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Abstract—Cyber Physical Production Systems (CPPS) depend
significantly on high-quality sensor data to function optimally,
make decisions in real-time, and perform predictive maintenance
inter alia. Nevertheless, the quality of sensor data in industrial
settings is often affected by various factors such as environmental
interference, hardware wear and tear, calibration drift, and
intricate system interactions. This study introduces innovative
methods to improve sensor data quality in CPPS through
systematic digitalization strategies. By employing a use case
methodology, we explore real-world production scenarios to
pinpoint common data quality challenges and devise specific
solutions. Our strategy integrates signal processing techniques,
algorithms for detecting anomalies to establish robust frameworks
for data validation and correction. The proposed methods offer
practical, scalable solutions that can be adapted to various
production environments, thereby enhancing the reliability and
efficiency of cyber physical manufacturing systems. To illustrate
the feasibility of our approach, we utilise the case study of a test
bed.

Keywords-Failure analysis; Sensor data quality; Sensor data error
detection.

I. INTRODUCTION

This section analyses the motivation, challenges, aims,
research questions and contributions of this study. The objective
of our study was to improve the quality of Cyber Physical
Production Systems (CCPS) data through digitalisation by
implementing a methodology to improve the quality of sensor
data [1]. CPPSs consist of self-governing and collaborative
components and subsystems. These elements are interconnected
based on contextual factors, spanning all production levels. The
integration extends from individual processes and machinery
to comprehensive production and logistics networks [2].

For the sake of simplicity, within this study, we use the
term “real-time”, since it is used exhaustively in the scientific
and technical literature, but it should be understood that we
are always referring to “near real-time”. To avoid confusion,
the term "near real-time" implies that the required latency is
not guaranteed, as in real-time systems, but only envisaged. In
simple terms, for real-time systems, the latency of the system
is part of its functional correctness; a near real-time system
will function correctly if the required latency is inadvertently
not achieved.

A. Motivation

In the realm of modern CPPS, there is an increasing
dependence on extensive sensor networks to continuously track
essential process parameters, equipment condition, and product
quality. Despite this, ensuring high-quality sensor data remains
a significant challenge that affects manufacturing efficiency,
product uniformity, and operational safety. Inadequate sensor
data quality can result in false alarms, undetected faults,
inefficient process control, and ultimately higher production
costs and diminished competitiveness.

Traditional methods for sensor validation often involve
manual checks, statistical limits, or basic redundancy checks,
which fall short in addressing the complexity and scale of con-
temporary production settings. These conventional techniques
often miss subtle sensor degradation, issues with cross-sensor
correlations, or context-specific anomalies that arise in dynamic
manufacturing processes. Moreover, current solutions typically
focus on sensor quality in isolation, neglecting the broader
digital infrastructure and data processing workflows that define
Industry 4.0 environments [3].

The incorporation of advanced digital technologies—such
as machine learning, edge computing, and intelligent data
processing—offers unprecedented opportunities to improve
sensor data quality assessment and management. By developing
systematic approaches that utilize digitalization capabilities,
manufacturers can establish more robust, scalable, and adaptive
sensor quality assurance systems. This research highlights the
urgent need for comprehensive, digitalization-enabled strategies
that can automatically identify, categorize, and address sensor
data quality issues while seamlessly integrating with existing
CPPS frameworks [4]–[6].

The practical validation of these methodologies through
real-world applications demonstrates their relevance and effect-
iveness, providing manufacturers with actionable frameworks
to enhance sensor reliability and, consequently, the overall
performance of production systems.

B. Challenges

The adoption of digitalization-driven methods for enhancing
sensor data quality in CPPS settings introduces numerous
technical and practical hurdles that need to be overcome for
effective implementation. Contemporary production sites utilize
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a wide array of sensor technologies from various manufacturers,
each featuring unique communication protocols, sampling rates,
data formats, and quality attributes. Crafting unified quality
assessment strategies that can effectively manage this diversity
while ensuring precision across different sensor types is a
challenging task.

CPPS applications require immediate evaluation of sensor
data quality to avert defective production or equipment damage.
However, advanced quality assessment algorithms often demand
substantial computational resources, leading to a conflict
between processing complexity and the need for real-time
performance, especially in resource-limited edge computing
settings [7].

As sensor networks expand in size and complexity, maintain-
ing consistent quality assessment performance while managing
computational demands, communication bandwidth, and system
maintenance requirements becomes increasingly challenging,
particularly for large-scale industrial applications.

C. Aim

The main goal of this study is to create and validate
comprehensive methods that utilize digitalization technologies
to systematically enhance sensor data quality in CPPS. This
research specifically aims to fulfill the following objectives:

Design and implement practical solutions capable of evalu-
ating sensor quality in real-time while adhering to the strict
performance standards of industrial production settings. This in-
volves creating efficient algorithms suitable for edge computing
platforms and resource-limited operational conditions.

Validate the practical applicability and effectiveness of the
proposed methods through detailed case studies in actual
production environments. The Suspension Motion Simulator
case study serves as the main validation platform to assess
algorithm performance, detection accuracy, and operational
feasibility.

Offer clear guidelines and implementation strategies that
allow manufacturers to incorporate these digitalization-enabled
quality improvement methods into existing CPPS infrastructures
with minimal disruption to ongoing operations.

