
A Novel Rainbow Table Sorting Method

Hwei-Ming Ying, Vrizlynn L. L. Thing

Cryptography & Security Department
Institute for Infocomm Research, Singapore

{hmying,vriz}@i2r.a-star.edu.sg

Abstract—As users become increasingly aware of the need
to adopt strong password, it also brings challenges to digital
forensics investigators due to the password protection of potential
evidence data. In this paper, we discuss existing password
recovery methods and propose a new password sorting method
that aid in improving the performance of the recovery process.
This improved method supports a quick binary search instead of
the slower linear search as employed in the enhanced rainbow
table. We show that this method will result in a 23% reduction
in storage requirement, compared to the original rainbow tables,
while maintaining the same success rate. It is also an improve-
ment over the enhanced rainbow table as the time taken for the
password lookup will be drastically reduced.

Keywords - Digital forensics; password recovery; search
optimization; time-memory tradeoff; cryptanalysis.

I. INTRODUCTION

In computer and information security, the use of passwords
is essential for users to protect their data and to ensure a
secured access to their systems/machines. However, in digital
forensics, the use of password protection presents a challenge
for investigators while conducting examinations. As mentioned
in [1], compelling a suspect to surrender his password would
force him to produce evidence that could be used to in-
criminate him, thereby violating his Fifth Amendment right
against self-incrimination. Therefore, this presents a need for
the authorities to have the capability to access a suspect’s data
without expecting his assistance. While there exist methods to
decode hashes to reveal passwords used to protect potential
evidence, lengthier passwords with larger characters sets have
been encouraged to thwart password recovery. Awareness of
the need to use stronger passwords and active adoption have
rendered many existing password recovery tools inefficient or
even ineffective.

The more common methods of password recovery tech-
niques are guessing, dictionary, brute force and more recently,
using rainbow tables. The guessing method is attempting
to crack passwords by trying “easy-to-remember”, common
passwords or passwords based on a user’s personal information
(or a fuzzy index of words on the user’s storage media). A
statistical analysis of 28,000 passwords recently stolen from a
popular U.S. website revealed that 16% of the users took a first
name as a password and 14% relied on “easy-to-remember”
keyboard combinations [2]. Therefore, the guessing method
can be quite effective in some cases where users are willing
to compromise security for the sake of convenience.

The dictionary attack method composes of loading a file of
dictionary words into a password cracking tool to search for
a match of their hash values with the stored one. Examples of
password cracking tools include Cain and Abel [3], John the
Ripper [4] and LCP [5].

In the brute force cryptanalysis attack, every possible com-
bination of the password characters is attempted to perform a
match comparison. It is an extremely time consuming process
but the password will be recovered eventually if a long enough
time is given. Cain and Abel, John the Ripper as well as LCP
are able to conduct brute force attacks.

In [6-9], the authors studied on the recovery of passwords
or encryption keys based on the collision of hashes in specific
hashing algorithms. These methods are mainly used to research
on the weakness of hashing algorithms. They are too high in
complexity and time consuming to be used for performing
password recovery during forensics investigations. The meth-
ods are also applicable to specific hashing algorithms only.

In [10], Hellman introduced a method which involves a
trade-off between the computation time and storage space
needed to recover the plaintext from its hash value. It can
be applied to retrieve Windows login passwords encrypted
into LM or NTLM hashes [11], as well as passwords in
applications using these hashing algorithms. Passwords en-
crypted with hashing algorithms such as MD5 [12], SHA-
2 [13] and RIPEMD-160 [14] are also susceptible to this
recovery method. In addition, this method is applicable to
many searching tasks including the knapsack and discrete
logarithm problems.

In [15], Oechslin proposed a faster cryptanalytical time-
memory trade-off method, which is an improvement over
Hellman’s method. Since then, this method has been widely
used and implemented in many popular password recovery
tools. The pre-computed tables that are generated in this
method are known as the rainbow tables.

