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Abstract—Wagyu is known as beef brand with marbling  For example, the techniques so-called microarray and 2D-
character, in which the lineage of sires is significantly important  electrophoresis enable us to measure expression levels of
to provide quality beef continuously. Sires of Wagyu have been thousands of genes and proteins simultaneously [2]. With
improved through the dedicated efforts of inbreeding, to obtain  thege high-throughput experimental methods, many specific
excﬂlﬁntf%(;}]ne;[ic ﬁb”ilty to yiteld qu?lity beef. In thij dectaqe, E"Pid mechanisms of creatures have been clarified so far. If the mech-
growth of the technologies 1o analyze genes and proteins bings 5 nism to yield quality beef is clarified, i.e., if the mechanism
us a chance to improve the quality of beef using more direct and to connect both (i) from the bloodline to proteins, and (ii

precise tools and knowledge. Tremendous amount of relations . . e
among genes, proteins, and traits have been clarified, and the rom proteins to the beef quality, are clarified, a new and

knowledge can be potentially utilized to improve the quality of ~Mmore efficient methodology to improve beef quality may be
beef. However, there is scarcely a method that analyze bloodlines developed.

of sires and cattle to connect bloodline to genes and proteins. As f iy h . L . h
In this paper, we newly propose a method to treat bloodline s for (i), i.e., on the protein-protein interaction or the

of livestock animals on computers, and to find proteins whose ~Protein-phenotype relation, there are so many studies proposed
expression levels have strongly related to the bloodline of cattle. SO far. Bayesian networks [3] construct an interaction network

With the proposed method, we firstly have a mean to know the model among proteins and phenotypes based on conditional
relation between bloodline and proteins. probability. As other methods, we developed an algorithm to

predict interactions among three proteins A, B and C, based
on correlation coefficient [4], and conditional probability [5].

If we regard C as a phenotype, this method can be used
. INTRODUCTION to investigate the relation between proteins and phenotypes.

Wagyu is Japanese native beef cattle known for marblinqi?;zﬁ)\;eggpﬁergnaﬁogegﬁng?Egdprt_g,?et";gvesugates (). ie., the

character, in which the linage of sires is significantly important
to provide quality beef. Sires of Wagyu have been improved In this paper, we propose a new method that investigates
through the dedicated efforts of inbreeding, to obtain excellenthe relation between bloodline and proteins; specifically, we
genetic ability to yield quality beef. Currently, by using frozen try to find proteins whose expression levels are controlled by
sperms, quality beef cattle have been produced continuoustyie lineage of beef cattle. As for these proteins, if there are two
from excellent genes of Wagyu sires. The lineage of siresgattle that lineage is similar, then the expression levels are also
which guarantees the quality of Wagyu, is the precious genetigimilar, and otherwise the expression levels are not necessarily
source that is essential to yield quality beef continuously.  similar. By finding such proteins, we can determine a set of
For breeders of Wagyu cattle and sires, selecting sires (i.ePrOtI?mS fmbor(i(ler o |n\|/|est|gate the mechamﬁm to |mp_r0v|e(;ch3

selecting sperms) for a new born cattle and a sire is one of thgu?]'tyl.o ee ,fas_ we has we céan slpeC||fy tde gehnes inciude
most important tasks, because the genetic character (hereaftI ,t e lineage of sires that are deeply related to the expression
evels of these proteins. To the best of our knowledge, this is

we call it the lineagg of a new born cattle and a sire is . . ; ; .
deeply related to the quality of beef yielded by them. Thust.he first study that. tries to investigate the relation between the
lineage and proteins.

traditionally, breeders utilize the values so callbrkeding
values which expresses the genetic ability of sires to produce This paper is organized as follows: In Section 2, we
the quality beef cattle, in selecting sires to use. In general, théescribe the protein whose expression levels depend on blood-
breeding values are calculated using the BLUP (Best Linedlines, in addition to explain the input data of the proposed
Unbiased Prediction) method [1]. The BLUP method is aalgorithm. In Section 3, we describe the proposed algorithm
statistical prediction method to estimate the breeding valuef detail. In Section 4, we present the method and the result
from the past results of beef grades of the sire’s childrenof the evaluation. Finally, in Section 5, we conclude the paper.
the bloodline information, and so on. Breeders of Wagyu
have improved the genetic ability of sires for a long time by |
selecting good sires via breeding values to produce excellenl '
descendants.
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PROTEINSWHOSEEXPRESSIONLEVELS DEPEND ON
BLOODLINE