D. Contribution

This study introduces several innovative advancements in
managing sensor data quality within CPPS through digitaliz-
ation: Development and validation of a practical strategy for
real-time sensor quality assessment in production settings using
optimized algorithms suitable for edge computing platforms.

Establishment of a systematic approach for validating sensor
quality improvement methods through controlled industrial
case studies. The Suspension Motion Simulator implementation
showcases the practical applicability of the proposed methods
and provides measurable performance metrics for evaluation.

Contribution of a modular, scalable approach adaptable
across different production scales and sensor network complex-
ities, from single-machine implementations to facility-wide
deployments. These contributions collectively enhance the
state-of-the-art in sensor data quality management for modern

manufacturing systems and offer practical tools for improving
production reliability through digitalization technologies.

E. Paper organisation

The structure of this paper is outlined as follows. An over-
view of relevant existing research pertaining to the described
problem is provided in Section II. A detailed description of
the strategy is presented in Section III, whereas Section IV
demonstrates the feasibility of this strategy through an example.
The presentation of the main results and discussions based
on these results constitute the content of Section V. Finally,
Section VI summarises this contribution and draws perspectives
for future work.

II. RELATED WORK

Recent studies in sensor data quality management for
CPPS have concentrated on tackling essential calibration
issues and creating digitalization-driven solutions for industrial
settings [8].

The phenomenon of sensor drift has been thoroughly
investigated across various sensor technologies [9] illustrated
that zero-point drift has a substantial impact on measurement
precision in mechanical spectroscopy applications, while [10]
pinpointed bulk equilibration effects as the main reason for
baseline drift in metal oxide gas sensors. The detailed analysis
by [11] showed that environmental factors, wear-and-tear,
and manufacturing inconsistencies lead to gradual sensor
deterioration, with drift rates differing significantly among
sensor types and operating conditions. Electrochemical sensor
systems display unique drift characteristics, as evidenced
in [12], where both exponential sensitivity decline and linear
baseline shifts occur concurrently. Temperature-induced drift
mechanisms have been particularly well-documented, with [13]
demonstrating that thermal expansion coefficients and bridge
circuit asymmetries are key contributors to zero-point errors
in pressure sensors.

The use of machine learning techniques for assessing
sensor quality has garnered considerable interest. [11] effect-
ively applied isolation forest algorithms for real-time drift
detection, achieving early recognition of sensor degradation
patterns. Multi-sensor array strategies using orthogonal signal
correction have been developed by [14], showing effective
drift compensation through baseline manipulation and partial
least squares regression. Advanced compensation methods
incorporating neural networks and polynomial fitting have
been explored by [15], indicating that radial basis function
networks can accurately model complex non-linear temperature
relationships in sensor systems. These methods allow for
automatic calibration adjustments without the need for frequent
manual intervention.

Practical deployment considerations have been addressed
through various industrial case studies. [16] developed federated
learning approaches for electronic nose systems, facilitating
cross-facility knowledge sharing while preserving data privacy.
The research demonstrates that multivariate calibration models
can be effectively updated using distributed sensor networks
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without compromising proprietary information. Temperature
drift compensation strategies have been validated in industrial
settings, with [17] providing quantitative methods for calcu-
lating zero and sensitivity drift coefficients. These strategies
enable predictive maintenance scheduling and reduce the need
for frequent calibration in production environments.

While existing research tackles individual aspects of sensor
quality management, comprehensive frameworks that integrate
real-time detection, automated compensation, and industrial-
scale deployment are still limited, see [18] for an example
of heterogeneous networks. Designing heterogeneous sensor
networks presents the challenge of ensuring that sensors can
collaborate effectively despite their differences. This involves
creating protocols and algorithms capable of managing data
flow, maintaining data quality, and optimizing energy use,
etc. A generic model is developed [19], yet it is recognized
that current industrial monitoring relies on basic Statistical
Process Control limits. Most current approaches focus on
single sensor types or specific drift mechanisms, lacking
the comprehensive methodology needed for diverse CPPS
environments. This research addresses these gaps by developing
an integrated digitalization framework that combines multiple
quality assessment techniques with practical validation through
industrial use cases.

III. STRATEGY

In this section, we explicitly delineate the focus of the
underlying investigation and outline a strategy that can be
employed to achieve these goals. This is in relation to the
detailed use case study presented in Section IV. We succintly
present a list of possible sensor outlier and analyze as
illustrative the calibration related outliers [19]–[35]. This list
includes crucial types, but it is not comprehensive.

• Sensor Outliers and Common Causes:
– Calibration-Related Outliers:

∗ Gradual drift - Over time, sensors become less
accurate due to factors like aging components,
temperature fluctuations, or material wear.

∗ Baseline shift - The initial reading changes, resulting
in all measurements being consistently offset by a
fixed amount.

∗ Sensitivity errors - Changes in the sensor’s sensit-
ivity lead to readings that are consistently too high
or too low by a certain percentage.

∗ Non-linear response - The sensor’s response be-
comes non-linear throughout its range, leading to
inaccuracies at specific measurement points.