In [16], Narayanan and Shmatikov proposed using standard
Markov modeling techniques from natural language process-
ing to reduce the password space to be searched, combined
with the application of the time-memory trade-off method to
analyse the vulnerability of human-memorable passwords. It
was shown that 67.6% of the passwords can be successfully
recovered using a 2x109 search space. However, the limitation
of this method is that the passwords were assumed to be
human-memorable character-sequence passwords.

In [17], Thing and Ying proposed a new design of an

35

CYBERLAWS 2011 : The Second International Conference on Technical and Legal Aspects of the e-Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-122-9

enhanced rainbow table. Maintaining the core functionality
of the rainbow tables, the enhanced rainbow table has an
improvement of 13% to 19% over the rainbow tables in terms
of success rate or an improvement of 50% in terms of storage
space.

In this paper, we present an improvement over the method
in [17] by describing a way to overcome its main drawback
and show that it outperforms the existing rainbow table and
the enhanced rainbow table methods.

The rest of the paper is organized as follow. In Section 2, we
present a discussion on the time-memory trade-off password
recovery methods and how sorting plays an important role in
improving the search time. We then give an overview of the
sorting method in Section 3. We describe the design of the
sorting method in details in Section 4. Analysis and evaluation
are presented in Section 5. Conclusions follow in Section 6.

II. PASSWORD RECOVERY AND SORTING TECHNIQUES

The idea of a general time-memory tradeoff was first
proposed by Hellman in 1980 [10]. In the context of password
recovery, we describe the Hellman algorithm as follows.

We let X be the plaintext password and Y be the cor-
responding stored hash value of X. Given Y, we need to
find X which satisfies h(X) = Y, where h is a known hash
function. However, finding X = h−1(Y) is feasibly impossible
since hashes are computed using one-way functions, where
the reversal function, h−1, is unknown. Hellman suggested
taking the plaintext values and applying alternate hashing and
reducing, to generate a pre-computed table.

For example, the corresponding 128-bit hash value for a 7-
character password (composed from a character set of English
alphabets), is obtained by performing the password hashing
function on the password. With a reduction function such
as H mod 267, where H is the hash value converted to its
decimal form, the resulting values are distributed in a best-
effort uniform manner. For example, if we start with the
initial plaintext value of ”abcdefg” and upon hashing, we get
a binary output of 0000000....000010000000....01, which is
64 ‘0’s and a ‘1’ followed by 62 ‘0’s and a ‘1’. H = 263 +
1 = 9223372036854775809. The reduction function will then
convert this value to ”3665127553” which corresponds to a
plaintext representation “lwmkgij”, computed from (11(266)
+ 22(265) + 12(264) + 10(253) + 6(262) + 8(261) + 9(260).
After a pre-defined number of rounds of hashing and reducing
(making up a chain), only the initial and final plaintext values
are stored. Therefore, only the “head” and “tail” of a chain
are stored in the table. Using different initial plaintexts, the
hashing and reducing operations are repeated, to generate a
larger table (of increasing rows or chains). A larger table will
theoretically contain more pre-computed values (i.e. disregard-
ing hash collisions), thereby increasing the success rate of
password recovery, while taking up more storage space. The
pre-defined number of rounds of hashing and reducing will
also increase the success rate by increasing the length of the
“virtual” chain, while bringing about a higher computational
overhead.

To recover a plaintext from a given hash, a reduction

operation is performed on the hash and a search for a match
of the computed plaintext with the final value in the table is
conducted. If a match is not found, the hashing and reducing
operations are performed on the computed plaintext to arrive
at a new plaintext so that another round of search to be made.
The maximum number of rounds of hashing, reducing and
searching operations is determined by the chain length. If the
hash value is found in a particular chain, the values in the chain
are then worked out by performing the hashing and reducing
functions to arrive at the plaintext giving the specific hash
value. Unfortunately, there is a likelihood that chains with
different initial values may merge due to collisions. These
merges will reduce the number of distinct hash values in the
chains and therefore, diminish the rate of successful recovery.
The success rate can be increased by using multiple tables with
each table using a different reduction function. If we let P(t)
be the success rate of using t tables, then P(t) = 1 - (1 - P(1))t,
which is an increasing function of t since P(1) is between 0 and
1. Hence, introducing more tables increase the success rate but
also cause an increase in both the computational complexity
and storage space.

