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Abstract—Wagyu is known as beef brand with marbling
character, in which the lineage of sires is significantly important
to provide quality beef continuously. Sires of Wagyu have been
improved through the dedicated efforts of inbreeding, to obtain
excellent genetic ability to yield quality beef. In this decade, rapid
growth of the technologies to analyze genes and proteins brings
us a chance to improve the quality of beef using more direct and
precise tools and knowledge. Tremendous amount of relations
among genes, proteins, and traits have been clarified, and the
knowledge can be potentially utilized to improve the quality of
beef. However, there is scarcely a method that analyze bloodlines
of sires and cattle to connect bloodline to genes and proteins.
In this paper, we newly propose a method to treat bloodline
of livestock animals on computers, and to find proteins whose
expression levels have strongly related to the bloodline of cattle.
With the proposed method, we firstly have a mean to know the
relation between bloodline and proteins.
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I. I NTRODUCTION

Wagyu is Japanese native beef cattle known for marbling
character, in which the linage of sires is significantly important
to provide quality beef. Sires of Wagyu have been improved
through the dedicated efforts of inbreeding, to obtain excellent
genetic ability to yield quality beef. Currently, by using frozen
sperms, quality beef cattle have been produced continuously
from excellent genes of Wagyu sires. The lineage of sires,
which guarantees the quality of Wagyu, is the precious genetic
source that is essential to yield quality beef continuously.

For breeders of Wagyu cattle and sires, selecting sires (i.e.,
selecting sperms) for a new born cattle and a sire is one of the
most important tasks, because the genetic character (hereafter,
we call it the lineage) of a new born cattle and a sire is
deeply related to the quality of beef yielded by them. Thus,
traditionally, breeders utilize the values so calledbreeding
values, which expresses the genetic ability of sires to produce
the quality beef cattle, in selecting sires to use. In general, the
breeding values are calculated using the BLUP (Best Linear
Unbiased Prediction) method [1]. The BLUP method is a
statistical prediction method to estimate the breeding values
from the past results of beef grades of the sire’s children,
the bloodline information, and so on. Breeders of Wagyu
have improved the genetic ability of sires for a long time by
selecting good sires via breeding values to produce excellent
descendants.

On the other hand, recently, many mechanisms of various
life phenomena have been clarified due to the improvement
of the technology to analyze genes and proteins of samples.

For example, the techniques so-called microarray and 2D-
electrophoresis enable us to measure expression levels of
thousands of genes and proteins simultaneously [2]. With
these high-throughput experimental methods, many specific
mechanisms of creatures have been clarified so far. If the mech-
anism to yield quality beef is clarified, i.e., if the mechanism
to connect both (i) from the bloodline to proteins, and (ii)
from proteins to the beef quality, are clarified, a new and
more efficient methodology to improve beef quality may be
developed.

As for (ii), i.e., on the protein-protein interaction or the
protein-phenotype relation, there are so many studies proposed
so far. Bayesian networks [3] construct an interaction network
model among proteins and phenotypes based on conditional
probability. As other methods, we developed an algorithm to
predict interactions among three proteins A, B and C, based
on correlation coefficient [4], and conditional probability [5].
If we regard C as a phenotype, this method can be used
to investigate the relation between proteins and phenotypes.
However, there are few method that investigates (i), i.e., the
relation between bloodline and proteins.

In this paper, we propose a new method that investigates
the relation between bloodline and proteins; specifically, we
try to find proteins whose expression levels are controlled by
the lineage of beef cattle. As for these proteins, if there are two
cattle that lineage is similar, then the expression levels are also
similar, and otherwise the expression levels are not necessarily
similar. By finding such proteins, we can determine a set of
proteins in order to investigate the mechanism to improve the
quality of beef, as well as we can specify the genes included
in the lineage of sires that are deeply related to the expression
levels of these proteins. To the best of our knowledge, this is
the first study that tries to investigate the relation between the
lineage and proteins.

