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Abstract—We present a modular and scalable video analytics
system designed for object detection, face recognition, and multi-
camera tracking, with minimal bandwidth consumption and
full compatibility with existing video surveillance infrastructure.
The architecture emphasizes cost efficiency and regulatory
compliance, operating primarily on on-premise deployments to
align with constraints imposed by the Artificial Intelligence Act
of the European Union and General Data Protection Regulation.
After benchmarking a range of object detection, face analysis,
and tracking models, we selected the most performant and
efficient solutions and orchestrated them using Apache Airflow.
The system executes a graph-based processing pipeline that
supports parallel, per-camera analytics including people counting,
path tracking, heatmap generation, and geofencing. Results are
visualized through Apache Superset dashboards, enabling inter-
active, building-wide situational awareness. By leveraging open
source components and a containerized, Kubernetes-compatible
deployment model, the solution provides real-time, bandwidth-
aware analytics with strong adaptability to diverse operational
environments, supporting data-driven decision-making across
sectors, such as retail, logistics, and smart infrastructure.
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I. INTRODUCTION

The proliferation of video surveillance systems in public
and private domains has led to an unprecedented volume of
visual data being generated every day. Yet, much of this data
remains underutilized, as traditional Closed-Circuit Television
(CCTV) infrastructures are designed primarily for passive
recording rather than intelligent, real-time interpretation. In
response, there is a growing demand across sectors—from
retail, logistics and critical infrastructure—for plug-and-play
analytics capabilities that can extract actionable insights from
video streams without overhauling existing systems for which
an example is provided in Figure 1: such systems can log
customer activites and map them over the floorplan of the store
for providing analytics.

Scalable and bandwidth-efficient video analytics is especially
critical in environments where network infrastructure is limited
or distributed across multiple physical sites. For organizations
managing tens or hundreds of camera feeds, the ability to
perform on-device or near-edge inference significantly reduces
the load on central servers and minimizes data transfer
costs. However, implementing such systems presents numerous
challenges.

First, many deployments rely on legacy CCTV hardware that
lacks the compute resources necessary for running modern deep
learning models. Second, network constraints often prevent
continuous high-resolution streaming, which complicates even
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Figure 1. An example how we could use CCTV to map real-world activities
into analytics.

somewhat real-time inference and analytics. Third, different
use cases — such as people counting, heatmap generation, path
tracking, geofencing, and facial recognition — require distinct
models and processing pipelines, all of which must coexist
within the same system. Finally, strict privacy and security
regulations, such as the General Data Protection Regulation
(GDPR) [1] and the European Union’s Artificial Intelligence
Act (AI Act) [2], impose legal constraints on how biometric
and behavioral data can be processed, stored, and transmitted.

To address these challenges, we present a modular and
scalable analytics pipeline designed to operate on CPU (Central
Processing Unit)- or GPU (Central Processing Unit)-based
systems with minimal impact on existing CCTV infrastructure.
The system supports multiple analytics tasks concurrently,
including object detection, face recognition, activity monitoring,
and crowd flow analysis, while maintaining compliance with
data protection laws. Our architecture emphasizes deployment
flexibility, bandwidth-aware processing, and robust orchestra-
tion.

This paper is structured as follows. Section II details
the system architecture and deployment design. Then, in
Section III, we provide details on the implemented analytics
tasks and visualization methods. In Section IV, we discuss our
implementation on multi-camera multi-object tracking. Finally,
Section V concludes our work.

II. ARCHITECTURE DETAILS

Designing the architecture of our video analytics system
required balancing multiple constraints, most notably cost-
efficiency and regulatory compliance. GPU-enabled cloud
infrastructures offer high performance but come with substantial
operational costs, making them unsuitable for continuous, large-
scale video processing. As such, we prioritized solutions that
could run efficiently on CPU-only setups, both to reduce cost
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and to allow greater deployment flexibility (even though we
also used GPU).