In [18], Rivest suggested a method of using distinguished
points as end points for chains. Distinguished points are keys
which satisfy a given criteria, e.g. the first or last q bits are
all 0. In this method, the chains are not generated with a fixed
length but they terminate upon reaching pre-defined distin-
guished points. This method decreases the number of memory
lookups compared to Hellman’s method and is capable of loop
detection. If a distinguished point is not obtained after a large
finite number of operations, the chain is suspected to contain
a loop and is discarded. Therefore, the generated chains are
free of loops. One limitation is that the chains will merge if
there is a collision within the same table. The variable lengths
of the chains will also result in an increase in the number
of false alarms. Additional computations are also required to
determine if a false alarm has occurred.

In 2003, Oechslin proposed a new table structure [10] to
reduce the probability of merging occurrences. These rainbow
chains use multiple reduction functions such that there will
only be merges if the collisions occur at the same positions
in both chains. An experiment was carried out and presented
in Oechslin’s paper. It showed that given a set of parameters
which is constant in both scenarios, the measured coverage in
a single rainbow table is 78.8% compared to the 75.8% from
the classical tables of Hellman with distinguished points. In
addition, the number of calculations needed to perform the
search is reduced as well.

In all the above methods, the stored passwords can be
sorted in their alphabetical order. When a password lookup
is performed, the time taken to search for this password can
therefore be optimized. Hence, the computational complexity
to recover the password is low.

In [17], Thing and Ying proposed a new table structure
which has an overall improvement over the existing rainbow
tables. Even after taking into consideration the effects of key
collisions, it was demonstrated that there was a significant
increase (between 13% to 19%) in terms of the success rate
of recovery, while maintaining the same storage requirement

36

CYBERLAWS 2011 : The Second International Conference on Technical and Legal Aspects of the e-Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-122-9

and computational complexity. The novelty of this method lies
in the new chain generation process and the removal of the
initial hash storage, which resulted in significant storage space
conservation (or successful recovery rate improvement).

The main drawback of method is that each password search
will incur a significant amount of time complexity. The reason
is that the passwords cannot be sorted in the usual alphabetical
order now, since in doing so, the information of its correspond-
ing initial hash value will be lost. The lookup will then have
to rely on checking every single stored password in the table.

In the following section, we present our proposed sorting
method so that password lookup in the stored tables can be
optimized.

III. SORTING METHOD OVERVIEW

Based on the method described in [17], we require sorting
of the “tail” passwords to achieve a fast lookup. We introduce
special characters that can be found on the keyboard (e.g. *, ‘,
!, @, :, ”). There are altogether 32 of such non-alpha-numeric
printable characters and we assume for now that they do not
form any of the character set of the passwords. We insert a
number of these special characters into the passwords that
we store. The manner in which these special characters are
inserted will provide the information on the position of the
passwords after the table has been re-arranged in alphabetical
order. The consequence is that this will add more storage space
compared to [17] but we will illustrate later that the increase
in storage space is minimal and is also lesser than the original
rainbow table’s storage. The advantage of this sorting method
is that the passwords can now be sorted and thus a password
lookup can be optimized.

As an example, to recover passwords of length 7 consisting
of characters in the alpha-numberic character set, and assum-
ing there are 5700 reduction functions and 6.0 x 107 chains, a
maximum of only 4 special characters are needed in order to
span the entire 6.0 x 107 passwords. Since the password length
is 7, there are 8 different positions where the special characters
can be inserted. Hence, the total number of different values
which can be obtained by inserting the special characters >
324 x (8 + 8x7/2! + 8x7x6/3! + 8x7x6x5/4!) > 6.0 x 107.
Therefore, only a maximum of 4 characters need to be inserted.