– Environmental Outliers:
∗ Impact of temperature - Extreme heat or cold

leading to sensor readings deviating from standard
ranges.

∗ Humidity disruption - Moisture influencing elec-
trical sensors or optical parts.

∗ Electromagnetic interference (EMI) - Radio waves
or electrical fields distorting sensor signals.

∗ Vibration-induced noise - Mechanical vibrations
causing inaccurate readings in accelerometers or
pressure sensors.

– Physical Damage or Contamination:
∗ Fouling - Accumulation of dust, oil, or chemicals

on sensor surfaces impacting optical or chemical
sensors.

∗ Corrosion - Metal components in pH sensors or
electrochemical devices undergoing oxidation.

∗ Physical obstruction - Items obstructing ultrasonic
or optical sensors.

∗ Wire degradation - Damaged or corroded connec-
tions leading to sporadic readings.

– Installation and Mechanical Issues:
∗ Installation issues - Loose sensors causing vibra-

tion disturbances or positional inaccuracies, loose
connections, broken cables, etc.

∗ Thermal expansion - Variations in temperature
leading to mechanical stress and alterations in
measurements.

∗ Pressure seal failures - In pressure sensors, resulting
in faulty atmospheric compensation.

– Electronic and Signal Processing Outliers:
∗ Errors in converting analog signals to digital -

Issues like bit flips or quantization problems during
digitization.

∗ Fluctuations in power supply - Variations in voltage
that impact sensor excitation and output.

∗ Ground loops - Signal corruption due to electrical
noise from improper grounding.

∗ Crosstalk in multiplexers - In systems with multiple
channels, signals interfering between channels.

• Advanced Outlier Categories:
– Communication and Data Transmission Issues:

∗ Packet loss - Missing data points in wireless sensor
networks creating gaps or interpolation errors.

∗ Timing synchronization errors - Clock drift causing
timestamp misalignment in multi-sensor systems.

∗ Protocol errors - Communication protocol failures
leading to corrupted or duplicated readings.

∗ Buffer overflow - Data acquisition systems dropping
samples during high-rate collection.

∗ Performance problems with data transfer - network
too slow or computing power (CPU overloaded)

– Software and Firmware Outliers:
∗ Errors in floating-point precision - Accumulation

of rounding mistakes during computations.
∗ Firmware issues - Software malfunctions leading to

consistent errors or sporadic incorrect readings.
∗ Memory corruption - RAM faults impacting stored

calibration data or processing algorithms.
∗ Stack overflow - Program failures causing sensors

to produce default or erroneous values.
– Operational Context Outliers:
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∗ Saturation - Occurs when sensors hit their max-
imum measurement capacity, leading to clipping or
wrapping around.

∗ Hysteresis effects - Sensor outputs influenced by
previous measurement history.

∗ Settling time violations - Taking sensor readings
before they have stabilized following changes in
input.

∗ Sample rate aliasing - Insufficient sampling of
rapidly changing signals, resulting in misleading
low-frequency content.

Failure Mode and Effects Analysis (FMEA) methodologies
present several significant benefits for ensuring the quality of
sensor data. By identifying potential sensor failure modes
before they happen, FMEA allows for preventive actions
instead of reactive ones. It ensures thorough coverage by
investigating all possible sensor failure scenarios, such as drift,
calibration errors, environmental interference, and physical
damage. Additionally, it offers a data-driven framework to
prioritize which sensor quality issues need immediate attention.
In dynamic manufacturing settings, FMEA is most effective
when integrated with real-time monitoring and Artificial
Intelligence (AI)-based anomaly detection systems [36].

In the following, as an example, we give some Python
and R utilities that can be used to address calibration related
outliers [37]–[42]:

Python Tools:
• scipy.optimize.least_squares() - Utilized for robust calib-

ration fitting that includes outlier management
• sklearn.linear_model.RANSACRegressor() - Employed for

calibration regression that is resistant to outliers.
• scipy.stats.zscore() - Applied for detecting statistical

outliers in calibration datasets.
R Tools:

• MASS::rlm() - Used for fitting robust linear models in
calibration.

• robustbase::lmrob() - Implemented for robust regression
with outlier identification.

• RobustCalibration package - Designed for robust Bayesian
calibration techniques.

• car::outlierTest() - Utilized for statistical testing of outliers
in calibration models.

IV. USE CASE

This section demonstrates the practical application of the
solution concept described in Section III. The concept was
implemented and validated using the "Suspension Motion
Simulator" (SMS) case study at the Institute for Automot-
ive Engineering, Technische Universität Dresden, Germany
(Figure 1), see [43]. The progressive digitalization of CPPS
establishes the foundation for AI-driven approaches, including
data mining and predictive analytics. Within this context, the
case study aimed to develop a functional strategy for identifying
sensor data errors on the simulator in real-time. The following
key areas were explored:

• Outlining the test bench setup, including integrated sensors
and their roles in various testing tasks.

• Examining relevant measurement chains to identify po-
tential error influences and their impact on signal curves.

• Investigating algorithms for identifying and mitigating
common data quality issues caused by test bench mal-
functions and environmental factors.

• Demonstrating error detection and categorization in data
using MATLAB or a similar development tool.

