
Temporary Identification Management System Using UNIX Time
for IoT Device Privacy Protection

Koki Mizoguchi
Department of Informatics, The Graduate University for Advanced Studies

2–1–2, Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430, JAPAN.
e-mail: mizoguchi-koki@nii.ac.jp

Somchart Fugkeaw
Sirindhorn International Institute of Technology, Thammasat University
131 M.5 Tiwanont Rd., Bangkadi, PathumThani, 12000, THAILAND.

e-mail: somchart@siit.tu.ac.th

Masahito Kumazaki , Hirokazu Hasegawa , Hiroki Takakura
Center for Strategic Cyber Resilience R&D, National Institute of Informatics

2–1–2, Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430, JAPAN.
e-mail: {kumazaki,hasegawa,takakura}@nii.ac.jp

Abstract—With the rapid growth of Internet of Things (IoT)
devices, privacy concerns regarding device identifiers have be-
come increasingly significant. Authentication and Key Exchange
(AKE) protocols are essential for securing IoT environments, but
many implementations transmit device identifiers in plaintext or
hashed form, which can lead to privacy issues for device users. On
the other hand, session-based ID anonymization systems, which
change device identifiers every time authentication occurs, re-
quire reading and writing on Non-Volatile Memory (NVM), such
as flash memory, which consumes more energy and has limited
write endurance. This paper proposes a novel ID management
system for generating temporary device identifiers using UNIX
time, which does not require reading and writing on NVM. The
system is considered a communication and update process that
is delay resilient. The effectiveness of the proposed system is
also demonstrated in terms of computational and communication
costs compared to three baseline systems. The proposed system
is concluded to be one of the effective solutions for protecting
the privacy of resource-constrained IoT devices and their users.

Keywords-IoT; Device Identifier; Privacy; ID anonymization;
UNIX time.

I. INTRODUCTION

The global share of the Internet of Things (IoT) is increasing
at an accelerating rate. Transforma Insights estimates that the
number of IoT connections will reach 40.6 billion by 2034
[1]. Authentication and Key Exchange (AKE) protocols are
essential to securing IoT environments. In most AKE proto-
cols, IoT devices must provide their IDs to the authentication
server for identification. IoT device IDs contain manufacturing
information, such as the maker name, product model, and
firmware version; hardware IDs, such as Media Access Con-
trol address (Mac address), International Mobile Equipment
Identity (IMEI), and serial number; owner information, such
as owner registered information and relationship with owner’s
account; and location information, such as installed location
and local network IDs.

Until now, many AKE protocols have been proposed, and
the ways of providing IDs of IoT devices are classified as
plaintext, hashed, and session-based ID anonymization sys-
tems.

Messages repeatedly sent from the same devices result
in the same hash value, even if the device identifier is
hashed. It enables eavesdroppers to link different communi-
cations originating from the same devices. Eavesdroppers can
recognize communication between specific IoT devices and
authentication servers, observe the frequency and intervals of
communication, and infer device usage patterns by observing
the amount or size of transmitted data. Since many IoT devices
exhibit regular and identifiable communication patterns based
on user interaction, this information can be used to infer
device usage patterns. For instance, a smart lock sends its
hashed ID at a specific time every day, and eavesdroppers
can infer the user’s typical leave or return home time and the
user’s behavioral patterns. If it is easy to estimate original
IDs, such as MAC address, phone number, and other regular
and short IDs, a rainbow table attack and a dictionary attack
are enabled. According to Choudhary [2], privacy concerns
regarding device identifiers arise not only from the exposure of
raw identifiers but also from the ability to associate seemingly
anonymous data with behavioral patterns. It is emphasized that
even anonymized or encrypted transmissions can leak sensitive
information when analyzed over time.

Overall, plaintext and hashed IDs are not sufficient to
protect the privacy of IoT devices and their users due to the
risk of eavesdropping and inference of device usage patterns.

