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Abstract—The rising frequency and sophistication of cyber-
attacks pose a notorious threat to critical infrastructures, heavily
reliant on industrial control systems for advanced automation.
To explore this evolving challenge systematically, a robust cyber
situational awareness framework is essential. Our paper adopts
a dual approach, focusing on both the broader scope of threat
mitigation and remediation to understand the breadth of the
problem and on online intrusion detection applied to supervisory
control data to comprehend its depth. The methodical framework
and analytic model we propose here are tailored to cyber-physical
systems used for industrial control and operational technology.
By acknowledging transitional vulnerabilities in these systems, we
stress the necessity of proactive measures to mitigate the risk of
widespread cascading and escalating infrastructure failures. At
the core of our contribution lies GenericAttackTracker, a novel
analytic framework for online anomaly detection, which combines
dynamic attack scoring with Bayesian inference to fuse results
from supervisory control data analysis with real-time contextual
information into actionable threat intelligence. By leveraging
the abstract semantic properties of Heterogeneous Information
Network Analysis for structural analysis and of Abstract State
Machines for deriving executable abstract models of complex
distributed systems, our framework supports a system of systems
view of critical infrastructures and facilitates the daunting task
of dynamically analyzing their intricate interdependencies.

Keywords—Cyber-physical systems; supervisory control systems;
online threat detection; infrastructure interdependencies; machine
learning; anomaly detection; dynamic attack scoring.

I. Introduction

Increasingly frequent and sophisticated cyberattacks have
become a severe threat. Responding to the evolving cyber
threat landscape, security technology is advancing, but not
fast enough to keep pace with the threat. Security breaches
frequently compromise the protection of sensitive information,
exposing personal identities, intellectual property and financial
assets. This trend means mounting damages in the hundreds of
billions of dollars, erosion of trust in conducting business and
collaboration in cyberspace and mounting fears of catastrophic
events triggered by attacks that can physically cripple Critical
Infrastructure (CI). Such attacks aim at indefinite disruptions
of services that are essential for the functioning of our society
and economy. In times of escalating political tensions and
rising financial rewards from cybercrime, CI is at high risk
from global cyber threat activity [1]–[3].

Critical infrastructures rely on Industrial Control Systems
(ICS) as principal components of Operational Technology
(OT) used for advanced automation of industrial processes.
This includes different types of devices, systems, and networks

to monitor and control physical processes, machinery, and
other infrastructure components. Two standard control system
architectures widely used for CI facilities are Supervisory
Control and Data Acquisition (SCADA) and Distributed Con-
trol Systems (DCS) [4]. ICS technology offers robust and
reliable solutions for advanced automation used in a variety
of industries including manufacturing, oil and gas, electric
energy generation and distribution, aviation, maritime, rail, and
utilities, among many other CI sectors [5].

With progressive automation of critical industrial processes,
the attack surface for sophisticated cyber threats expands,
intensifying the risk of cascading and escalating failures [1][6].
When directly or indirectly connected to the Internet, ICS
hardware and software can get exposed to illicit online ac-
cess in attempts to exploit OT system vulnerabilities through
various adversarial scenarios. A well-orchestrated cyberattack
on a facility’s integrated process control system may cause
lasting and widespread disruptions and extensive physical
damage by overloading vital system components [7]–[10].
Despite the many diverse uses, ICS architectures frequently
build on the same core technologies, mostly SCADA, DCS,
and Programmable Logic Controllers (PLC), for lower-level
control tasks. SCADA systems and DCS are often networked
together. Homogenous core architectures and tight coupling
make them more vulnerable to cyberattacks because a single
discovered vulnerability can potentially be exploited across
several different systems [4].

This paper explores emerging threats to OT used in various
critical sectors [5] and analyzes why CI security is a matter of
growing concern that calls for enhanced resilience against the
most aggressive threats. When vital components, systems, or
networks get compromised, the incapacitation or destruction of
CI assets could result in catastrophic loss of life, adverse eco-
nomic effects and significant harm to public confidence [11].
The research presented here aims at a holistic methodical
framework for devising a novel generic analytic model for
cyber situational awareness of critical infrastructure threats.
A central focus is on distributed online anomaly detection
and interpretation of abnormal activity patterns in supervisory
control data streamed from the operation of CI; i.e., patterns
that deviate from the expected normal behavior beyond what
could be explained by the presence of regular noise in the
control data. The scope of our analytic model is not limited to
single infrastructure entities but rather takes into account that
multiple infrastructures are often interconnected as a system of
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systems with complex interdependencies [4]. “What happens
to one infrastructure can, directly and indirectly, affect other
infrastructures, impact large geographic regions, and send
ripples throughout the national and global economy.” [12]