This paper is organized as follows: In Section 2, we
describe the protein whose expression levels depend on blood-
lines, in addition to explain the input data of the proposed
algorithm. In Section 3, we describe the proposed algorithm
in detail. In Section 4, we present the method and the result
of the evaluation. Finally, in Section 5, we conclude the paper.

II. PROTEINSWHOSEEXPRESSIONLEVELS DEPEND ON
BLOODLINE

A. Introducing Lineage Vectors to Represent Bloodlines

The genetic characters of Wagyu have been improved for a
long time through dedicated efforts on inbreeding to generate

30Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics



!!!

!"! !#! !#!

!$!

!%!

!&! """!

!
#
!

!'!

()*+,!

$-.)/010234+1))

31*0-.+2!

'15)/010234+1)

31*0-.+2!

#25)/010234+1)

31*0-.+2!

!.6)/010234+1)

31*0-.+2!

7008)*39:0)"! !!()-;20!

Figure 1. Family Tree of Cattle

excellent bloodlines of sires. All the ancestors of Wagyu cattle
have excellent bloodlines, and the genetic character yields
high-quality Wagyu beef. In general, the bloodline of each
Wagyu cattle is recorded as a family tree that includes all
ancestor sires over several generations. However, in order to
treat bloodlines in computers, it is desirable to convert the
family tree into a form with which we can easily treat it
mathematically. So, we introduce alineage vectorof Wagyu
cattle that expresses its genetic characters in a computable
form.

Before the definition of lineage vectors, we first explain the
records of family trees of Wagyu cattle. Figure 1 illustrates
the family tree of one Wagyu cattle, where the root is the
Wagyu cattle, andX1, X2, . . . , Xn are the ancestor sires of it.
In general, cows are not included in the family tree because
the effect of cows on genetic character is not strong; a sire
can be the father of thousands of cattle whereas a cow can be
the mother of no more than ten cattle. Note that a sire may
appear more than twice in a family tree because Wagyu cattle
as well as sires are generated from frozen sperms, and so the
frozen sperms of an excellent sire tend to be used repeatedly
even in different generations in the family tree.

Each Wagyu cattle has its family tree, and the lineage
vector that is converted from the family tree. The line vector
represents the ratio of genetic information inherited from each
sire to the cattle. According to the genetic mechanism of
inheritance, it is naturally assumed that the genetic information
of cattle inherited from 1st generation (father) sire is 50%, and
that from 2nd generation (grandfather) sire is 25%. Namely,
the genetic information inherited from ak-th generation sire
is ( 12 )

k. For instance, in Figure 1, 12.5% of the genetic
information is inherited from the 3rd generation ancestorsX2,
X3, and X7, and 6.25% from the 4th generation ancestors
X2 and X6. If a sire appears more than twice in a family
tree, the ratio of genetic information inherited is the sum
of them, i.e., the genetic information inherited fromX2 is
12.5%+6.25%=18.75% in Figure 1.

Now, we define the lineage vector formally. Leti(1 ≤ i ≤
b) be a cattle,Xt(1 ≤ t ≤ n) be a sire, anda(i)t (0 ≤ a

(i)
t < 1)

be the ratio of genetic information that cattlei is inherited
from a sireXt. Then, the lineage vectorB(i) of cattle i is
defined on the vector space where every possible sire has its
corresponding basis, as follows:

B(i) =
(
a
(i)
1 , a

(i)
2 , · · · , a(i)t , · · · , a(i)n

)
(1 ≤ i ≤ b) (1)

B. Expression Profiles of Proteins

Recent rapid growth of biological technology enabled us
to analyze proteins included in a tissue of creatures with low
cost in short time. There are several technologies that analyze
proteins: one of major approaches is to obtain expression
profiles, which analyzes the amount of each proteins included
in a tissue, and the 2-dimensional electrophoresis is the rep-
resentative technique to obtain expression profiles efficiently
[2]. In this paper, we assume the protein expression profile of
Wagyu cattle as the input data of the proposed algorithm.

We let Pj(1 ≤ j ≤ m) be a protein, and the expression
profile as the input of our algorithm consists of the expression
levelse(i)Pj

for every proteinsPj and beef cattlei. We assume
that the expression profile is normalized properly with some
normalization methods.

