimum M1 among all LDFs. 
But ten ‘M2Diff.’ of IPLP are less than zero. Although some 
results may be caused by problem 1, other results may show 
that some M2 of Revised IPLP-OLDF are less than those of 
Revised IP-OLDF. 

B. 100-fold cross validation of Iris data 

Iris data [1] consisted of 100 cases with 4-features. Table 
Ⅱshows the results of 15 models by 100-fold cross validation.  
First column of OLDF shows the all possible combinations of 
features from 4-vars model (X1, X2, X3, X4) to 1-var model 
(X1). M1 of the full model is always minimum because M1 of 
(q+1)-features is always less than equal M1 of q-features 
theoretically. Although M2 of full model is minimum and it is 
2.55, this is no guarantee theoretical. We consider the model 
with minimum M2 of Revised IP-OLDF as best model. 
Therefore, we can compere seven LDFs on this full model.   

If we focus on ‘M2Diff.’ of the full model, those of SVM4, 
SVM1, LP, IPLP, Logistic and LDF are 0.46, 0.46, 0.4, 0.17, 
0.39 and 0.64% worse than Revised IP-OLDF in the second 
row of SVM4, SVM1, LP, IPLP, Logistic and LDF. Results 
of six LDFs are not so bad because this data is very famous 
evaluation data of Fisher’s LDF that satisfy the Fisher’s 
assumption. Fisher chosen the best data for the validation of 
Fisher’s LDF. Six maximum values of ‘M2Diff.’ are almost 
better than those ‘M1Diff.’. This may imply that Revised IP-
OLDF over-fit the training sample and the mean of error rates 
in the validation samples are worse than the training samples. 

One ‘M1Diff.’ of LP and two ‘M1Diff.’ of IPLP are minus. 
This means that Revised LP-OLDF and Revised IPLP-OLDF 
are not free from problem 1 because M1 of Revised IP-OLDF 
is the minimum value among all LDFs. But, several M2 of 
Revised IP-OLDF are worse than others. Although some 
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results depend on the unresolved problem, other results may 
be caused by overestimate of Revise IP-OLDF. 

TABLE II.  IRIS DATA 

OLDF M1 M2 

1,2,3,4 0.46  2.55  

2,3,4 0.82  2.96  

1,3,4 1.30  3.51  

1,2,4 2.49  5.12  

1,2,3 1.57  3.63  

3,4 2.46  4.42  

2,4 3.58  5.73  

1,4 4.18  5.59  

2,3 4.42  6.97  

1,3 2.86  4.78  

1,2 22.76  27.41  

4 5.39  6.16  

3 6.03  7.29  

2 36.03  39.01  

1 25.85  28.34  

 M1Diff. M2Diff. 

SVM4 [0.58, 4.85] [-0.67(3), 1.52] 

 0.58 0.46 

SVM1 [0.58, 4.85] [-0.67(3), 1.52] 

 0.58 0.46 

LP [-0.38(1), 3.63] [-1.49(4), 1.43] 

 0.47 0.40 

IPLP [-0.02(2), 0.07] [-0.07(9), 0.17] 

 0.01 0.17 

Logistic [0.71. 4.8] [-1.11(3), 1.58] 

 0.71 0.39 

LDF [0.51, 4.78] [-0.89(3), 2.49] 

 2.03 0.64 

C. 100-fold cross validation of Swiss Bank data 

Swiss bank note data consisted of two kinds of bills: 100 
genuine and 100 counterfeit bills. There were six features. A 
total of 63 (=26-1) models were investigated. We had better 
considered about two types of discriminations: 16 linearly 
separable models and other 47 models. Table Ⅲ shows only 
16 linear separable models in the training sample.  

 Only 4 M2s of Revised IP-OLDF are zero. In this case, 
we had better chosen the minimum number of features such 
as (1, 2, 4, 6). We compare Revised IP-OLDF with six LDFs 
in this 4-vars model. All models of six LDFs have the 
minimum M2. Those values are 0.38, 0.52, 0.27, 0.41, 0.38 
and 0.47%, respectively. The results of six LDFs are not so 
bad. But, all M1s of SVM1 and Fisher’s LDF are not zero. 
This means that both LDFs cannot recognize linear separable 
data, nevertheless this data may satisfy Fisher’s assumption 

because genuine/counterfeit bills are industry products. And 
the results of H-SVM are as same as SVM4. 