IV. DESIGN OF THE SORTING METHOD

In this section, we describe the details of computing and
assigning the special characters insertion to perform the
sorting, and the derivation of the corresponding initial hash
value from the sorted passwords.

Let the 32 special characters be x1, x2,, x32.

The password with no special character in it has an
original position at 0.

If the password is xxxxxxx of length 7, we let 7x6x5x4x3x
2x1x0 be the password with the inserted special characters
where the underlined numbers represent the positions of
the special characters in the password. More than 1 special
character can be assigned to each position. In addition, we

define xi > xj if the character xi is to the left of the character
xj in the password.

For passwords with exactly one special character xi,
the original position of the password when xi is at position a
is 32a + i.

For passwords with exactly two special characters xi,
xj where xi > xj , the original position of the password when
xi and xj are at positions a and b respectively is 224 + 32i +
j + 512a(a+1) + 1024b

For passwords with exactly three special characters xi,
xj , xk where xi > xj > xk, the original position of
the password when xi, xj , xk are at positions a, b and c
respectively is 36064 + 1024i + 32j + k + 16384a(a+1)(a+2)/3
+ 16384b(b+1) + 32768c

For passwords with exactly four special characters xi,
xj , xk, xl where xi > xj > xk > xl, the original position
of the password when xi, xj , xk, xl are at positions a, b, c
and d respectively is 3935456 + 32768i + 1024j + 32k + l +
131072a(a+1)(a+2)(a+3)/3 + 524288b(b+1)(b+2)/3
+ 524288c(c+1) + 1048576d

Note: In the subsequent sections, the same notations as
described below will be used.
xi, xj , xk, xl are the special characters and the values of i, j,
k, l range from 1 to 32 inclusive. a, b, c, d are the positions
of the special characters and their values ranges from 0 to 7
inclusive.

A. Password Position Assignment

The following describes the procedure of assigning the
position of the passwords in the tables to perform sorting.
Step 1: Identify the 32 special characters that do not belong
to the character space of the password.

Step 2: Represent each of these 32 characters from x1

to x32.

Step 3: The first password is left in its original state
without any addition of special characters. This will be the
password that corresponds to the H value at the start of the
chain.

Step 4: The second password will have the character x1

inserted at the end of the chain. This will be the password
that corresponds to the H+1 value at the start of the chain.

Step 5: Subsequent characters are inserted to the passwords
such that all the possible characters are inserted to a position.
The next higher position will then be allocated for the
inclusions of these characters.

Step 6: Once all the positions for 1 character have been filled,
2 characters are used. When they are filled too, 3 characters

37

CYBERLAWS 2011 : The Second International Conference on Technical and Legal Aspects of the e-Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-122-9

are used and so on.

Step 7: Continue the assignment of the special characters
until all the passwords, excluding the first, have been inserted
special characters.

Step 8: These passwords with the addition of special
characters can then be sorted in the usual way.

B. Identifying the Positions of Passwords

In the following, we describe the procedure to derive the
corresponding initial hash value from the sorted passwords
with the inserted special characters.

Step 1: Identify how many special characters are in the
password that has been found.

Step 2: Based on the number of special characters and
their positions in the password, the corresponding initial hash
value is computed as follow.

(a) If there are 0 special characters, then the password
corresponds to the initial hash H

(b) If there is 1 special character, then the password
corresponds to the initial hash H + 32a + i

(c) If there are 2 special characters, then the password
corresponds to the initial hash H + 224 + 32i + j + 512a(a+1)
+ 1024b

(d) If there are 3 special characters, then the password
corresponds to the initial hash H + 36064 + 1024i + 32j + k
+ 16384a(a+1)(a+2)/3 + 16384b(b+1) + 32768c

(e) If there are 4 special characters, then the password
corresponds to the initial hash H + 3935456 + 32768i
+ 1024j + 32k + l + 131072a(a+1)(a+2)(a+3)/3 +
524288b(b+1)(b+2)/3 + 524288c(c+1) + 1048576d

V. ANALYSIS

In this section, we analyse the maximum number of
special characters required to sort tables of different sizes
and password lengths, as well as demonstrate the storage
conservation achieved.