Another key architectural decision concerned the mode of
operation: whether to process video streams remotely in the
cloud or locally on-premise. In addition to cost considerations,
legal and ethical concerns — particularly those stemming from
the EU AI Act — played a decisive role. Since the Act prohibits
biometric identification (such as face recognition) in many
public settings unless explicitly authorized, we opted for on-
premise pre-processing to ensure compliance and to maintain
full control over sensitive data.

Our first step was researching different models and frame-
works available for object detection, tracking, and face detec-
tion/recognition. We tested a variety of approaches, comparing
their accuracy and performance to determine the best fit for
our needs. This evaluation included both traditional machine
learning techniques and modern deep learning-based models.

Once we identified the most suitable models, we focused
on integrating them into a functional pipeline. To efficiently
manage workflows, we chose Apache Airflow [3] as our
orchestration tool. Airflow allowed us to automate and schedule
the processing steps, ensuring seamless data flow and model
execution across the system.

A. Model Selection

To select the most suitable components for our video
analytics pipeline, we conducted a thorough benchmarking
process across four key tasks: object detection, face detection,
face recognition, and multi-object tracking. Our evaluation
focused on four primary criteria: detection accuracy, inference
speed and ease of integration. Additionally, we prioritized
models released under permissive licenses such as MIT (created
at the Massachusetts Institute of Technology) to ensure freedom
for modification, commercial use, and to avoid potential legal
or financial restrictions.

Object Detection. We evaluated several state-of-the-art
object detectors, including YOLOv8 [4] (YOLO in general
stands for You Look Only Once), YOLOX [5], EfficientDet [6],
and Detectron2 [7]. These models were tested using benchmark
datasets, such as COCO (Common Objects in Context) and
custom video streams relevant to our target use cases. YOLOv8
provided high accuracy and very fast inference, especially when
optimized with TensorRT, with moderate integration effort
and an Apache 2.0 license. YOLOX offered similar accuracy,
slightly lower inference speed, easier integration, and the same
license, making it the preferred choice.

Face Detection. For face detection, we compared MediaPipe
Face Detection [8], YuNet (a lightweight detector based
on NPU-ready backbones, where NPU stands for Neural
Processing Units) [9], and MTCNN [10]. MediaPipe was
the most resource-efficient and easy to deploy on CPU-based
systems. YuNet offered a compelling balance of accuracy and
performance, with good hardware compatibility. It was also
the fastest and most lightweight, and its compatibility with
CUDA hardware acceleration made it the best choice for our
use case.

Face Recognition. In the face recognition domain, we
benchmarked InsightFace [11], SFace [12], and FaceNet [13].
InsightFace, based on ArcFace embeddings, demonstrated
superior robustness and accuracy in identity verification tasks,
supported by comprehensive pre-trained models and broad
platform compatibility. However, due to its restrictive licensing,
which does not include an MIT-equivalent license, FaceNet was
selected as the preferred alternative. FaceNet offers comparable
performance with greater configurability and is distributed
under an MIT license, making it more suitable for integration
within the system.

Tracking. For multi-object tracking, we tested Deep-
SORT [14] and ByteTrack [15]. While DeepSORT has been
widely adopted in academic and commercial applications,
ByteTrack showed superior performance in crowded scenes due
to its effective association of low-score detections, resulting
in fewer identity switches and more stable trajectories. The
Kalman filter employed by ByteTrack also provided better
speed than DeepSORT.

Inference Optimization. To achieve low-latency processing,
we integrated NVIDIA TensorRT [16] for inference accelera-
tion. This significantly reduced the runtime of deep models,
particularly for object detection and face recognition tasks,
enabling high performance even on edge devices with limited
resources.

B. Architectural Setup

Our architecture is illustrated in Figure 2, and we discuss
its details in the following paragraphs. There are two main
components: one is the on-premise preprocessing unit (dealing
with computational heavy tasks), and the other is to display
results and statistics.