The broader intent of our methodical framework is to
also serve as a “lens” for gauging CI security and resilience
against evermore advanced adversarial scenarios. Considering
that network technology may never be completely secure,
cybersecurity is about risk mitigation at the end of the
day [13]. A holistic understanding of cybersecurity risks is
crucial for making informed decisions on rational grounds.
Risk mitigation strategies call for a complete assessment of
vulnerabilities and consequential security risks to effectively
enhance CI resilience. This fact was also stressed by the U.S.
Government Accountability Office in their 2022 report on the
U.S. electric grid security status: “DOE has developed plans
to implement a national cybersecurity strategy for protecting
the grid. However, we found that DOE’s plans do not fully
incorporate the key characteristics of an effective national
strategy. For example, the strategy does not include a complete
assessment of all the cybersecurity risks to the grid. Address-
ing this vulnerability is so important that we made it a priority
recommendation for DOE to address.” [14]–[16].

Besides the methodical framework, our main contribution
is GenericAttackTracker, a distributed analytic framework
for online detection and interpretation of anomalous activity
patterns in supervisory control data. Building in part on
our previous work, AttackTracker [17], the novel features of
GenericAttackTracker significantly advance the core analytic
model and expand the scope of AttackTracker to: (1) integrate
contextual real-time threat intelligence and apply Bayesian
inference to offer a broader decision basis and more reliable
decision-making process; and (2) directly support a “system of
systems” view for situational awareness of the cybersecurity
status of multiple interdependent CI entities [18].

The remainder of this paper is organized as follows. Section
II describes the broader scope of the problem in light of a
multidimensional problem space. Next, Section III provides
some background on industrial automation and the notorious
challenges of online analysis and interpretation of supervisory
process control data. Section IV introduces our methodical
framework and generic analytic model. Building on Attack-
Tracker, the generic model, GenericAttackTracker, expands
the scope of the basic model in two principal ways. Finally,
Section V concludes the paper.

II. Problem Scope
The evolving threat landscape underscores the critical neces-

sity for a robust cyber situational awareness framework. Such
a framework should provide a comprehensive overview of a
system’s cyber environment, enabling quicker identification,
understanding, and assessment of potential or existing threats,
and mitigation approaches for such threats. This is particularly
pertinent to OT and ICS, which oversee the functioning of CIs.
Given their pivotal role in operating facilities such as electrical
utilities, oil and gas pipelines, water utilities, chemical plants,

Figure 1. Multidimensional problem of security threats.

and rail systems, among others [19], any compromise of these
systems may result in serious disruptions and severe damage.

A. Cyber Situational Awareness Framework
The multidimensional problem of security threats calls for a

multifaceted solution, where multiple layers of defence mecha-
nisms and strategies must be put in place to safeguard systems.
Hence, to effectively tackle this intricate challenge, we propose
a cyber situational awareness framework characterized by three
dimensions: breadth, depth and time. This framework offers a
holistic view of essential approaches for protecting ICS from
escalating cyber threats, illustrated in Figure 1. As much as
one must consider various aspects of defense breadth, one must
also consider defense depth at the same time and routinely
reassess both breadth and depth [1]. In fact, it is inadequate to
defend in one dimension only. Defense that lacks depth despite
breadth leaves vulnerabilities, while depth without breadth
still allows attackers to find alternate entry points. Routine
reassessment is critical to ensure that defense mechanisms
remain fully intact and newly discovered vulnerabilities and
exposures get patched in a timely manner. In the remainder
of this section, we explore briefly some aspects of the breadth
that also need to be taken care of in other dimensions.

1) Attack Vector, Indicator of Compromise (IOCs): OT is
critical for industrial processes but exposes systems to cyber-
attacks through various attack vectors, including network-
based and physical process attacks [20]. Attackers employ ad-
vanced multi-vector strategies, targeting multiple entry points
to exploit system vulnerabilities [21], emphasizing the need
for a comprehensive and multifaceted defense approach to
protect ICS. On the other hand, IOCs are forensic data logs that
offer evidence of malicious activity on a system or network.
Monitoring IOCs enables incident responders to detect signs of
malicious actions and respond promptly to similar intrusions
in their early stages [22].

2) Interdependencies of CIs: Due to the complex inter-
dependencies between different infrastructures, a disturbance
in one system can trigger cascading failures, leading to far-
reaching and severe impacts. Thus, it becomes essential to
leverage the data from one CI as a potential alert trigger for

54Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems



others. By doing so, we can anticipate and address the risk
of cascading failures, strengthening the overall resilience of
our critical systems. This part will be explored in depth in
Sections III and IV.