The resulting algorithm enables immediate diagnosis of data
quality issues during the measurement process. The aim is to
create a computer model that is as accurate as possible, thereby
enabling simulation.

Many measurement data sets contain errors and other
anomalies. However, these must be error-free for machine
learning applications, a context-sensitive analysis is desirable.
Errors within data sets can lead to mistakes in analysis, resulting
in misinterpretations within the given context and, eventually,
incorrect decisions. This may cause defects in product quality
or harm the CPPS. Ultimately, this poses a major challenge to
the adoption of ML in production due to the lack of trust in AI.
It is therefore necessary to detect and eliminate errors. If this is
not possible, the data set must be excluded and regenerated. In
most cases, however, this is not possible because the vehicles
can only be on the test bench for a limited time. To solve this
problem, it is necessary to detect errors as quickly as possible
and repeat the measurements. In order to obtain a sufficiently
large error-free data set, old measurement data must also be
checked again for accuracy and merged with newly generated
measurement data.

The script developed in the course of this work and the
algorithm behind it should make a major contribution to this.
By quickly detecting a selection of errors, it should be possible
to repeat the measurements on the same day, thereby relieving
the pressure on the production team and customers and saving
time and money. In addition, it should enable the creation of
an error-free database for further use with machine learning.

A. Test bench setup

The test bench, which was supplied by the manufacturer
MTS Systems (MTS), 2021 , is supplemented by additional
systems installed by the chair. The test bench is an integral
component of the parameterisation line under development
at the vehicle technology test centre, German: Fahrzeugtech-
nisches Versuchszentrum (FVZ). It will eventually facilitate
the largely automated determination of a vehicle’s parameters.
The objective is to develop a highly precise computer model
to enable simulation. The test bench can be divided into four
basic subsystems, which consist of further complex systems
and are explained below.

The initial subsystem is the test bench itself, which is
supported by a substantial foundation designed to dampen
vibrations using three air springs positioned at its corners.
Steel rails cover the foundation’s base, enabling the attachment
of various systems. The most significant system affixed in
this manner is the test bench. Positioned atop this are two
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Figure 1. Main table of the test bench and its four electromagnets [43]. Four
powerful electromagnets are placed on the main table, to which the car sill or
a suitable adapter can be clamped.

tables, both of which can be vertically adjusted to fit vehicles
of varying sizes. The main table is equipped with four strong
electromagnets, allowing for the clamping of a car’s sill or an
appropriate adapter (refer to Figure 1).

Figure 2. Vehicle coordinate system according to DIN 70000. In this figure,
φ represents the roll angle, θ indicates the pitch angle, and the yaw angle ψ
is also shown [43].

When the hydraulics are activated, the stamps can apply
a force of up to 20,000 N and operate swiftly, necessitating
careful handling. The platforms are designated as Right Front
(RF) on the right side in the direction of travel and Left Front
(LF) on the left side. Figure 2 illustrates a sketch of the test
bench coordinate system. In this figure, φ represents the roll
angle, θ indicates the pitch angle, and the yaw angle ψ is also
shown. The tyre’s coordinate system aligns with the vehicle’s
coordinate system and originates at the center of the rim.

The test bench is operated by a controller, which is linked

to a computer located in a separate room for safety purposes.
This computer hosts a virtual machine that runs the control
software provided by MTS.

This management approach, as specified by the manufacturer,
ensures the software operates reliably across various operating
systems. Additionally, the program allows for the control of
different platforms.

Once the set-up procedure is complete, the vehicle is hoisted
onto the test bench using a crane. This involves sliding four
claws beneath the car. On the test bench, the vehicle is
secured.The set-up process includes installing measurement
equipment like potentiometers, cable gauges, and other instru-
ments. Additionally, the vehicle’s weight and dimensions are
recorded. This data is crucial for accurately setting up the
vehicle on the test bench.

The Aramis SRX optical measurement system, see Figure
3 created by GOM, a company that specializes in optical
measurement technology (GOM, 2021), is installed on the test
bench. It is positioned on two platforms, one on each side
of the bench, allowing for the detection of even the slightest
movements of the chassis or rims.

Figure 3. IT concept of the “Aramis SRX optical measuring system” test
stand [43].

For this purpose, reflection points are affixed to the relevant
assembly and logged into the software. This setup permits the
measurement of movements relative to the primary coordinate
system, as illustrated in Figure 2, located at the vehicle’s center.
During recording, these points are illuminated with blue light
to facilitate tracking. The reflection points bounce back this
light, allowing each point to be distinctly recognized.

Various tests can be carried out on the test bench. In most
cases, however, the so-called standard tests are carried out.
These refer to nine basic test types, which are listed in the
following Table I.

Table I offers a concise summary of the fundamental tests.
Numerous variations and specific instances exist for each of
these standard test scenarios. The table includes the tests that
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TABLE I. OVERVIEW OF THE INDIVIDUAL STANDARD TESTS ON THE TEST
BENCH

Test code Description

T01 Vertical test
T02 Roll test
T03 a.) Lateral compliance test aiding
T03 b.) Lateral compliance tests opposing
T04 Longitudinal Braking Compliance Test
T05 Longitudinal Acceleration Compliance Test
T06 a.) Align Torque Compliance Aiding
T06 b.) Aligning Torque Compliance Opposing
T07 Steering Ratio Tests
T08 Cornering Test
T09 Longitudinal Compliance Test

are most frequently conducted. Additionally, there is a test
definition from MTS that outlines various tests, their functions,
and other pertinent parameters (MTS Systems, 2020). These
serve as the standard for ‘Kinematics and Compliance’ test
benches. The tests employed by the test bench team closely
resemble or are derived from these.