Pipeline Design and Orchestration. The system employs
Apache Airflow as the central orchestration engine, organizing
the entire video analytics pipeline into modular, interdepen-
dent tasks through Directed Acyclic Graphs (DAGs). The
primary DAG coordinates seven parallel processing tasks
including heatmap generation, path tracking, people counting,
geofencing, floor plan transformation, activity detection, and
face analysis. Each task operates independently, but shares
data through Airflow’s XCom mechanism, enabling efficient
parallel processing while maintaining data consistency across
the pipeline. The entire Airflow service runs within a dedicated
Docker container [17], while the scheduler operates separately
in its own container (within the on-premise device). To
support scaling requirements, the system is compatible with
Kubernetes and Helm charts, allowing flexible deployment
and management in cloud or cluster environments. This setup
ensures environment consistency and simplifies deployment,
allowing individual components to be modified, scaled, or
replaced without impacting the overall system architecture.

Video Processing and Inference Pipeline. The video
processing architecture employs multithreaded frame sampling
with configurable frequency to balance processing speed with
tracking accuracy. Each video undergoes systematic frame
extraction, where frames are distributed across consumer
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threads for parallel inference using YOLOX object detection. To
optimize performance further, we used OpenCV [18] built with
NVIDIA VIDEO CODEC support for hardware-accelerated
decoding, which significantly reduces CPU load and improves
frame reading speed. The system also maintains separate
processing queues with bounded capacity to prevent memory
overflow during high-throughput scenarios. Feature extraction
operates concurrently with detection, utilizing specialized
models for face detection (YuNet), face recognition (FaceNet),
and activity estimation when enabled, with results aggregated
into tracking histories.

Camera Integration and Data Sources. The system oper-
ates across multiple network tiers with PostgreSQL [19] serving
as the central data repository, while the Airflow scheduler
manages task distribution. Video data flows from an ISAPI
(Internet Server Application Programming Interface) enabled
[20] NVR (Network Video Recorder) through a dedicated
scheduler service that continuously monitors recording queues
and triggers Airflow processing workflows.

The scheduler service has zone-specific configuration param-
eters including boundary lines, transformation matrices, and
processing frequencies. Video downloads are managed through
authenticated sessions with automatic retry mechanisms and
status tracking in the database, ensuring reliable data acquisition
even under network instability or camera downtime conditions.
This system ensures robust error handling and monitoring
through transactional safeguards, graceful thread shutdown,
automated recovery, and task-level visibility via Airflow, which
also provides built-in retry and alert mechanisms.

C. System Evaluation

The current deployment runs on a single machine equipped
with an NVIDIA RTX 4060 GPU, 16 GB of RAM, and an
Intel Core i5-13400F CPU. Benchmark tests indicate that one
hour of Full HD video can be processed in approximately
100 seconds using the GPU, whereas CPU-only processing
requires 3.8 hours. At this rate, the system can process up to 72
camera streams per day with GPU acceleration—assuming each
camera records 12 hours of footage—compared to 0.5 streams
per day using the CPU alone. This throughput is achieved
under continuous operation without parallel GPU saturation,
providing a reliable baseline for scalability. Further gains can
be realized by distributing workloads across multiple GPUs or
nodes via the existing Kubernetes-compatible architecture.

Existing open-source tools provide only partial overlaps
with this functionality. Kerberos.io is a lightweight, Docker-
deployable platform focused primarily on motion detection,
with limited AI-based analytics achievable through external
integrations. ZoneMinder is designed for recording and basic
motion detection, with optional analytics via plugins. In con-
trast, the proposed pipeline natively integrates object detection,
multi-target tracking, optional face recognition, people counting,
and heatmap generation (both per-camera and layout-based),
while offering a modern analytics-focused web interface and
scalable deployment through Docker or Kubernetes.

Onpremise preprocessing

Processing
pipeline

Data cache Recognition
service

Analytics (cloud)
Analytics data

Superset UI

Airflow

Figure 2. Our architecture setup.