C. Proteins Whose Expression Levels Depend on Bloodlines

In this paper, we try to find proteins that the expression
levels depend on the bloodline of cattle, i.e., the expression
levels are significantly related to the bloodline. Note that, if we
choose a protein that is significantly related to the bloodline,
the expression levels of two cattle of similar bloodlines will
take similar values, and otherwise the two expression levels
will have no relation. The problem that we try to solve is
to measure the strength of this tendency between expression
levels and bloodline for each protein in the expression profile.

We show an example in Figure 2 and Figure 3. Figure 2
is the case where the expression levels are related to the
bloodline. Here, there are four vicinities of bloodlines and
several samples (i.e., cattle) belong to them. The variance of
each vicinity compared to that of all samples takes relatively
small value. On the other hand, Figure 3 is the case where there
is no relation between expression levels and the bloodline. The
variance of every vicinity is almost the same as the variance
of all samples.

Let us consider the problem more specifically using the
lineage vectors of cattle. The lineage vectors belong to the
lineage space, which isn-dimensional Euclidean space. If we
suppose a pointp in the lineage space, we can define the
vicinity of p as the set of points within the Euclidean distance
of ϵ. All we have to do is to examine every different coordinate
in the lineage space, and for each of the coordinates, compute
the variance of the expression levels of the samples included
in the vicinity. If we compute the average of all the computed
variances for each protein, the average indicates the strength
of the relation between (the expression levels of) the protein
and bloodline.

Note that there arises a problem of computation time
because the lineage space has very large dimensionn. In the
next section, we will present the algorithm based on Gaussian
processing [6] to cope with this problem.

III. T HE PROPOSEDMETHOD

A. Algorithm Design

As described in the previous section, we can retrieve the
protein whose expression level is controlled by bloodline by
examining the variance at every coordinate in the lineage
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Figure 2. Protein Whose Expression Levels Depend on Bloodlines
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Figure 3. Protein Whose Expression Levels Don’t Depend on Bloodlines

space. However, because the lineage space is continuous, to
examine every possible coordinate in the lineage space is
impossible. Moreover, because the dimensionn of the lineage
space is supposed as large as several hundred in a standard
Wagyu dataset, the density of samples in the lineage space
is very sparse even if the number of samples is several
ten thousands. It is natural that the densities of samples at
some coordinates are not large enough to guarantee statistical
reliability of the computed variance values.

The main idea of the proposed algorithm is to partition
the lineage space into many hypercubes (that we callcells
hereafter) that have the same side length in every dimension,
and we only examine the central coordinates of these cells.
Note that the number of cells to be examined is tremendous
because the lineage space hasn dimensions. Thus, we only
examine the cells to which at least one sample belongs
to reduce the number of cells to examine. Furthermore, to
guarantee the statistical reliability of computed variances, we
calculate the variance of a cell only if the density of samples
in the cell is larger than a thresholdT .

Formally, the given parameterl, which represents the
length of cell side, we define the coordinate of centers of cells
in the n-dimensional lineage space as follows:

c = (c1, c2, · · · , cn), (2)

where

ct = ceiling

(
floor

(
a
(i)
t

l/2

)
/2

)
· l (1 ≤ t ≤ n) (3)

Then, the formal algorithm description is given in Table 1.
In line 4, we compute the sample density at the center of

TABLE I. The Proposed Algorithm

1 foreach proteinPj (1 ≤ j ≤ m)
2 foreach cell c
3 if samples exist inc
4 Dens(c)← computedensity()
5 if Dc ≥ T
6 V ar(c, Pj)← computevariance()
7 end
8 end
9 end
10 Score(Pj)← computescore()
11 end

each cell, and for each cells that densities are larger than
T , we compute the variance of the cell in line 6. Finally in
line 10, function computescore() calculates the average of
all the computed variances for each proteinPj as thecontrol
score, which represents the strength of the relation that the
protein is controlled by bloodline. The lower the controlled
score of a protein is, the stronger the expression levels of the
protein are controlled by bloodline.