Number of positions that can assigned without using
any special character = 1

Number of positions that can assigned using 1 special
character = 32 x 8 = 256

Number of positions that can assigned using 2 special
characters
= (No. of ways to select 2 special characters) x (No. of ways
to place the 2 characters into the 8 positions)
= 322 x [8 + 8x7/2] = 36864

In a similar fashion,

Number of positions that can assigned using 3 special
characters = 323 x [8 + 2x8x7/2 + 8x7x6/3!] = 3932160

Number of positions that can assigned using 4 special
characters
= 324 x [8 + 3x8x7/2 + 3x8x7x6/3! + 8x7x6x5/4!]
= 346030080

Hence, the total number of positions that can be identified
with at most 4 special characters
= 1 + 256 + 36864 + 3932160 + 346030080
= 349999361

Therefore, if less than 350 million passwords are stored, at
most 4 special characters are required to identify the position
of each password.

Next, we compare the storage requirement between the
enhanced rainbow table (incorporating our sorting method)
and the original rainbow table by investigating two scenarios.

Scenario 1: 60 million passwords are stored in a
rainbow table

Total storage space required for the original table =
1.02 x 109 bytes

Total storage space required after the passwords sorting
= 9 x 1 + 10 x 256 + 11 x 36864 + 12 x 3932160 + 13 x
56030719
= 775993340 bytes

Hence, the reduction of storage over the original method
= (1.02 x 109 - 775993340) / 1.02 x 109

= 0.2392
= 23.92%

Scenario 2: 268 million passwords are stored in a
rainbow table

Total storage space required for the original table =
4.556 x 109 bytes

Total storage space required after the passwords sorting
= 9 x 1 + 10 x 256 + 11 x 36864 + 12 x 3932160 + 13 x
264030719
= 3479993340 bytes

Hence, the reduction of storage over the original method
= (4.556 x 109 - 3479993340) / 4.556 x 109

= 0.2362
= 23.62%

We observe that the storage requirement is still significantly
reduced even with the inserted characters used in our sorting

38

CYBERLAWS 2011 : The Second International Conference on Technical and Legal Aspects of the e-Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-122-9

method.

Tables 1, 2, 3 and 4 show the number of passwords
that can be stored in a table with password lengths of 7,
8, 9 and 10 respectively. The values in first row represent
the maximum number of special characters added to each
password while the values in the second row represent the
number of passwords that can be stored.

1 2 3 4
257 37121 3969281 3.50 x 108

TABLE 1: PASSWORD LENGTH = 7

1 2 3 4
289 46369 5453089 5.24 x 108

TABLE 2: PASSWORD LENGTH = 8

1 2 3 4
321 56320 7208960 7.50 x 108

TABLE 3: PASSWORD LENGTH = 9

1 2 3 4
353 67937 9371648 1.05 x 109

TABLE 4: PASSWORD LENGTH = 10

We can see that even with only 4 special characters,
we are able to store a very large number of passwords in
the table. Therefore, a small number of available special
characters is sufficient.
Discussions

A shortcoming of this sorting method is the reservation of
the special characters, which prevents their usage as password
characters. To resolve this, we propose using non-printable
characters instead, therefore leaving the printable characters
for use as passwords.

VI. CONCLUSIONS

This paper describes a sorting mechanism which when
applied, has a significant improvement over the orginal
rainbow tables. Special characters are added to the storage
to allow the sorting of the enhanced rainbow tables so that
the password lookup time can be optimized. Even with this
insertion of characters to the passwords, the improvement in
storage space required to store the same number of passwords
is 23% lesser than what is required in the original tables.
This is achieved while maintaining the same success rate.
Furthermore, it has a speed improvement over the enhanced
rainbow tables since it uses a binary search instead of a
linear search when performing password lookup. Analysis
was also conducted to show that the number of passwords
that can be supported by using a small number of special
characters, is very large. Therefore, this sorting method can
be widely applied. In addition, to circumvent the shortcoming
of reserving the printable special characters from being used
as passwords, non-printable characters should be chosen for
use in this sorting method instead.