III. ANALYTICS AND VISUALIZATION

After setting up Airflow, we needed a way to visualize and
interact with the results. For this, we chose Apache Superset,
an open source business intelligence tool. Superset enabled us
to create interactive dashboards, providing valuable insights
from our data and model outputs.

The platform implements a suite of analytic functions
(running in the cloud) that transform raw surveillance data into
actionable intelligence. Density analysis employs Gaussian
accumulator matrices [21] with adaptive kernel parameters to
generate movement heatmaps that reveal high-traffic zones and
pedestrian flow patterns across the monitored environment.
Trajectory analysis utilizes perspective transformation to
create unified coordinate systems that enable cross-camera
path tracking, with Bézier curve interpolation providing smooth
trajectory visualization that facilitates pattern recognition and
anomaly detection.

The system also delivers behavioral analytics through ge-
ofencing that monitors zone-specific activity and transition
events, and activity recognition to identify task-specific
behaviors, such as object manipulation and stationary activities.
(Demographic analysis uses facial recognition models to
provide age, gender, and ethnicity distribution insights with
statistical confidence metrics.)

Visualization outputs encompass multiple analytical modali-
ties including images like density heatmaps and trajectory
overlays with color-coded pathways representing individual
movement patterns, and statistical dashboards displaying
temporal trends through bar charts, line graphs, and occupancy
histograms (see example in Figure 3). The platform generates
cumulative analytics with configurable temporal windows,
supporting multi-scale analysis from minute-by-minute moni-
toring to long-term behavioral pattern identification. Integration
with Apache Superset enables interactive dashboard creation
with drill-down capabilities, cross-filtering, and automated
report generation, providing data-driven insights for operational
optimization and security enhancement.

IV. MULTI-CAMERA MULTI-OBJECT TRACKING

To further enhance evaluation of tracking data, we in-
corporated Multi-Camera Multi-Object Tracking (MCMOT),
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Figure 3. An example from our Apache Superset dashboard.

allowing us to follow individuals across multiple camera feeds.
Additionally, we developed a unified layout map that extends
per-camera analytics to an entire building. Using projective
geometry, we map detections from different cameras onto a
real-world floor plan, enabling heatmapping, path tracking,
and people counting at a global level. This holistic approach
provides a comprehensive view of movement patterns and
occupancy trends, further improving surveillance and analytics
capabilities.

The tracking system employs BYTETracker as the founda-
tion for single-camera object tracking, which maintains tempo-
ral consistency through association of detections across consec-
utive frames. The multi-camera matching system transforms
single-camera tracks into trajectory segments that represent a
person’s movement through the camera’s field of view.

Homography-based mapping to real-world layout. The
system uses perspective transformation matrices to map camera
coordinates to a unified layout coordinate system. For each
camera, we manually define correspondence points between the
camera view and the real-world floor plan. Then, the bottom-
center point of each person’s bounding box is transformed using
the homography matrix [22], providing real-world positioning
on the monitored building’s floor plan. Then, the tracklet
association is done using approximation algorithms.

Constraint Validation. The tracking pipeline integrates
validation layers to ensure data quality and spatial consistency.
Floor mask validation ensures all detections remain within
walkable areas, with the help of panoptic segmentation [23] to
create a binary mask of the walkable areas and then relocates
invalid points to the nearest valid floor position.

V. CONCLUSION AND FUTURE WORK

We presented a scalable, bandwidth-efficient video analytics
system that integrates object detection, tracking, and face
recognition into existing CCTV infrastructures with minimal
overhead. The system leverages open source technologies and is
designed for deployment flexibility, supporting both on-premise
and cloud-native environments.

Our architecture supports per-camera analytics, such as
heatmaps, path tracking, people counting, and geofencing,
enabling actionable insights for operational and security de-
cisions. Apache Airflow plays a central role in orchestrating

the multi-model pipeline, while model selection was guided by
accuracy, performance, and hardware efficiency—particularly
under privacy and legal constraints like GDPR and the AI Act.

Future work includes integrating active learning, anomaly
detection, and federated training to further enhance performance
and compliance across distributed deployments.
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