To address to prevent inference of device usage patterns
using hashed IDs, session-based ID anonymization systems
are proposed. In this systems, IDs are changed every time
authentication occurs. The IoT device and the authentication
server generate temporary IDs based on the state. This ap-
proach prevent inference of device usage patterns through

37Copyright (c) The Government of Koki Mizoguchi, 2025. Used by permission to IARIA. ISBN: 978-1-68558-295-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2025 : The Tenth International Conference on Cyber-Technologies and Cyber-Systems

https://orcid.org/0009-0000-7902-2760
https://orcid.org/0000-0001-7156-184X
https://orcid.org/0009-0007-1983-6958
https://orcid.org/0000-0001-6841-5358
https://orcid.org/0000-0003-0238-4506

eavesdropping on IDs, like plaintext and hashed IDs. However,
it requires reading and writing operation on Non-Volatile
Memory (NVM), such as flash memory, to store the state.
Flash memory is representative of NVM, which is widely used
in IoT devices. There are two concerns about using it. First,
reading and writing on flash memory consumes more energy
than volatile memory, such as DRAM [3][4]. Second, NVM
exhibits limited write endurance, meaning it can only sustain
a finite number of write operations before experiencing failure
or degradation [5]. Ferroelectric RAM (FRAM/FeRAM) is a
promising alternative to flash memory for non-volatile storage,
offering higher endurance and lower energy consumption,
though it remains more expensive and less widely available
[4][6].

In summary, the plaintext and hashed IDs are not sufficient
to protect the privacy of IoT devices and their users due to the
risk of eavesdropping and inference of device usage patterns.
Session-based ID management systems can protect the privacy
of IoT devices and their users by changing IDs every time
authentication occurs, but they require reading and writing on
NVM, which consumes more energy and has limited write
endurance.

To address these issues, this research proposes a new system
to generate temporary IDs using UNIX time, which does not
require reading and writing on NVM, and IoT devices’ IDs
are changed every certain times. UNIX time is used despite
using state, which is synchronized between IoT devices and
the authentication server. The generated temporary IDs are
changed at certain times.

The paper is organized as follows: Section II describes
related work and classification of ID management system.
Section III describes the proposed system. Section IV provides
a comparative evaluation of the proposed system against three
baseline approaches, focusing on computational cost, commu-
nication overhead, and the achieved privacy level. Section V
discusses the limitations of the proposed system and these
potential solutions. Section VI concludes the paper.

II. RELATED WORK

This section describes related work on ID anonymization
systems for IoT devices.

Braeken proposed a PUF-based P2P (Peer-to-Peer) AKE
protocol for IoT devices [7]. In this protocol, the IoT devices’
IDs are not anonymized but are in plaintext.

Badhib et al. proposed a robust CSS (Client Server System)
AKE protocol for IoT devices [8]. This protocol adopts a
session-based ID anonymization system. The IoT device sends
its ID, which is masked with the shared key and track
sequence, to the authentication server. They are changed every
time authentication occurs. However, the protocol requires
reading and writing on NVM to store them in the IoT device.

For large-scale smart IoT applications, Chen et al. proposed
a novel authentication scheme that models and supports the en-
tire lifecycle of IoT device authentication, from manufacturing
to daily use and resetting [9]. However, the IoT device ID

(denoted as the smart device’s unique identity) is transmitted
in plaintext.

Alizadeh et al. proposed anonymous ticket-based authenti-
cation protocol for the IoT [10]. In this protocol, the IoT device
ID is anonymized using arias ID. The combination of a hashed
ID, secret, and nonce is a critical component of the proposed
protocol’s approach to sensor anonymity. Specifically, each
alias ID is meticulously constructed from a hashed ID, the
Sensor Node’s (SN) secret value (denoted as IDSN), and a
nonce. This intricate composition significantly impedes the
identification of an object’s true identity, as malicious actors
would be required to possess knowledge of the object’s secret
to ascertain its real ID. Employing a one-way hash function for
each object’s ID renders its decoding practically unfeasible.
However, provided with the context in which fixed IDs are
transmitted, it becomes possible to collect information, such
as the communication time and interval of specific devices.

Nimmy et al. proposed a PUF-based CSS AKE protocol for
IoT devices [11]. This protocol also adopts a session-based ID
anonymization system. The IoT device sends its ID, which is
masked with the state, to the authentication server. The state
is stored in the IoT device’s NVM and changed every time
authentication occurs.

Tun and Mambo proposed a PUF-based secure AKE pro-
tocol for IoT devices [12]. In this protocol, the IoT devices’
IDs are not anonymized but are in plaintext.

III. PROPOSED SYSTEM

This section provides a detailed description of the proposed
system. The notation used in this paper is shown in Table I.