. . A. Intr ing Lin Ve r Represent Bloodlin
On the other hand, recently, many mechanisms of various troducing Lineage Vectors to Represent Bloodlines

life phenomena have been clarified due to the improvement The genetic characters of Wagyu have been improved for a
of the technology to analyze genes and proteins of samplefng time through dedicated efforts on inbreeding to generate
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ath generation 7 T, B. Expression Profiles of Proteins
3rd generation '_)'(_' '_'_' '_)'(_' '_'_' '_)'(_' ""' I_)'(_' '_'_' Recent rapid growth of biological technology enabled us
ancestor U c — & IZ_,_I to analyze proteins included in a tissue of creatures with low
2nd generation X, £ Xs ™ cost in short time. There are several technologies that analyze
1t generation e ‘—|—r proteins: one of major approaches is to obtain expression
ancestor )I(l Ll _proﬁle_:s, which analyzes_the amount of each proteins included
| 1 cow in a tissue, and the 2-dimensional electrophoresis is the rep-
Beef cattle / -X-‘:sire resentative technique to obtain expression profiles efficiently

[2]. In this paper, we assume the protein expression profile of

Wagyu cattle as the input data of the proposed algorithm.
Figure 1. Family Tree of Cattle

We let P;(1 < j < m) be a protein, and the expression
profile as the input of our algorithm consists of the expression
IeveISeg? for every proteinsP; and beef cattlé. We assume

excellent bloodlines of_sires. All the ancestors of Wagyu C"?‘t“qhat the]expression profile is normalized properly with some
have excellent bloodlines, and the genetic character yieldSy malization methods.

high-quality Wagyu beef. In general, the bloodline of each
Wagyu cattle is recorded as a family tree that includes al
ancestor sires over several generations. However, in order
treat bloodlines in computers, it is desirable to convert the |n this paper, we try to find proteins that the expression
family tree into a form with which we can easily treat it |evels depend on the bloodline of cattle, i.e., the expression
mathematically. So, we introducelimeage vectorof Wagyu levels are significantly related to the bloodline. Note that, if we
cattle that expresses its genetic characters in a computabt@ioose a protein that is significantly related to the bloodline,
form. the expression levels of two cattle of similar bloodlines will
Before the definition of lineage vectors, we first explain theta.ke similar value_s, and otherwise the two expression Ie\{els
records of family trees of Wagyu cattle. Figure 1 illustratesV!ll Nave no relation. The problem that we try to solve is
to measure the strength of this tendency between expression

the family tree of one Wagyu cattle, where the root is theIevels and bloodline for each protein in the expression profile
Wagyu cattle, and\,, X5, ..., X,, are the ancestor sires of it. P P P )

In general, cows are not included in the family tree because We show an example in Figure 2 and Figure 3. Figure 2
the effect of cows on genetic character is not strong; a sirgs the case where the expression levels are related to the
can be the father of thousands of cattle whereas a cow can Ifoodline. Here, there are four vicinities of bloodlines and
the mother of no more than ten cattle. Note that a sire mageveral samples (i.e., cattle) belong to them. The variance of
appear more than twice in a family tree because Wagyu cattleach vicinity compared to that of all samples takes relatively
as well as sires are generated from frozen sperms, and so thgall value. On the other hand, Figure 3 is the case where there
frozen sperms of an excellent sire tend to be used repeatediy no relation between expression levels and the bloodline. The
even in different generations in the family tree. variance of every vicinity is almost the same as the variance
f all samples.