The functions to estimate the sample density (i.e., com-
pute density()), the variance of expression levels (i.e., com-
pute variance()), and the control score (i.e., computescore())
are described in the following Sections III-B, III-C, and III-D,
respectively.

B. Estimating Sample Density

In this section, we describe the function computedensity()
that appears in line 4 of the proposed algorithm, which is the
function to calculate the density of the center of a cell. Let
c = (c1, c2, · · · , cn) be the coordinates of the center point at
which we want to compute the density. We apply the Kernel
density estimation [7] to estimate the density, which is a widely
used non-parametric density estimation method.

In our density estimation function, we first calculate the
distance from the centerc to each sample in the cell. Next, we
estimate the sample density at the centerc by accumulating
the density according to the distance using the Kernel density
function. Note that we use the Euclidean distance in this
method.

Formally, the distance between the centerc of the cell and
the sample point of the beef cattlei are defined as

Dist(i, c) =

√√√√ n∑
t=1

(a
(i)
t − ct)2 (1 ≤ t ≤ n) (4)

Then, as the Kernel functionK(Dist(i,c)
h ), we use a general

multi-dimensional Gaussian function, i.e.,

K

(
Dist(i, c)

h

)
=

1

(
√
2πh2)n

exp

(
− 1

2h2
(Dist(i, c))2

)
, (5)

whereh is a parameter that represents the bandwidth. As a
result, the estimated densityDens(c) of the center pointc of
the cell is given as follows:

Dens(c) =
1

b

b∑
i=1

K

(
Dist(i, c)

h

)
(6)
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C. Estimating Variance of Expression Levels

In this section, we describe the function
computevariance() that appears in line 6 of the proposed
algorithm, which computes the variance of the expression
levels at the center of a cell.

We estimate the variance of expression levels using a
Gaussian process. Namely, we calculate the weighted variance
of expression levels of samples using a weight function where
the weight is determined according to the distance between
the centerc and the point of samples. Formally, the estimated
varianceV ar(c, Pj) of expression levels for proteinPj at the
coordinatec is represented as

V ar(c, Pj) =

∑b
i=1

((
e
(i)
Pj

−Avgj(c)
)2

K
(

Dist(i,c)
h

))
∑b

i=1 K
(

Dist(i,c)
h

) (1 ≤ j ≤ m), (7)

wheree(i)Pj
is the expression level of the proteinPj correspond-

ing to the beef cattlei, and Avgj(c) is the average of the
expression levels for proteinPj at c represented as follows:

Avgj(c) =

∑b
i=1

(
e
(i)
Pj
K
(

Dist(i,c)
h

))
∑b

i=1 K
(

Dist(i,c)
h

) (8)

D. Calculation of Control Score

We describe the process to calculate the controlled score of
each proteins. The controlled scoreScore(Pj) of the protein
Pj is the average of the estimated value which the variance of
the expression level at the central pointc(k) (1 ≤ k ≤ q) of
the cell, and it is represented as follows:

Score(Pj) =

∑q
k=1 V ar(c(k), Pj)

q
(9)

Note that the protein which we want to extract in this study
is the protein that controlled score is low.

IV. EVALUATION

A. Model of Artificial Data Used in Evaluation

Because no protein controlled by the lineage of Wagyu is
known, and so currently there is no real data that we can use
to evaluate the proposed algorithm, we generate an artificial
data set of proteins and the Wagyu lineages to evaluate the
proposed algorithm. In generating an artificial data set, it is
significantly important to construct a proper data model that
reflects on the real property of the real phenomenon. Thus, we
first propose a model of relation between genetic factors in
lineage and expression levels of proteins.

In our model, we assume genetic factors that in-
crease/decrease the expression levels of a protein, and they
are inherited from ancestors to descendants in the genetic
fashion. In general, currently, quantitative traits of creatures
as well as protein expressions are regarded to be controlled
by plural genetic factors (i.e., genetic polymorphism) [8]. Our
assumption is based on this general agreement in the current
state of the art.