There are numerous other testing scenarios that can be
explored. For instance, white noise, which produces a random
signal with a particular amplitude and frequency, can be utilized.
Additionally, one can create a completely self-generated signal
and store it for future playback. This capability allows for any
dynamic excitation within the operational limits of the test
bench. It also enables the simulation of actual road conditions
to identify the source of a noise. However, generating such a
signal demands significant effort.

During the initial phase of the evaluation, a mat file is gen-
erated from the measurement data. This task is accomplished
using a Matlab script developed by the test bench team. The
script consolidates the different files from both the test bench
and the Aramis system into a unified file. Consequently, the
mat file encompasses all the necessary data for evaluation.
Following this, another script is employed to plot the data,
resulting in various diagrams that depict the measurement data
over time. These diagrams are instrumental in evaluating the
quality of the measurement data.

During the second phase, the data undergoes verification.
Initially, it is determined whether all measurement data channels
are included or if the signal from either the right or left side of
the test bench is absent in a diagram. If everything is in order,
the next step involves evaluating the quality of the measurement
data, focusing on the noise levels across different channels.
Should one channel exhibit significantly more noise than the
others, the measurement must be redone. Subsequently, the
measurement plan is reviewed to confirm that all documented
forces and positions have been achieved. If discrepancies are
found, they may have arisen from errors in inputting boundary
data or during the test bench’s execution. Following this, the
reproducibility of the graphs is assessed by examining the
hysteresis, which should generally follow similar trajectories.
The final step in data verification involves checking for errors,
such as anomalies like jumps or missing values. If the graphs

display no unacceptable jumps in measured values and the lines
are mostly continuous, the measurement data is considered
acceptable. Once all these checks are completed, a decision
can be made on whether the measurement needs to be repeated
or if it is suitable for further analysis.

When examining a system as intricate as a test bench,
a methodical approach is crucial. To address all elements
thoroughly and impartially, it is important to first identify the
main issues, which will serve as a foundation for subsequent
analysis. The next chapter outlines the techniques employed
for this purpose.

To evaluate the test bench, a comprehensive examination of
the entire setup was conducted. The primary inquiry was: ‘What
subsystems are identifiable within the complete test bench,
and how can these be effectively reduced to the essential
components?’ To address this, a mind map was developed,
and once all systems were documented, efforts were made to
discern a pattern. This approach was intended to ensure that
the test bench analysis was thorough and comprehensible. The
subsystems identified are:

• Suspension motion simulator
• Hydraulic unit
• Test specimen
• Crane
• Aramis SRX

As the work progressed, the individual subsystems and
their roles were analyzed. The suspension motion simulator
was the most detailed among them. To clearly outline all its
functions, an additional breakdown of the SMS was required.
The emphasis was on its operation and design, potential
configurations, and internal data logging. Furthermore, the
possibility of integrating other measuring devices, such as
potentiometers, with the test bench was also explored.

Initially, the chosen errors were organized in a logical
sequence for verification. It is illogical to assess different
noise levels when entire channels are absent or filled with
empty values. Consequently, it was determined that the data’s
completeness should be verified first, followed by the functions
that necessitate complete measurement data, such as noise
analysis.

Subsequently, the measurement data underwent a thorough
review. To identify the algorithm’s error, it was necessary to find
a logical or mathematical method for detection. This required
a detailed analysis of the channel curves and the identification
of an appropriate Matlab function.

Utilizing name lists guarantees easy scalability, allowing
for the addition of new channels in the future as needed. The
program will then verify these additions. To determine if the
function accurately identifies errors, faulty data records are
accessed, and an additional method known as error injection
is employed. This involves manually introducing the desired
anomalies into the measurement data. For instance, in jump
detection, an extra jump was artificially created to observe how
the program responds in such scenarios.
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B. Important aspects for measurement data quality

To date, adherence to these criteria in the Suspension Motion
Simulator has been maintained through manual oversight
of the measurement data. The newly developed algorithm
aims to autonomously verify the criteria of completeness and
correctness, paving the way for future automated verification
and assessment of measurement data, with the ultimate goal
of integrating machine learning into the test bench.

C. Error detection and categorisation in measurement data

In a complex system like the Suspension Motion Simulator,
various errors can arise. To create a Matlab script – the
simulation requires a Matlab file, hence Matlab was chosen for
identifying the errors – capable of identifying these errors and
notifying the responsible engineer, a thorough understanding of
each specific error is essential. This chapter outlines the errors
that have been encountered, explores methods for detecting
them, and examines the design and operation of the algorithm
that has been developed.

Numerous errors can arise with the suspension motion
simulator. Some of these errors occur simultaneously, while
others happen independently. A concise summary of the errors
encountered so far is presented in Table II. Errors that are the
focus of this paper are explained in more detail below.