é. Proteins Whose Expression Levels Depend on Bloodlines

Each Wagyu cattle has its family tree, and the IineageO
vector that is converted from the family tree. The line vector Let us consider the problem more specifically using the
represents the ratio of genetic information inherited from eachineage vectors of cattle. The lineage vectors belong to the
sire to the cattle. According to the genetic mechanism ofineage spacewhich isn-dimensional Euclidean space. If we
inheritance, it is naturally assumed that the genetic informatiosuppose a poinp in the lineage space, we can define the
of cattle inherited from 1st generation (father) sire is 50%, andicinity of p as the set of points within the Euclidean distance
that from 2nd generation (grandfather) sire is 25%. Namelypf ¢. All we have to do is to examine every different coordinate
the genetic information inherited from /ath generation sire in the lineage space, and for each of the coordinates, compute
is (3)". For instance, in Figure 1, 12.5% of the geneticthe variance of the expression levels of the samples included
information is inherited from the 3rd generation ancest§s  in the vicinity. If we compute the average of all the computed
X3, and X7, and 6.25% from the 4th generation ancestorsvariances for each protein, the average indicates the strength
X, and Xg. If a sire appears more than twice in a family of the relation between (the expression levels of) the protein
tree, the ratio of genetic information inherited is the sumand bloodline.
of them, i.e., the genetic information inherited froiy, is

12.5%+6.25%=18.75% in Figure 1. Note that there arises a problem of computation time

because the lineage space has very large dimensidm the
Now, we define the lineage vector formally. Lt <i < next section, we will present the algorithm based on Gaussian

b) be a cattle X, (1 < t < n) be a sire, ana!” (0 < a!” < 1)  processing [6] to cope with this problem.

be the ratio of genetic information that cattleis inherited

from a sire X;. Then, the lineage vectaB(*) of cattle i is 1. THE PROPOSEDMETHOD

defined on the vector space where every possible sire has its

corresponding basis, as follows: . Algorithm Design

@) @) &) ) @) . As described in the previous section, we can retrieve the
BY = <a1 s A R R ) (1<i<b) (1) protein whose expression level is controlled by bloodline by
examining the variance at every coordinate in the lineage
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g/\ TABLE I. The Proposed Algorithm
S B, : The vicinity of B 1 foreachprotein P; (1 < j < m)
§ : The sample (cattle) 2 foreach cell c L.
g 3 if samples exist ir
pu : The whole variance 4 Dens(c) < computedensity()
3 5 if D.>T
o .The variance 6 | Var(c, P;) + computevariance()
e in the vicinity of B, 7 end
8 end
B®Y B@ B® BW o e
10 Score(P;) + computescore()
Figure 2. Protein Whose Expression Levels Depend on Bloodlines 11 end
TA each cell, and for each cells that densities are larger than
3 T, we compute the variance of the cell in line 6. Finally in
S B, : The vicinity of B line 10, function computescore() calculates the average of
g Th all the computed variances for each protéinas thecontrol
b : The sample (cattle) . K
g score which represents the strength of the relation that the
e : The whole variance protein is controlled by bloodline. The lower the controlled
g e vari score of a protein is, the stronger the expression levels of the
& ; The variance . protein are controlled by bloodline.
in the vicinity of B,

B, B2 B® B® The functions to estimate the sample density (i.e., com-
pute density()), the variance of expression levels (i.e., com-
pute variance()), and the control score (i.e., compat®re())
are described in the following Sections IlI-B, 11I-C, and IlI-D,
respectively.

Figure 3. Protein Whose Expression Levels Don't Depend on Bloodlines

space. However, because the lineage space is continuous, Bo Estimating Sample Density

examine every possible coordinate in the lineage space is |, this section, we describe the function compukensity()
impossible. Moreover, because the dimensioof the lineage ¢ appears in line 4 of the proposed algorithm, which is the

space is supposed as large as several hundred in a standgifl tion to calculate the density of the center of a cell. Let
Wagyu dataset, the density of samples in the lineage space_ (c1,¢a,- -, cn) be the coordinates of the center point at

is very sparse even if the number of samples is severglpich we want to compute the density. We apply the Kernel

ten thousan_ds. It is natural that the densities of Samp"?s_ nsity estimation [7] to estimate the density, which is a widely
some coordinates are not large enough to guarantee statistiqRla non-parametric density estimation method.