3) Anomaly Detection, Machine Learning, Reinforcement
Learning, Contextual Information: Anomaly detection partic-
ularly focused on time series data prevalent in ICS [23], forms
a crucial aspect of the cyber situational awareness framework.
Identifying temporal deviations in data patterns can be the
key to uncovering potential threats or system malfunctions.
Behavior-based and process-based anomaly detection are two
approaches to safeguard ICS. The former uses machine learn-
ing to monitor system behavior and detect deviations, while the
latter focuses on monitoring physical processes controlled by
the ICS. These methods, augmented by reinforcement learning,
address the limitations of traditional signature-based detection
against novel and complex cyber-attacks such as zero-day
attacks [24]. In addition, by integrating Bayesian inference,
which utilizes probabilistic models, the detection process can
dynamically update the likelihood of ongoing attacks based on
incoming contextual data, and detect anomalous attack-based
events accurately [25].

4) Adversarial Machine Learning (AML): The use of Ma-
chine Learning (ML), DL (Deep Learning), and RL (Rein-
forcement Learning) techniques in cybersecurity has improved
threat detection. However, it also introduces vulnerabilities
through AML attacks. These attacks can manipulate input data
or the model itself to cause false positives and false negatives
in anomaly detectors, weakening security system performance
by exposing it to evasion and poisoning attacks [26]. The goal
is to make ML, DL and RL in security a strength, and to
enhance the resilience of OT and ICS security, not to be an
exploitable vulnerability. Therefore, working on the robustness
of anomaly detectors against AML such as what has been done
in [27] is a must. This also demonstrates that staying ahead of
threats requires constant situational awareness and readiness
to respond to emerging cyber threats.

III. Industrial Process Control
Automation is essential for the steady operation of critical

infrastructure to continuously monitor and control machinery,
systems, and processes; it enhances efficiency, productivity,
quality of service delivery and safe operation of critical assets.
We have thus become inexorably dependent on automated
services and will be even more so with future smart industrial
process control applications. An apt example to epitomize this
ongoing trend is smart manufacturing in the fourth industrial
revolution, tagged Industry 4.0 [28]. Under the cyber-physical
system (CPS) paradigm, this situation is further exacerbated
through the increasing integration of embedded computing
with sensor networks (and other IoT devices) to monitor and
control processes in the physical environment.

1) Cascading and Escalating Failures: While achieving
great efficiencies through seamless interoperability of software
and networking components with dynamics of physical pro-
cesses, CPS technology intensifies fragility. When exploited by

advanced threats, fragility amplifies the risk of cascading and
escalating failures. Cascading events occur when local equip-
ment failure or other disruptions trigger subsequent failures or
disruptions on a larger scale.

Although triggered by “natural” causes, the phenomenon
occurred in August 2003 for the Eastern Interconnection, one
of the three major electric power grids in North America. A
local fault of a high-voltage transmission line went unnoticed
due to an alarm system malfunction, which in turn tripped a
cascade of failures throughout southeastern Canada and eight
northeastern U.S. states. In total, 50 million people lost power
for up to two days in the biggest blackout in North American
history [29]. In February 2021, the U.S. state of Texas suffered
a major power crisis after severe winter storms, resulting in
at least 246 deaths and property damages in excess of $195B.
Cascading failures propagated across multiple interdependent
infrastructures causing insufficient power generation capacity
online, which resulted in insufficient natural gas supply to the
power plants. When power was cut, it disabled compressors
that push gas through pipelines, knocking out further gas plants
due to lack of supply [8].

2) Abnormal Activity Patterns: Critical processes require
constant supervisory control of their operational status to issue
alerts and initiate an emergency shutdown when abnormal
activity patterns approach defined safety margins. Supervisory
control data is temporal data interpreted as streamed sequences
of real-value measurements taken at regular time intervals,
referred to as time series data. Any observed activity patterns
that do not conform to the expected behavior but seem to
occur “out of place” are denoted as anomalies or outliers.
An intuitive definition of the meaning of outlier is offered
by Hawkins [30]: “an observation that deviates so much from
other observations as to arouse suspicion that it was generated
by a different mechanism.”