TABLE II. THIS TABLE CONTAINS ERRORS THAT HAVE OCCURRED DURING
TEST BENCH OPERATION TO DATE.

Error Source Description Freq.

Missing
channels

GOM Entire channels
missing from
measurement data

Rare

Missing
points

GOM Measurement
points missing

Rare

Incorrect
data

GOM Malfunction in Ara-
mis file

Rare

Jumps GOM Data jumps
implausibly

Very
rare

Overload SMS Force/torque
exceeded,
emergency stop

Frequent

Controller
error

SMS Controller error
causes problems

Very
rare

Irregular
graph

Hydraulic Oil viscosity
changes due to
heating failure

Very
rare

Overheating Hydraulic Oil too warm, cool-
ing unable to main-
tain temp

Very
rare

If Aramis captures entirely inaccurate measurement data, the
issue typically lies within the loaded file. Before initiating a
measurement, it is essential to input and group the marked indi-
vidual points into the system. Additionally, distances between
various coordinate systems can be established. Contours, such
as a steamer on the front axle, can also be scanned at different
locations and subsequently saved as cylinders in the file.
Occasionally, these objects might be rotated in space, deviating
from their original positions, leading to erroneous measurement

data. To safeguard the test bench from damage, it is equipped
with an emergency shut-off mechanism that activates when
specific distance or force thresholds are surpassed. If the forces
become excessive, the tire might slip on the corundum of
the measuring platforms, reaching an unacceptable force or
distance value. Furthermore, if the steering wheel is obstructed
by a steering wheel lock, the existing torque around the Z-axis
(refer to Figure 2) can become so substantial that it causes
slippage. This also results in unacceptable values, prompting
the test bench to enter emergency shutdown mode. During an
emergency shutdown, the measurement process is halted, and
the hydraulics are deactivated.

A highly uncommon error is initiated by the controller, which
then assumes control of the test bench. Should a malfunction
occur, issues may arise, such as when employing the ’platforms
away from wheels’ script. In such instances, the test bench
becomes unresponsive and powers down. Additionally, if the hy-
draulic oil is not at the appropriate temperature, complications
can ensue. Typically, a heater within the hydraulic unit regulates
the temperature. However, if the necessary sensor malfunctions,
emergency mode must be activated. In this mode, the oil is
warmed solely by the test bench’s movement. A temperature
that is too low can cause a wave-like pattern in a graph that
would otherwise be sinusoidal. Conversely, if the hydraulic oil
becomes excessively warm, issues will also occur. Should the
hydraulic unit’s cooling system fail to provide adequate power,
it will shut down, leading all test benches to enter emergency
shutdown. This situation has been a rare occurrence in the
past.

On the test bench, there are several distinct measuring chains,
each comprising various stations where measurement data is
generated, processed, or transmitted. This reseach focuses solely
on the optical measuring system chain, as the specific errors
identified are produced by the Aramis SRX system.

Next measurement data is conveyed through three cables loc-
ated at the rear of the measuring bar. This data is subsequently
processed using the manufacturer’s software, resulting in the
creation of a file that contains the measurement data. Initially,
this file is temporarily saved on the GOM PC’s hard drive
before being transferred to the network drive. To accomplish
this, the data must be retransmitted via an Ethernet cable linked
to the GOM PC.

Finally, the data is stored on the network drive, ensuring that
all computers can access and further process the measurement
data.

Another crucial factor is interference, which pertains to
influences that could damage or distort the measurement data.
Errors are particularly likely during data transmission through
the cables, which have connectors at each end that can present
additional risks if mishandled. Examples include cable breaks
that render data transmission impossible, and the breakage of
one or more of the delicate pins in the connectors, which can
also hinder accurate data transmission. Additionally, strong
magnetic fields can disrupt the transmission of measurement
data.

In this study, a limited number of errors from the test bench
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were selected. From these, an appropriate algorithm has been
developed to identify these anomalies and promptly repeat
the related measurements. To create and ultimately test this
algorithm, erroneous measurement data is necessary, which was
supplied by the test bench team. All evaluated errors stemmed
from malfunctions of the Aramis-SRX.

There are several possible causes for this issue. One
possibility is a failure in the data transfer from Aramis to
the control computer in the control room, resulting in the data
being unavailable. Another scenario could be an error in the
naming of individual channels on the Aramis computer. If the
script intended to create the MAT file is supposed to generate
it from the tables sent, it may not find a channel with the
specified name and leave it blank.

To detect such missing entries, one method is to compare
the actual name with a pre-established list of target names. If
the name is found, the program can proceed. If not, corrective
actions must be taken.

A common issue that can arise is the absence of data points,
which manifest as voids in the graph and, if too numerous,
can make the measurement invalid.

Figure 4 serves as an illustration of this problem. A detailed
examination of the wheel center’s displacement diagram in the
X direction over time reveals missing points for the FL (front
left). This issue persists in the diagram showing displacement
relative to force in the X direction over time, it is noticeable that
some points are missing for FL (front left). This is also reflected
in the diagram showing the displacement over the force in the
X direction. These voids are typically produced by the Aramis
system when one or more measurement points are no longer
detected. This can be caused by a software glitch, damage
to the reflective surfaces of the points, or vehicle movement
due to input from the test bench. Such gaps may also occur
during the creation of the MAT file when synchronization
or upsampling is conducted, leading to unfeasible operations
during this process, and Matlab inserts ’NaN’ values at these
locations.