First, we construct a realistic model of the lineage of
Wagyu that properly explains the relation between beef cattle

and sires. As described in Section II-A, several excellent
sire lines exist in Wagyu as a result of long-time efforts of
inbreeding to preserve and improve good genes that generate
good quality beef. Thus, we model the sire lines assire-trees
that is rooted by a sire and its 10 generation ancestors are
included in the tree, as illustrated in Figure 4. We regard that
all the sires included in a sire-tree is distinct from others, and
we prepare several sire-trees to express several major lines of
sires.

Second, we generate and assign genetic factors to the sires
in the sire-trees. In this study, we assume that the genetic
factors that control the expression levels of a protein are not
owned by a small portion of sires, rather broadly owned by
sires with a certain probability, although the difference of
distribution (i.e., sparse or dense) according to sire lines may
be seen.

We designed the genetic factor model as follows:
For each proteinPj , we generate r positive genetic
factors gpj1, g

p
j2, . . . , g

p
jr and r negative genetic factors

gnj1, g
n
j2, . . . , g

n
jr, where these positive (resp. negative) genetic

factors work to increase (resp. decrease) the expression levels
of Pj . Here, note that, genetic factors are generally considered
in pairwise fashion due to the pairwise nature of genomes. If
we let ’A’ be a genetic factor that works to increase/decrease
expression levels, and let ’a’ be a pairwise component that
does not work on expression levels. Then, the genotype can
be one of the three types ’AA,’ ’Aa,’ and ’aa.’ We assign each
of these genetic factors to every highest generation sire and
cows with the genotype ’Aa,’ and they are inherited to their
descendants according to the law of genetic inheritance. Note
that the genetic factors are inherited probabilistically to all the
sires in the sire-tree, and the number of genetic factors on each
sires is moderately distributed, which includes natural bias that
coming from probability nature of inheritance.

Third, we generate beef cattle. The lineage of a beef cattle
is uniquely determined if the sires to be ancestor are decided.
Now, if we let 1st sire of cattle be its father, let 2nd sire be its
mother’s father, let 3rd sire be its mother’s mother’s father, and
so on, only we have to do is to determine 1-5th sires for each
cattle. So, for each beef cattle, we select 1-5th sires randomly
from the sires of 5-10th generations in the generated sire-trees,
as illustrated in Figure 5. This operation is done repeatedly for
the number of required samples, and then the generated data
set is regarded as the lineage data, which is the input of the
proposed algorithm.

Finally, we generate protein expression profiles for each
cattle. We assume that a protein expression level follow the
normal distribution with the averageµ and the standard devia-
tion σ. Note that, although protein expression levels are gener-
ally regarded to follow log-scale distribution, there is a result in
which protein expression levels follow the normal distribution
[9]. For the data sets that follow log-scale distribution, we have
only to apply logarithm to translate to the normal distribution.
The expression level of a proteinPj in a samplei, i.e.,e(i)Pj

, is
determined from the base normal distribution and the number
of genetic factors corresponding toPj in a sample (cattle)i. As
for the function of genetic factors, we assume that if cattle has
’AA’ or ’Aa’ genotype as a result of the genetic probabilistic
inheritance rule, the genetic factor works to increase/decrease
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Figure 4. Sire Tree
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Figure 5. Generating Cattle

expression levels of the corresponding protein. We also assume
that, if a genetic factor works, the average of the distribution
µ is increased/decreased by a constant amountα. Namely, a
set of expression levels corresponding to a protein and a set
of samples (cattle) is generated probabilistically based on the
normal distribution that average varies according to the number
of the genetic factors that the sample have.

As above, we generate the artificial data according to the
models of the lineage, the genetic factors, and the protein
expression levels. A summary of the generation process of
the artificial data is shown in Figure 6.

B. Evaluation Method

We generated a set of artificial data based on the models
described in Section IV-A, and applied the proposed algorithm
to it. We vary the number of genetic factors corresponding to
each proteins; specifically, we choose the number randomly
between 0 and 10. Then, if the control scores of a protein com-
puted by the proposed algorithm is in relation to the number
of genetic factors corresponding to the protein, it means that
the proposed algorithm predicts the number of genetic factors,
and further means that the control scores indicate how strong
the expression levels of the protein depends on bloodlines.