reliability of the computed variance values.
L , ) . In our density estimation function, we first calculate the
The main idea of the proposed algorithm is to partition gisiance from the centerto each sample in the cell. Next, we
the lineage space into many hypercubes (that we @@lls  ggtimate the sample density at the centésy accumulating
hereafter) that have the same side length in every dimensiofhe gensity according to the distance using the Kernel density
and we only examine the central coordinates of these cell$,nction. Note that we use the Euclidean distance in this
Note that the number of cells to be examined is tremendoug,ethod.

because the lineage space haslimensions. Thus, we only
examine the cells to which at least one sample belongs Formally, the distance between the centef the cell and
to reduce the number of cells to examine. Furthermore, téhe sample point of the beef cattieare defined as
guarantee the statistical reliability of computed variances, we
calculate the variance of a cell only if the density of samples
in the cell is larger than a threshold

n

(e — ez (1<t <n) 4

t=1

Dist(i,c) =

Formally, the given parametel, which represents the

: Dist(i,c
length of cell side, we define the coordinate of centers of celld hen, as the Kernel functiof (24c))

, We use a general

in the n-dimensional lineage space as follows: multi-dimensional Gaussian function, i.e.,
Dist(i, c) 1 1 L
c=(c1,c2,,¢n), (2) K( - > = ex ( Dist(i, c 2>, 5
N VI p | —gpa (Dist(i,c)) (5)
where

‘ where h is a parameter that represents the bandwidth. As a
¢, = ceiling (floor (@”) /2> da<t<n) 3) result, the estimated densifyens(c) of the center point of

1/2 the cell is given as follows:
b . .
1 Dist(i, c
Then, the formal algorithm description is given in Table 1. Dens(c) = 7 ZK (h()) (6)
In line 4, we compute the sample density at the center of i=1
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C. Estimating Variance of Expression Levels and sires. As described in Section II-A, several excellent

sire lines exist in Wagyu as a result of long-time efforts of

inbreeding to preserve and improve good genes that generate

ood quality beef. Thus, we model the sire linessas-trees

hat is rooted by a sire and its 10 generation ancestors are

included in the tree, as illustrated in Figure 4. We regard that
We estimate the variance of expression levels using all the sires included in a sire-tree is distinct from others, and

Gaussian process. Namely, we calculate the weighted variang¢e prepare several sire-trees to express several major lines of

of expression levels of samples using a weight function whereires.

the weight is determined according to the distance between . . .

the center: and the point of samples. Formally, the estimated  S€cond, we generate and assign genetic factors to the sires

varianceVar(c, P;) of expression levels for proteift; at the in the sire-trees. In this study, we assume that the genetic
coordinatec is represented as factors that control the expression levels of a protein are not

owned by a small portion of sires, rather broadly owned by
S () - avgs) i (20

In this section, we describe the function
computevariance() that appears in line 6 of the proposed
algorithm, which computes the variance of the expressio
levels at the center of a cell.

)) sires with a certain probability, although the difference of
(1<j<m), (7) distribution (i.e., sparse or dense) according to sire lines may

Var(c, P;) =
) YUK (%“) be seen.
whereegij is the expression level of the prote#?) correspond- We designed the genetic factor model as follows:
ing to the beef cattle, and Avg;(c) is the average of the ][:or each protein P;, we generater positive g(;:nenc
expression levels for protei?; at c represented as follows: %lCtOELS g1 Gjas - -0 Ijr and r negative genetic factors
951> 952+ - - - » 95 Where these positive (resp. negative) genetic
Zl-)ﬂ (eg?K (D%%(“))) factors work to increase (resp. decrease) the expression levels
Auvg;(c) = = J _ (8)  of P;. Here, note that, genetic factors are generally considered
Z?:l K (Dl%(l@) in pairwise fashion due to the pairwise nature of genomes. If

we let ‘A’ be a genetic factor that works to increase/decrease
expression levels, and let 'a’ be a pairwise component that
does not work on expression levels. Then, the genotype can

We describe the process to calculate the controlled score dife one of the three types 'AA, 'Aa,’ and 'aa.’ We assign each
each proteins. The controlled scofeore(P;) of the protein  of these genetic factors to every highest generation sire and
P; is the average of the estimated value which the variance afows with the genotype 'Aa,’ and they are inherited to their
the expression level at the central poiftt) (1 < k < ¢) of  descendants according to the law of genetic inheritance. Note
the cell, and it is represented as follows: that the genetic factors are inherited probabilistically to all the
q *) sires in the sire-tree, and the number of genetic factors on each
j1 Var(c™, By) (9) sires is moderately distributed, which includes natural bias that
q coming from probability nature of inheritance.