TABLE I. NOTATION AND DESCRIPTION

Notation Description
H(x) Apply hash function H to x

a← b Assign b to a

a ∥ b Bitwise concatenate a and b

⌊x⌋ Round down x to the nearest integer
UNIX TIME Current UNIX time

A. System Overview

The proposed system assumes an environment where many
IoT devices are connected to an authentication server. Figure 1
shows the structural overview of the process. It denotes
the authentication server possesses two types of processes:
generation of temporary ID and identification by temporary
ID. Figure 2 shows an example of the authentication server’s
database.

The authentication server stores the original ID, three
types of temporary IDs, and data, such as the authentication
information, in its database. When an IoT device requests
authentication, it sends its temporary ID to the authentication
server. The temporary ID is generated based on the IoT device
original ID and the current UNIX time as follows:

idT ← H

(
id ∥

⌊
UNIX TIME

x

⌋)
(1)

38Copyright (c) The Government of Koki Mizoguchi, 2025. Used by permission to IARIA. ISBN: 978-1-68558-295-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2025 : The Tenth International Conference on Cyber-Technologies and Cyber-Systems

Generation of Temporary ID
idT ← H(id ∥ ⌊ UNIX TIME

x ⌋) Identify by Temporary ID idT

idT

If (UNIX TIME mod x = 0)

Update all devices’ Temporary IDs

Every x seconds

IoT Device’s Process Auth. Server’s Process

Temporary ID Update

Generation of temporary ID and Identification

Figure 1. Structural overview of the process.

id idT1 idT2 idT3 data

0x82... 0x21... 0x70... 0x4F... 0x93...

0xEA... 0x45... 0x82... 0x18... 0xA7...
...

0xD6... 0x89... 0xA3... 0x28... 0xC1...

Figure 2. Authentication server database example.

where id is the IoT device original ID, idT is the temporary
ID, and x is the ID update interval constant shared between
the IoT device and the authentication server. UNIX time is a
system for tracking time, defined as the number of seconds that
have elapsed since the Unix epoch, which is 00:00:00 UTC
on 1 January 1970. The temporary ID idT is changed every x
seconds. This mechanism follows a principle similar to that of
the Time-based One-Time Password (TOTP) algorithm [13].
Assuming the current UNIX time is synchronized between the
IoT device and the authentication server. The condition on the
value x and consideration of the communication and update
process delay are described in Section III-D.

B. Initialization Phase

The IoT device original ID and ID update interval constant
x are shared in advance. The authentication server generates
three types of temporary IDs in the initialization phase and
saves its database:

idT1 ← H

(
id ∥

⌊
UNIX TIME− x

x

⌋)
Previous time-step,

idT2 ← H

(
id ∥

⌊
UNIX TIME

x

⌋)
Current time-step,

idT3 ← H

(
id ∥

⌊
UNIX TIME+ x

x

⌋)
Next time-step.

(2)

C. Temporary IDs Update Phase

The authentication server updates the temporary IDs in its
database every x seconds. The temporary IDs are updated as

follows:

idT1 ← idT2, idT2 ← idT3,

idT3 ← H

(
id ∥

⌊
UNIX TIME+ x

x

⌋)
.

(3)

To execute this operation every x seconds, the condition

UNIX TIME mod x = 0 (4)

is used. To enhance the performance of the authentication
server, the previous time-step and current time-step temporary
IDs are substituted with the current time-step and the next
time-step temporary ID, respectively, instead of generating
new temporary IDs as in Equation (2).

D. Communication and Update Process Delay

Communication delay and the temporary ID update process
delay on the authentication server should be considered.

The communication delay is the time it takes for the IoT
device to send its temporary ID to the authentication server and
for the authentication server to process it. The update delay
is the time it takes for the authentication server to update its
temporary IDs in its database.

In the following, the effectiveness of the proposed system
in addressing these delays and the condition of ID update
constant x are discussed. The notation of the communication
and update process delays is defined in Table II.

TABLE II. NOTATION OF COMMUNICATION AND UPDATE DELAY

Notation Description

∆d
The communication delay. The IoT device sends
idT to the authentication server, and it takes ∆d
seconds to reach the authentication server.

∆t
Time required to update all temporary IDs on the
authentication server.

∆t′

Time required to update a certain temporary ID on
the authentication server. Assuming that the
authentication server has 10,000 records on its
database, the 5,000th record could be updated
approximately ∆t′ = 1

2
∆t seconds later.