Figure 4. Plotted measurement data from a T04 with errors in the front left data.
On closer inspection of the diagram showing the wheel centre displacement
in the X direction over time.

There are several methods to identify and correct such
errors, see the following explanations. An attempt was made
to process the measurement data using both high-pass and
low-pass filters. However, because the jumps did not occur at
a specific frequency, this approach was ineffective. A median
filter was also applied, but it failed to deliver the desired results
with the substantial jumps observed here. Consequently, the
idea of filtering the measurement data to eliminate jumps was
abandoned. Another method to detect the jumps is to remove
points that deviate from the mean value by a certain percentage.
Additionally, there is the option of calculating the difference
between consecutive points and setting a threshold value for
this.

An additional error that may arise pertains to the noise levels
in the various measurement channels. The noise levels of the
signals on the left and right sides differ. This discrepancy
can result from external factors during data transmission or
from inaccuracies in recording the measurement data. Figure 5
illustrates an example of this error pattern. In the top left
diagram, which depicts the wheel center displacement in the
Y direction over time, the left side exhibits a highly noisy
signal. Conversely, the right side’s signal is much clearer. This
difference is also apparent in the diagram showing the wheel
center displacement in the Y direction over force, where a
significantly larger amplitude is noticeable on the vehicle’s left
side.

Figure 5. Plotted measurement data from a T03 with channels of varying
noise levels for wheel centre displacement in the Z direction.

To assess the noise levels in the measurement data, Fourier
analysis is employed. This technique allows for the plotting of
amplitude against frequency, enabling insights into the various
components. By comparing the data obtained through this
method, it becomes evident whether the channels on the left
and right sides exhibit different noise levels.

The algorithm’s first task is to verify completeness, ensuring
all channels are present and the measurement data is free of
NaN values (erroneous values). The program should terminate
if a channel is absent or if the number of missing values
surpasses a certain threshold. Although checking for NaN
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values was initially intended as a separate step, it was found
more practical to incorporate it into the first step during
programming. In the second step, the measurement data is
examined for jumps, which are values so implausible that they
are considered measurement errors.

Such measurements can skew the overall outcome and need
to be identified or, if necessary, eliminated. If this cannot
be done, the measurement should be conducted again. In the
subsequent step, the data is examined to assess the level of
noise and to check for significant discrepancies in this aspect.
If the LF side channel is considerably noisier than the RF side,
the measurement should be redone.

As per the diagram, the first requirement is the generated
MAT file. This file, along with structures, such as GOM, Bank
GOM, and Bank MTS, among others, is imported by the main
program, as they are essential for the verification process.
Subsequently, a pre-existing list that includes all approved
names for the various GOM channels is loaded. The significant
advantage of this list is its ability to be updated at any time
without necessitating code modifications. Therefore, if a new
channel needs to be added or a name change is required in the
future, it can be done with minimal effort.

D. Mathematical background of the individual methods

The Fourier analysis tool is essential for identifying the
different frequencies present in the noise. However, the exact
method for making the comparison still needs to be developed.
The next section aims to explain the approaches that will be
implemented in the program code. Initially, a channel was
selected from the measurement data that exhibited a significant
noise difference between the left and right sides. This data
represented the wheel center’s displacement in the X direction
over time. It was thoroughly analyzed, and a Fourier analysis
was conducted to identify the various dominant frequency
components and their amplitudes.

Figure 6. Signal from the left and right sides with strong channel noise.

Figure 6 presents the data for the Front Left and Front
Right of the chosen channel, illustrating the wheel center’s
movement in the Z direction. It is evident that the Front Left
exhibits considerably more noise compared to the Front Right.
Theoretically, this implies that the amplitudes on the left side

should be higher than those on the right side in the frequency
ranges where the noise occurs.

Conducting a Fourier analysis on the aforementioned channel
verifies the hypothesis that amplitude variations exist across dif-
ferent frequencies. There is a noticeable increase in amplitude
for frequencies up to 10 hertz. The initial peak is insignificant,
as it represents the very slow fundamental oscillation of the
signal. Consequently, only frequencies above roughly 1 Hz are
pertinent to these considerations.

By utilizing these insights, one can determine the average
value from the dataset generated by diff() and subsequently
compare the values for both sides. Additionally, the percentage
difference between the two channels can be calculated, and an
alert can be issued if the discrepancy is excessively large.

NaN in MATLAB stands for “Not a Number” - it is a special
floating-point value that represents undefined or unrepresentable
numerical results. Common Causes of NaN:

NaN values often indicate:

• Sensor malfunction or disconnection
• Data transmission errors
• Out-of-range measurements
• Calibration failures
• Signal processing errors

The measurement data, now devoid of NaN values, is
assigned to a new variable. An array of the same length as the
measurement data is generated, containing only zeros and ones.
A one indicates where interpolation has occurred. The count
of interpolated values is then determined and recorded in a
table for reference. In this scenario, the missing measurement
data is interpolated using a linear method.