Note that the protein which we want to extract in this study  Thirq, we generate beef cattle. The lineage of a beef cattle
is the protein that controlled score is low. is uniquely determined if the sires to be ancestor are decided.
Now, if we let 1st sire of cattle be its father, let 2nd sire be its
IV.  EVALUATION mother’s father, let 3rd sire be its mother's mother’s father, and
A. Model of Artificial Data Used in Evaluation so on, only we have to do is to determine 1-5th sires for each
cattle. So, for each beef cattle, we select 1-5th sires randomly
Because no protein controlled by the lineage of Wagyu isrom the sires of 5-10th generations in the generated sire-trees,
known, and so currently there is no real data that we can usgs illustrated in Figure 5. This operation is done repeatedly for
to evaluate the proposed algorithm, we generate an artificiahe number of required samples, and then the generated data

data set of proteins and the Wagyu lineages to evaluate thset is regarded as the lineage data, which is the input of the
proposed algorithm. In generating an artificial data set, it issroposed algorithm.

significantly important to construct a proper data model that ) ) ) )
reflects on the real property of the real phenomenon. Thus, we Finally, we generate protein expression profiles for each

first propose a model of relation between genetic factors iattle. We assume that a protein expression level follow the
lineage and expression levels of proteins. normal distribution with the averageand the standard devia-

i _tion 0. Note that, although protein expression levels are gener-
In our model, we assume genetic factors that in-g)\y regarded to follow log-scale distribution, there is a result in
crease/decrease the expression levels of a protein, and th@¥jich protein expression levels follow the normal distribution
are inherited from ancestors to descendants in the geneli§) ror the data sets that follow log-scale distribution, we have
fashion. In general, currently, quantitative traits of creature nly to apply logarithm to translate to the normal distribution.

as well as protein expressions are regarded to be controlleﬂ1e expression level of a proteff, in a sample, i.e eg) is

by plural genetic factors (i.e., genetic polymorphism) [8]. Our . T i
assumption is based on this general agreement in the curreﬂ termlned from the base nqrmal Q|str|but|on and the number
state of the art of genetic factors corresponding £ in a sample (cattle). As
' for the function of genetic factors, we assume that if cattle has
First, we construct a realistic model of the lineage of’AA or 'Aa’ genotype as a result of the genetic probabilistic

Wagyu that properly explains the relation between beef cattlénheritance rule, the genetic factor works to increase/decrease

D. Calculation of Control Score

Score(P;) =
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Generating expression level
according to normal distribution

. N H . : . . . Generating sire tree
: . . . . . : . according to lineage model — Protein A
P X1 o X P X o == Protein B
X i Ll i L .
&5y P 1" 10 generations
Mean changes according to
the number of genetic factors
Expression profiles
Aa)X, (aa)i™t (Aa)X, (Aa)i")
[ 5 .
L — Lineage data

Generating lineage tree

X, X :sire Adding genetic
factors that control
the expression level
for the sire tree
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Figure 4. Sire Tree AA)Beef cattlei -

X :sire
Random selection from sire tree }\) X Figure 6. Process of Generating Atrtificial Data Set
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expression levels of the corresponding protein. We also assum %"
that, if a genetic factor works, the average of the distribution s 625

1 is increased/decreased by a constant ameurtdamely, a 5

set of expression levels corresponding to a protein and a se & 0 } }

of samples (cattle) is generated probabilistically based on the @ 0 12.5 100
[

normal distribution that average varies according to the numbe 6.2° ‘

of the genetic factors that the sample have. , . L
The ratio(%) of genetic information inherited from X;

As above, we generate the artificial data according to the
models of the lineage, the genetic factors, and the protein
expression levels. A summary of the generation process of
the artificial data is shown in Figure 6.