TABLE III.  SWISS BANK NOTE DATA 

OLDF M1 M2 

1,2,3,4,5,6 0.00  0.00  

2,3,4,5,6 0.00  0.24  

1,2,4,5,6 0.00  0.00  

1,2,3,4,6 0.00  0.00  

1,2,3,5,6 0.00  0.10  

2,4,5,6 0.00  0.21  

2,3,4,6 0.00  0.16  

1,2,4,6 0.00  0.00  

2,3,5,6 0.00  0.03  

1,2,3,6 0.00  0.08  

1,2,5,6 0.00  0.10  

2,4,6 0.00  0.15  

2,3,6 0.00  0.02  

2.5,6 0.00  0.02  

1,2,6 0.00  0.03  

2,6 0.00  0.01  

 M1Diff. M2Diff. 

SVM4 0 [0.22, 0.68] 

/ HSVM 0 0.38 

SVM1 [0.24, 0.57] [1, 2.5] 

 0.27 0.52 

LP 0 [0.27, 0.75] 

 0 0.27 

IPLP 0 [0.25, 0.75] 

 0 0.41 

Logistic 0 [0.22, 0.65] 

 0 0.38 

LDF [0.44, 0.95] [0.25, 1.02] 

 0.44 0.47 

D. 100-fold cross validation of Student data 

The student data consists of two groups: 25 students who 
pass the exam and 15 students who fail. There were 3 features: 
X1 was the hours of study per day; X2 was spending money 
per month; X3 was number of days drinking per week. If we 
analyze 2-features (X1, X2) by IP-OLDF, IP-OLDF chosen 
X2=5 as the discriminant hyper-plane. Four pass students and 
four fail students spent 50,000 yen/month. These eight 
students are on the discriminant hyper-plane. Only three fail 
students who spent less than 50,000 yen are misclassified by 
IP-OLDF. Revised IP-OLDF finds three true MNMs are 5 
using by LINGO k-best option [21].  

We examine 7 different models of student data by 100-
fold cross validation in the Table Ⅳ . M1 decreases 
monotonously from 1-var to 3-vars. There are 6 passes such 
as : 1→(1,2)/(1,3)→(1,2,3), 2→(1, 2)/(2, 3) →(1, 2, 3), 3→ 
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(1,3)/(2, 3) →(1,2,3). We compare Revised IP-OLDF with six 
LDFs by the model (2, 3). ‘M2Diff.’ of LDF, logistic, SVM4, 
SVM1 and LP are 7.19, 5.88, 4.1, 4.1 and 3.23%. These are 
very bad. ‘M2Diff.’ of Revised IPLP-OLDF is -0.2%. This 
may be the defect of Revised IP-OLDF.  

TABLE IV.  STUDENT DATA 

OLDF M1 M2 

1,2,3 5.70  12.78  

1,2 9.18  15.15  

1,3 10.30  15.45  

2,3 7.45  9.05  

1 16.43  19.10  

2 14.68  17.63  

3 17.75  21.23  

 M1Diff. M2Diff. 

SVM4 [1.2, 4.15] [-0.7(2), 4.1] 

 3.2 4.1 

SVM1 [1.2, 4.15] [-0.7(2), 4.1] 

 3.2 4.1 

LP [-0.29(3), 3.35] [-4.53(3), 3.23] 

 2.7 3.23 

IPLP [0, 0.2] [-0.75(5), .25] 

0 0 -0.2 

Logistic [0.83, 5.43] [-1.45(3), 5.88] 

 4.8 5.88 

LDF [2.55, 6.55] [-1.15(1), 7.19] 

 6.03 7.19 

 

V. CONCLUSION 

Many statisticians believe that MNM criterion is foolish 
criterion because it over-fit for the training sample and it may 
overestimate the validation sample. On the contrary, 
generalization ability of LDF is best because it follows the 
normal distribution without examination by real data. In our 
paper, this claim may be wrong. In near future, this will be 
confirmed by the discrimination of the linear separable data 
using the pass/fail determination. In addition, the mean error 
rates of Fisher’s LDF are higher than other LDFs. Past 
important researches using LDF should be reviewed, 
especially in the medical diagnosis. K-fold cross validation is 
very useful, compared with the leave-one-out method [5]. 
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