This section brings up another crucial issue: how should one
handle measurement data with excessive missing values? To ad-
dress this, a query was integrated into the main script. It utilizes
the calculated number of NaN values from the completeness
check function to terminate the program once the percentage
hits 17%. Beyond this percentage, linear interpolation issues
may arise if the missing values are located at specific points,
such as the peaks and troughs of the measurement data. The
situation worsens if they are concentrated in a single area.

The subsequent step involves executing the Fourier transform
using the fft() function. The algorithm’s calculations and the
individual steps for executing them were sourced from the
Matlab help (MathWorks, 2022) and tailored to meet the
requirements.

A Fourier transform is conducted for both channels at the
same time, as they need to be compared. Additionally, the
amplitude is normalized, which does not affect the results since
it is applied to both sides. Moreover, the spectrum must be
adjusted, and the frequency array calculated. This is performed
following the example on the Matlab help page (MathWorks,
2022).

Following this, a condition is applied to identify the position
of the 1 Hz frequency. This value is used to eliminate all
amplitudes before the frequency and to ascertain the difference
between the remaining values, providing their amplitudes. The
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mean of the absolute values is then computed to determine
their dimensions.

The process involves first identifying the larger mean value
and then dividing it by the smaller mean value, utilizing an if
condition to achieve this. The resulting value is subsequently
recorded in the results table and displayed as output.

V. OUTLINE OF THE RESULTS

In the following, the results are outlined, the advantages and
disadvantages of the proposed solution are discussed and some
of the areas in which it is applicable are given.

The objective of this scientific study, which was to develop
a functional algorithm for identifying a range of errors on
the Suspension Motion Simulator, has been accomplished.
Additionally, a concept has been devised to enable future
expansion of the program to identify more errors. The algorithm
created here allows for an initial diagnosis of the data in
real-time or during measurement and can be repeated if an
error occurs. The algorithm is adaptable to the tests conducted
through extensive parameterization, which, among other things,
facilitates highly accurate jump detection.

An important benefit of the developed algorithm is its
versatility across various data sets, along with the ability to
manage dynamic measurements, as long as they fulfill the
required criteria. Additionally, the inclusion of multiple editable
lists facilitates the enhancement of the algorithm’s capabilities.
Should future modifications to the different channels be
needed, they can be easily incorporated by updating these lists.
This establishes a robust basis for creating a database with
accurate measurement data or for later eliminating flawed data
sets. Consequently, we can continue to pursue the objective
of integrating machine learning into test bench evaluation.
Moreover, the evaluation process now requires less time,
allowing us to use this time to, for instance, redo incorrect
measurements. This also helps achieve the aim of cutting costs
and easing the workload of the test bench team and clients.

To summarize, the paper’s primary contributions include the
creation of effective algorithms for edge computing platforms
that assess sensor data quality during production processes.
This is achieved through a structured methodology, exemplified
by the Suspension Motion Simulator case study, which valid-
ates methods for enhancing sensor quality using quantifiable
performance metrics. The research posits that unified quality
assessment strategies can adeptly manage various sensor
technologies from different manufacturers, each with distinct
protocols and data formats, and that sensor errors exhibit
identifiable patterns detectable through mathematical techniques
such as Fourier analysis and statistical thresholds. However,
the approach has some limitations; the validation is mainly
centered on errors in the Aramis SRX optical measurement
system, which may not fully represent the range of sensor
failures in diverse CPPS environments. Despite the automation
objectives, the system still necessitates human oversight for
decisions regarding measurement repetition. Additionally, the
paper does not thoroughly explore the challenges of integrating

with existing industrial monitoring systems beyond basic
compatibility.

VI. CONCLUSION AND FUTURE WORK

This study has effectively created and confirmed detailed
methods to enhance the quality of sensor data in CPPS,
including error detection by utilizing digitalization technologies.
The structured framework offered tackles essential issues in
contemporary manufacturing settings by merging cutting-edge
digital technologies with practical implementation factors. The
newly developed methodology showcases notable advance-
ments in sensor reliability by employing real-time quality
assessment algorithms, multi-modal error detection capabilities,
and smooth integration with current production infrastructures.
The Suspension Motion Simulator case study confirms the prac-
tical effectiveness of these methods, demonstrating significant
improvements in the accuracy of sensor fault detection and a
decrease in false alarm rates. The framework’s modular design
allows for scalable deployment across various manufacturing
settings while maintaining computational efficiency suitable
for edge computing platforms.

There are numerous promising avenues that warrant further
investigation. To begin with, the fusion of artificial intelligence
and large language models offers transformative possibilities
for managing sensor data quality. Foundation models, pre-
trained on a variety of sensor datasets, could deliver universal
anomaly detection capabilities across diverse sensor networks,
while transformer-based architectures might capture intricate
temporal dependencies in sensor time-series data that traditional
methods overlook. Large language models could automate
the creation of sensor maintenance documentation, translate
complex sensor anomalies into human-readable diagnostic
reports, and offer conversational interfaces for interactive sensor
troubleshooting. The foundation established by this research
provides a robust platform for continued advancement in sensor
data quality management, positioning manufacturers to leverage
digitalization technologies for enhanced production reliability
and competitiveness in Industry 4.0 environments.
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