Figure 7. Dividing a Field into Cells

B. Evaluation Method data, we have two sire-trees in which 10 generations of sires

are included. The generated set of expression profiles includes

We generated a set of artificial data based on the modelgy 0op samples and 100 proteins, where the average and the
described in Section IV-A, and applied the proposed algorithmytangard deviation of the base normal distribution ate 0.5
to it. We vary the number of genetic factors corresponding tong  — 0.1, respectively, and we let = 1/40 be the

each proteins; specifically, we choose the number randomly,crement value of the expression level par genetic factor.
between 0 and 10. Then, if the control scores of a protein com-

puted by the proposed algorithm is in relation to the number
of genetic factors corresponding to the protein, it means that
the proposed algorithm predicts the number of genetic factor
and further means that the control scores indicate how stron
the expression levels of the protein depends on bloodlines.

The cell width is set taR = 2% and the centers of the cells
re shifted so that the origin of the field (i.e., the point (O,
) is also the center of a cell, as shown in Figure 7. This is
eant to have two cattle that has the same 1st, 2nd, and 3rd
ancestors is likely to belong to the same cell in many cases.

In the following, we describe the conditions and parameterd\s for the parameters of the algorithm, we set the bandwidth

in the evaluation in detail. Based on the model describeaf the Kernel function aé = 0.21 to cover cattle in a cell, and
in Section IV-A, we generated a set of sire-trees, genetiset the threshold of the density @s= 0.7 in consideration of
factors, beef cattle, and expression profiles. In the lineagthe distribution of the density with the applied data set.
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C. Results quality of livestock animals through inbreeding. To the best
of our knowledge, the proposed method is the first one that

_The result of the evaluation is shown in Figure 8. Figure investigates the bloodline of brand cattle to connect to proteins.
is the scatter diagram where the horizontal axis represents the

number of genetic factors and the vertical axis represents the To evaluate the proposed method, we designed a realistic
control score, and the plotted points are the proteins. This resultata model of lineage, genetic factors, and expression profiles,
shows the strong correlation coefficient -0.838, which meansnd generated an artificial data. Through the evaluation using
that the proposed method succeeded to estimate the proteitie artificial data, we confirmed that the proposed method can

that is controlled by the bloodline. find the proteins whose expression levels are controlled by
bloodline.
D. Discussion As future work to evaluate the effectiveness of this method

By the simulation using an artificial data set, we demon-firmly, it is desirable to have an evaluation using a real data
strated that the proposed method can predict proteins that apétl- However, the data set that includes an expression profile of
deeply related to bloodline. In this simulation, we assumed tha@rotéins and the corresponding bloodline data is not currently
each protein has the genetic factors in the DNA of sires, Whic@v_aulable in pu_bllc. Besides, even if such a data set is available,
control the expression level of the protein. This assumptiorit 1S not possible by nature to grasp all the genetic factors
would be widely acceptable because the genetic factors sudfat certainly effect on the expression level of a protein.
as SNPs that control phenotypes or expression levels hafeonsequently, it is difficult to evaluate the accuracy of the
been explored with tremendous efforts in the current sceng&oPosed method exactly.

of biological studies. Considering this difficulty of real-data evaluation, one

The result of the simulation showed that the propOsed)ossible solution would be to demonstratel the eﬁectivengss
method will work effectively to decide the target proteins to©f the proposed method with some practical case studies.
explore the system of living creatures; the protein that ha§0’ €xample, to introduce the case in which the results of
many corresponding genetic factors would be in a positiod® Proposed method contributed to a significant discovery
near genetic factors in the biological system, so that th@" & Practical methodology design, would contribute to prove
direct interaction between genes and the protein will be found® effectiveness of the proposed method. Although several
more likely than other proteins. As another practical usagdlifficulties are expected, to accumulate an achievement where
of the proposed method, we suggest the possibility that thihis methodology worked effectively would be an important
proposed method enables us to control important phenotypd@sk for the future.
more precisely and certainly by selecting better sires for a new-
born cattle based on the knowledge of proteins. The proposed ACKNOWLEDGEMENT
method would find proteins controllable by selecting sires, and
the proteins that control an important protein will be found by
other studies in the future.
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