Three cases are considered based on the relationship be-
tween ∆d, ∆t′, and ∆t. Figure 3 shows the three cases. In (a),
the update delay is larger than the communication delay. In (b),
the communication delay is larger than the update delay. In (c),
the communication delay is larger than the update delay and
update time of all temporary IDs. The gray area represents the
time when the temporary ID is updated. This process assumes
that, for a certain ID id, the authentication server takes ∆t′

seconds to update the temporary ID idT in its database.
Consider the case where the time required to update a

certain temporary ID exceeds the communication delay (see
Figure 3 (a)). Regarding points P1, P2, and P4, idT sent from
the IoT devices will match the current time-step temporary ID
idT2 in the authentication server’s database. Regarding point
P3, the IoT device sends idT using the current UNIX time,
but the authentication server has not updated its temporary
ID idT2 yet. Thus, idT sent from the IoT device matches

39Copyright (c) The Government of Koki Mizoguchi, 2025. Used by permission to IARIA. ISBN: 978-1-68558-295-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2025 : The Tenth International Conference on Cyber-Technologies and Cyber-Systems

Auth.

IoT dev.

t t+∆t′ t+∆t t+ x

P1

∆d

P2P3 P4
(a) ∆d < ∆t′ < ∆t < x

Auth.

IoT dev.

t t+∆t′ t+∆t t+ x

P5

∆d

P6 P7P8
(b) ∆t′ < ∆d < ∆t < x

Auth.

IoT dev.

t t+∆t′ t+∆t t+ x t+ x+∆t′

P9

∆d

P10 P11
(c) ∆t′ < ∆t < ∆d < x

Figure 3. Update and communication delay.

the next time-step temporary ID idT1 in the authentication
server’s database.

Consider the case where the communication delay exceeds
the time required to update a certain temporary ID. The time
required to update all temporary IDs exceeds the communi-
cation delay (see Figure 3 (b)). Regarding points P5, P6, and
P8, idT sent from the IoT devices will match the current
time-step temporary ID idT2 in the authentication server’s
database. Regarding point P7, the IoT device sends idT ,
but the authentication receives it after the update process is
completed due to the communication delay. Thus, idT sent
from the IoT device matches the next time-step temporary ID
idT3 in the authentication server’s database.

Finally, consider the case where the communication delay
exceeds the time required to update a certain temporary ID
(see Figure 3 (c)). Regarding point P10, idT sent from the IoT
devices will match the current time-step temporary ID idT2 in
the authentication server’s database. Regarding points P9 and
P11, the authentication server has not updated the IoT device
temporary ID. Thus, idT sent from the IoT device matches
the previous next-step temporary ID idT3 in the authentication
server’s database.

Consequently, the authentication server can identify the IoT
device by matching the temporary ID sent from the IoT device
with the temporary ID in its database.

Concerning all cases, the ID update interval constant x
should be set to a value larger than the communication delay
∆d and the time required to update all temporary IDs ∆t.

IV. EVALUATION

This section evaluates the computational and communi-
cation overhead of the proposed system and privacy level

in comparison to three traditional ID management systems,
incorporating authentication schemes commonly used in IoT
systems. The comparison highlights the efficiency of the
proposed method in terms of lightweight operations and min-
imal data exchange. Table IV summarizes the computational,
communication costs and privacy level of the proposed system
and three baseline as follows:
• Baseline 1: The IoT device sends its ID in plaintext.
• Baseline 2: The IoT device sends its ID in hashed form.
• Baseline 3: Assuming that the IoT device derives a

masked ID using hash function from its original ID and
stored mask value in its NVM. The mask value (32 bytes)
is generated by the authentication server and sent to the
IoT device every time authentication occurs in plaintext.

This process assumes that the hash function is a cryptographic
hash function Secure Hash Algorithm 256-bit (SHA-256),
which produces a 32 bytes output.

Table III defines the privacy levels regarding the ID man-
agement systems. The privacy level is defined based on the
ability to track the IoT device over time and the reuse of the
ID.

TABLE III. PRIVACY LEVEL DEFINITION

Privacy Level Description

None The IoT device ID is sent in plaintext, allowing easy
identification of the device.

Weak
The IoT device ID is not disclosed, but the ID is
reused for multiple authentication sessions, making it
possible to track the device over time.

Strong

The IoT device ID is changed every time
authentication occurs or periodically, and the ID is not
reused, making it difficult to track the device over
time. The ID is masked with a secret value, enhancing
privacy protection.