In the following, we describe the conditions and parameters
in the evaluation in detail. Based on the model described
in Section IV-A, we generated a set of sire-trees, genetic
factors, beef cattle, and expression profiles. In the lineage
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Figure 7. Dividing a Field into Cells

data, we have two sire-trees in which 10 generations of sires
are included. The generated set of expression profiles includes
10,000 samples and 100 proteins, where the average and the
standard deviation of the base normal distribution areµ = 0.5
and σ = 0.1, respectively, and we letα = 1/4σ be the
increment value of the expression level par genetic factor.

The cell width is set toR = 1
23 and the centers of the cells

are shifted so that the origin of the field (i.e., the point (0,
0)) is also the center of a cell, as shown in Figure 7. This is
meant to have two cattle that has the same 1st, 2nd, and 3rd
ancestors is likely to belong to the same cell in many cases.
As for the parameters of the algorithm, we set the bandwidth
of the Kernel function ash = 0.21 to cover cattle in a cell, and
set the threshold of the density asT = 0.7 in consideration of
the distribution of the density with the applied data set.
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C. Results

The result of the evaluation is shown in Figure 8. Figure 8
is the scatter diagram where the horizontal axis represents the
number of genetic factors and the vertical axis represents the
control score, and the plotted points are the proteins. This result
shows the strong correlation coefficient -0.838, which means
that the proposed method succeeded to estimate the proteins
that is controlled by the bloodline.

D. Discussion

By the simulation using an artificial data set, we demon-
strated that the proposed method can predict proteins that are
deeply related to bloodline. In this simulation, we assumed that
each protein has the genetic factors in the DNA of sires, which
control the expression level of the protein. This assumption
would be widely acceptable because the genetic factors such
as SNPs that control phenotypes or expression levels have
been explored with tremendous efforts in the current scenes
of biological studies.

The result of the simulation showed that the proposed
method will work effectively to decide the target proteins to
explore the system of living creatures; the protein that has
many corresponding genetic factors would be in a position
near genetic factors in the biological system, so that the
direct interaction between genes and the protein will be found
more likely than other proteins. As another practical usage
of the proposed method, we suggest the possibility that the
proposed method enables us to control important phenotypes
more precisely and certainly by selecting better sires for a new-
born cattle based on the knowledge of proteins. The proposed
method would find proteins controllable by selecting sires, and
the proteins that control an important protein will be found by
other studies in the future.

There are several possibilities on how to use the knowledge
obtained by the proposed method. To explore the practical use
of the proposed method is an important task for the future.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new method to predict the
proteins whose expression levels depend on bloodline, from
the lineage data and the protein expression profiles. Because
bloodlines include dense genetic information, to connect the
bloodline to proteins is valuable when we try to improve the
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Figure 8. Correlation Between Control Score and Number of Genetic Factors

quality of livestock animals through inbreeding. To the best
of our knowledge, the proposed method is the first one that
investigates the bloodline of brand cattle to connect to proteins.

To evaluate the proposed method, we designed a realistic
data model of lineage, genetic factors, and expression profiles,
and generated an artificial data. Through the evaluation using
the artificial data, we confirmed that the proposed method can
find the proteins whose expression levels are controlled by
bloodline.

As future work to evaluate the effectiveness of this method
firmly, it is desirable to have an evaluation using a real data
set. However, the data set that includes an expression profile of
proteins and the corresponding bloodline data is not currently
available in public. Besides, even if such a data set is available,
it is not possible by nature to grasp all the genetic factors
that certainly effect on the expression level of a protein.
Consequently, it is difficult to evaluate the accuracy of the
proposed method exactly.

Considering this difficulty of real-data evaluation, one
possible solution would be to demonstrate the effectiveness
of the proposed method with some practical case studies.
For example, to introduce the case in which the results of
the proposed method contributed to a significant discovery
or a practical methodology design, would contribute to prove
the effectiveness of the proposed method. Although several
difficulties are expected, to accumulate an achievement where
this methodology worked effectively would be an important
task for the future.
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