References

[1] S. M. Smyth, “Searches of computers and computer data
at the United States border: The need for a new framework
following United States V. Arnold”, Journal of Law, Technology
and Policy, Vol. 2009, No. 1, pp. 69-105, February 2009.

[2] Google News, “Favorite passwords: ‘1234’ and ‘password”’,
http://www.google.com/hostednews/afp/article/ALeqM5jeUc6
Bblnd0M19WVQWvjS6D2puvw, [retrieved, December 2009].

[3] Cain and Abel, “Password recovery tool”, http://www.oxid.it,
[retrieved, December 2010].

[4] John The Ripper, “Password cracker”, http://www.openwall.com,
[retrieved, December 2010].

[5] LCPSoft, “Lcpsoft programs”, http://www.lcpsoft.com,
[retrieved, December 2010].

[6] S. Contini, and Y. L. Yin, “Forgery and partial key-recovery
attacks on HMAC and NMAC using hash collisions”, Annual
International Conference on the Theory and Application of
Cryptology and Information Security (AsiaCrypt), Lecture Notes in
Computer Science, Vol. 4284, pp. 37-53, 2006.

[7] P. A. Fouque, G. Leurent, and P. Q. Nguyen, “Full key-
recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5”,
Advances in Cryptology, Lecture Notes in Computer Science, Vol.
4622, pp. 13-30, Springer, 2007.

[8] Y. Sasaki, G. Yamamoto, and K. Aoki, “Practical password
recovery on an MD5 challenge and response”, Cryptology ePrint
Archive, Report 2007/101, April 2008.

[9] Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro, “Security
of MD5 challenge and response: Extension of APOP password
recovery attack”, The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology, Vol. 4964, pp. 1-18, April 2008.

[10] M. E. Hellman, “A cryptanalytic time-memory trade-off”,
IEEE Transactions on Information Theory, Vol. IT-26, No. 4, pp.
401-406, July 1980.

[11] D. Todorov, “Mechanics of user identification and authentication:
Fundamentals of identity management”, Auerbach Publications,
Taylor and Francis Group, June 2007.

[12] R. Rivest, “The MD5 message-digest algorithm”, IETF
RFC 1321, April 1992.

[13] National Institute of Standards and Technology (NIST),
“Secure hash standard”, Federal Information Processing Standards
Publication 180-2, August 2002.

[14] H. Dobbertin, A. Bosselaers, and B. Preneel, “Ripemd-
160: A strengthened version of RIPEMD”, International Workshop
on Fast Software Encryption, Lecture Notes in Computer Science,

39

CYBERLAWS 2011 : The Second International Conference on Technical and Legal Aspects of the e-Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-122-9

Vol. 1039, pp. 71-82, Springer, April 1996.

[15] P. Oechslin, “Making a faster cryptanalytic time-memory
trade-off”, Annual International Cryptology Conference (CRYPTO),
Advances in Cryptography, Lecture Notes in Computer Science,
Vol. 279, pp. 617-630, October 2003.

[16] A. Narayanan, and V. Shmatikov, “Fast dictionary attacks
on passwords using time-space tradeoff”, ACM Conference on
Computer and Communications Security, pp. 364-372, 2005.

[17] V. L. L. Thing, and H. M. Ying, “A novel time-memory
trade-off method for password recovery”, Digital Investigation,
International Journal of Digital Forensics and Incident Response,
Elsevier, Vol. 6, Supplement, pp. S114-S120, September 2009

[18] D. E. R. Denning, “Cryptography and data security”,
Addison-Wesley Publication, 1982.

40

CYBERLAWS 2011 : The Second International Conference on Technical and Legal Aspects of the e-Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-122-9