TABLE IV. COMPARISON OF COMPUTATIONAL AND COMMUNICATION
COSTS, AND PRIVACY LEVELS

System
Computational Cost Communication Privacy

IoT device Auth. Server Cost Level

Proposed 1 hash,
R UNIX TIME

n hash every
x seconds,
≤ 3
comparison

1 message
(32 bytes) Strong

Baseline 1 No cost 1 comparison 1 message
(32 bytes) None

Baseline 2 1 hash 1 hash, 1
comparison

1 message
(32 bytes) Weak

Baseline 3

1 hash,
receive mask
value,
R/W NVM

1 hash,
generates
mask value

2 messages
(64 bytes) Strong

Abbreviations:
n is the number of IoT devices connected to the authentication server.
R/W is read and write, respectively.

As shown in Table IV, the proposed system offers the lowest
computation and communication costs by utilizing a single
hash function and unidirectional message transmission on the
IoT device side. This design is highly suitable for resource
constrained IoT environments. Although Baseline 1 incurs

40Copyright (c) The Government of Koki Mizoguchi, 2025. Used by permission to IARIA. ISBN: 978-1-68558-295-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2025 : The Tenth International Conference on Cyber-Technologies and Cyber-Systems

no computational cost and Baseline 2 has a similar cost to
the proposed system on the IoT device side, their privacy
protections can be described as none and weak, respectively,
due to the reuse of static identifiers. On the other hand,
Baseline 3 provides enhanced privacy by masking the ID,
which can be described as strong, but incurs additional costs
due to the need for generating and transmitting mask values.

Consequently, the proposed system achieves a balance be-
tween privacy protection and resource efficiency, making it a
compelling choice for IoT applications where both computa-
tional and communication resources are limited.

V. DISCUSSION

This section discusses the limitations of the proposed system
and these potential solutions.

A. RTC Clock Drift

The proposed system uses UNIX time to generate temporary
IDs and assumes that the IoT device and the authentication
server have synchronized UNIX time. Most computers adopt
the Real-Time Clock (RTC) to keep track of time. However,
the RTC is not always accurate [14], and the clock drift–the
offset between the actual time and the time kept by the RTC
drift–can affect the correctness of generation of temporary ID.

Two approaches can be considered to address the clock
drift issue. First, the IoT device can periodically synchronize
its RTC with the authentication server’s time using a time
synchronization protocol, such as NTP (Network Time Pro-
tocol). In NTP, the IoT device and the authentication server
communicate to NTP servers to synchronize their clocks. This
approach helps maintain the accuracy of the IoT device’s
and the authentication server’s RTC clocks. However, there
are some concerns regarding the overhead and security of
NTP. In terms of overhead, NTP imposes the need for IoT
devices to perform write operations to the RTC registers
in order to update the time values, in addition to incurring
the communication overhead associated with the protocol. In
terms of security, NTP does not ensure the authenticity of the
time source, which may lead to the injection of falsified time
information. According to Martin et al. [15], authentication in
the context of NTP does not imply that the time is correct.
Secure NTP [16] is a protocol that provides authentication
and integrity protection for NTP messages, but it requires
additional complexity and overhead for digital signatures and
certificates.

Second, measure the offset between the IoT device’s RTC
and the authentication server’s time denoted as ∆p, and adjust
the generation of temporary ID accordingly. The abstract of
generation of temporary ID considering the clock drift is as
follows:

1) Measure the round trip time (RTT) between the IoT
device and the authentication server and obtain the
average RTT denoted as R.

2) The IoT device sends its RTC clock to the authentication
server.

3) The authentication server calculates the offset between
its RTC clock as follows:

∆p← IoT device’s RTC− Auth. Server’s RTC− R

2
.

(5)
If ∆p > 0, the IoT device’s RTC is ahead of the
authentication server’s RTC, and if ∆p < 0, the IoT
device’s RTC is behind the authentication server’s RTC.

4) The authentication server stores the ∆p value associated
with the IoT device’s ID.

5) The authentication server generates and updates the
temporary ID as follows:

idT1 ← idT2, idT2 ← idT3,

idT3 ← H

(
id ∥

⌊
UNIX TIME+ x+∆p

x

⌋)
.

(6)

This algorithm is executed every certain time interval. This
approach only stores the offset of the time drift, eliminating
the need for time synchronization via external servers such as
NTP server. However, since the integrity of the RTC values
transmitted by the IoT device cannot be guaranteed, it is
necessary to incorporate mechanisms to ensure the integrity of
the time information. The authentication server also requires
the additional storage of the offset value ∆p for each IoT
device.

Both approaches incur additional communication and pro-
cessing overhead, resulting in increased energy consumption
of IoT devices. This overhead depends on the frequency of
RTC synchronization. Therefore, it is necessary to examine
whether this overhead can be reduced in comparison with the
Baseline 3 presented in Section IV, which relies on read and
write operations to NVM.

B. RTC Energy Consumption

There is a concern that the energy consumption of the
RTC. The RTC consumes energy to keep track of the time.
According to Nisshinbo Micro Devices Inc.[17], the RTC
(C2051S01) is active for 10 years with a 3V CR2032 coin
cell battery. RTC is designed to consume low power, and its
energy consumption is negligible compared to the IoT device’s
energy consumption. However, it is necessary to measure the
RTC’s energy consumption and compare it with that of reading
and writing to NVM, such as flash memory, in order to store
temporary IDs.

C. Scalability of the Authentication Server

The authentication server should be able to process the
generation of temporary ID and identification by temporary
ID. In the proposed system, the authentication server gener-
ates one next time-step temporary ID and two substitution
operations every x seconds for each device connected to
the authentication server. Assuming that 100,000 IoT devices
are connected to the authentication server, the authentication
server needs to generate 100,000 next time-step temporary IDs
and perform 200,000 substitution operations every x seconds.
It is predicted that this protocol requires the authentication

41Copyright (c) The Government of Koki Mizoguchi, 2025. Used by permission to IARIA. ISBN: 978-1-68558-295-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2025 : The Tenth International Conference on Cyber-Technologies and Cyber-Systems

server to have sufficient processing capacity to handle these
operations efficiently.

VI. CONCLUSION AND FUTURE WORK

To address privacy concerns in IoT environments, this paper
proposes an ID management system that leverages UNIX
time to generate temporary device identifiers. In conventional
systems, device IDs are often transmitted either in plaintext or
in hashed form. This allows adversaries to monitor commu-
nication patterns and infer usage behavior over time, thereby
introducing significant privacy risks. Moreover, session-based
ID management schemes typically require frequent updates to
NVM, resulting in increased energy consumption and reduced
memory lifespan due to repetitive write operations.

In the proposed system, a temporary device ID is dy-
namically generated by computing a hash of the original
device ID concatenated with the current UNIX timestamp.
This temporary ID is updated every x seconds, where x is
a shared constant known to both the IoT device and the
authentication server. Since the identifier changes periodically,
even successive communications from the same device ap-
pear to originate from different sources. This makes long-
term tracking by eavesdroppers significantly more difficult.
Furthermore, because ID updates are computed in memory
without requiring writes to NVM, the scheme mitigates the
energy and endurance issues inherent to session-based ID
management systems. In the analysis conducted, the proposed
system demonstrates lower computational and communication
costs compared to traditional ID management systems, making
it particularly suitable for resource-constrained IoT devices.

By integrating the system into the AKE protocol, the smart
lock can be identified without revealing its original or static
ID. Eavesdroppers cannot track the smart lock over time based
on the temporary ID.

Future work will focus on two directions. First, the system
will be implemented and evaluated on resource-constrained
IoT devices (e.g., MCU, Micro Controller Unit) and au-
thentication servers, measuring computational cost, energy
consumption, and scalability under large device populations.
These results will also inform the development of methods for
determining the optimal update interval x, which is essential
for balancing security and performance. Second, RTC clock
drift will be investigated, comparing mitigation techniques to
quantify their impact on the integrity and efficiency of the
proposed approach.

Overall, these efforts will refine the system design and
confirm its practicality for real-world IoT deployments, par-
ticularly in scenarios where energy efficiency and privacy-
preserving authentication are critical.

ACKNOWLEDGMENTS

This research would not have been possible without the
valuable guidance and continuous support of Professor Ak-
ihiro Shimizu of Kochi University of Technology, Japan. The
authors are deeply grateful for his insightful advice throughout

the course of this work. This work was partially supported by
JST K Program Grant Number JPMJKP24K3, Japan.

REFERENCES

[1] Transforma Insights, “Current IoT Forecast Highlights,”
Accessed: Jun. 25, 2025. [Online]. Available: https : / /
transformainsights.com/research/forecast/highlights.

[2] A. Choudhary, “Internet of Things: a comprehensive overview,
architectures, applications, simulation tools, challenges and
future directions,” Discover Internet of Things, vol. 4, no. 1,
p. 31, 2024.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
phase change memory as a scalable dram alternative,” in
proceedings of the 36th annual international symposium on
Computer architecture, 2009, pp. 2–13.

[4] M. Kim, J. Lee, Y. Kim, and Y. H. Song, “An analysis
of energy consumption under various memory mappings for
FRAM-based IoT devices,” in proceedings of 2018 IEEE
4th World Forum on Internet of Things (WF-IoT), 2018,
pp. 574–579.

[5] S. Bennett and J. Sullivan, “NAND flash memory and its place
in IoT,” in proceedings of 2021 32nd Irish Signals and Systems
Conference (ISSC), 2021, pp. 1–6.

[6] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging
NVM: A survey on architectural integration and research
challenges,” ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), vol. 23, no. 2, pp. 1–32, 2017.

[7] A. Braeken, “PUF based authentication protocol for IoT,”
Symmetry, vol. 10, no. 8, p. 352, 2018.

[8] A. Badhib, S. Alshehri, and A. Cherif, “A robust device-to-
device continuous authentication protocol for the internet of
things,” IEEE Access, vol. 9, pp. 124 768–124 792, 2021.

[9] F. Chen, Z. Xiao, T. Xiang, J. Fan, and H.-L. Truong, “A
full lifecycle authentication scheme for large-scale smart IoT
applications,” IEEE Transactions on Dependable and Secure
Computing, vol. 20, no. 3, pp. 2221–2237, 2022.

[10] M. Alizadeh, M. H. Tadayon, and A. Jolfaei, “Secure ticket-
based authentication method for IoT applications,” Digital
Communications and Networks, vol. 9, no. 3, pp. 710–716,
2023.

[11] K. Nimmy, S. Sankaran, and K. Achuthan, “A novel
lightweight PUF based authentication protocol for IoT without
explicit CRPs in verifier database,” Journal of Ambient Intel-
ligence and Humanized Computing, vol. 14, no. 5, pp. 6227–
6242, 2023.

[12] N. W. Tun and M. Mambo, “Secure PUF-based authentication
systems,” Sensors, vol. 24, no. 16, p. 5295, 2024.

[13] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, Rfc 6238:
Totp: Time-based one-time password algorithm, 2011.

[14] R. Moravskyi and Y. Levus, “Using Stream Processing for
Real-Time Clock Drift Correction in Distributed Data Process-
ing Systems,” in proceedings of 2024 IEEE 19th International
Conference on Computer Science and Information Technolo-
gies (CSIT), 2024, pp. 1–4.

[15] J. Martin, J. Burbank, W. Kasch, and P. D. L. Mills, Network
Time Protocol Version 4: Protocol and Algorithms Specifica-
tion, RFC 5905, Jun. 2010. DOI: 10.17487/RFC5905.

[16] D. F. Franke, D. Sibold, K. Teichel, M. Dansarie, and R. Sund-
blad, Network Time Security for the Network Time Protocol,
RFC 8915, Sep. 2020. DOI: 10.17487/RFC8915.

[17] Nisshinbo Micro Devices Inc., “Real Time Clock (RTC):
Introduction,” Accessed: Jun. 25, 2025. [Online]. Available:
https://www.nisshinbo-microdevices.co.jp/en/products/real-
time-clock/introduction/.

42Copyright (c) The Government of Koki Mizoguchi, 2025. Used by permission to IARIA. ISBN: 978-1-68558-295-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2025 : The Tenth International Conference on Cyber-Technologies and Cyber-Systems

https://transformainsights.com/research/forecast/highlights
https://transformainsights.com/research/forecast/highlights
https://doi.org/10.17487/RFC5905
https://doi.org/10.17487/RFC8915
https://www.nisshinbo-microdevices.co.jp/en/products/real-time-clock/introduction/
https://www.nisshinbo-microdevices.co.jp/en/products/real-time-clock/introduction/

	Introduction
	Related Work
	Proposed System
	System Overview
	Initialization Phase
	Temporary IDs Update Phase
	Communication and Update Process Delay

	Evaluation
	Discussion
	RTC Clock Drift
	RTC Energy Consumption
	Scalability of the Authentication Server

	Conclusion and Future Work