3) Anomaly Detection Challenges: Real-world processes
are notoriously prone to uncertainties caused by “external”
factors such as communication errors, fluctuations in demand
and supply, and technical instabilities resulting in inevitable
variance in the data, characterized as noise. A number of
factors make online anomaly detection in time series data
streamed from the operation of a supervisory control system
a challenging problem:

• Identifying anomalous activity patterns that often remain
hidden to the human eye requires learning normal activity
to train a robust model that not only fits previously
observed data but also carries over to unobserved data;
naturally, developing such a model is not a trivial task.

• Anomalies occur for various reasons, thus an even more
intricate problem often is to differentiate the typically few
anomalies of interest—above all, suspicious anomalous
behavior indicating a potential security threat—from the
vast majority of anomalies caused by noise, seasonality
or other trends irrelevant to security.

Figure 2 illustrates common variance due to noise observed
in time series data for electricity power consumption recorded
at one datapoint per minute over four consecutive days. While
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Figure 2. Electricity power consumption data for households over four
24-hour periods on consecutive weekdays show changes in voltage due to

fluctuating demand and supply.

the exact power consumption behavior over a 24-hour time
period differs on any given day, a recognizable overall pattern
emerges; however, the boundaries for what constitutes normal
variations of routine activity remain blurry. This phenomenon
is persistent and not just due to the small sample size.

IV. Methodological Framework
Online analysis of supervisory control data streamed from

the operation of mission-critical systems is the basis for early
threat activity detection. Finding suspicious and potentially
harmful behavior anomalies without delay is key for swift
mitigation and remediation to reduce the impact of an attack
by launching countermeasures containing security breaches
locally before they spread laterally across wider networks.

We first discuss AttackTracker, a distributed analytic model
using dynamic attack scoring for online cyber threat activity
detection for single infrastructure entities [17]. Building on this
model, we then propose GenericAttackTracker, expanding the
scope of the basic model to: (1) integrate contextual real-time
threat intelligence and apply Bayesian inference for a broader
and more reliable decision-making basis; and (2) support a
“system of systems” view for situational awareness of multiple
interdependent critical infrastructures [18].

A. Attack Tracker
AttackTracker offers a robust and scalable framework based

on a distributed analytical model for online tracing of threat
activity patterns in supervisory control data by orchestrating
a hierarchical network of threat activity detectors. This way,
evidence of threat activity observed anywhere in the system is
aggregated across control system architecture levels. Utilizing
dynamic attack scoring boosts the analytic performance and
reduces the false alarm rate by ignoring potential contextual
noise and errors in the behavior prediction phase [17].

AttackTracker produces highly encouraging results [31]
when applied to the Secure Water Treatment (SWaT) testbed
created by Singapore University of Technology [32]. SWaT
serves as a control signal source for data collected from a
scaled-down version of an industrial water purification plant
targeted by a variety of realistic attacks on different parts of the
system. Figure 3 illustrates the basic AttackTracker architecture
and its hierarchical organization.

A hierarchy of linked attack detectors continuously monitors
the operation of controllers at different levels of a supervisory
control system. (l1)-detectors monitor peripheral controllers
such as PLC units at the local level. At higher levels, (li), for
i = 2, 3, . . ., detectors monitor the output of multiple detectors
at level (li−1). At the top level, a single detector determines
the global operational status of the whole system and reports
attacks in progress in any one of the subsystems.

In other words, local detectors analyze the operation of a
local subsystem as mirrored by the state of its sensors and
actuators to spot abnormal patterns in the control data stream
indicating a collective anomaly associated with an attack on
this subsystem. Each local detector uses a Behavior Predictor
module feeding the ’expected’ next observation values into
an Inference Engine. The Inference Engine module processes
and labels observations, assigns attack scores, and raises red
flags based on the deviation of observed values from predicted
ones relative to a dynamically adjusted threshold. For i ≥ 2,
(li)-detectors aggregate data and information received from
their lower-level detectors to determine the attack scope in the
underlying levels. This way, detectors operating at higher levels
are able to distinguish distributed threat activities in addition
to centralized attacks.

For illustration, we consider a simple example in a SCADA-
based testbed with three subsystems (A,B,C). Subsystem A
has detected an unusual water pressure spike, while subsystem
C observed a decline in the water flow rate; no anomalies were
found in subsystem B. Two secondary l2-detectors overseeing
pairs of these subsystems recognized the irregularities in A
and C. A top-level detector, consolidating findings from the l2-
detectors, identified anomalies in two out of the three subsys-
tems and signaled a system-wide alert. The top-level detector’s
Inference Engine deduced that the concurrent abnormalities in
A and C might indicate a coordinated attack, recommending
prompt action. This layered detection system ensures complex
anomalies do not go unnoticed even when overlooked locally.

1) Behavior Predictor: Behavior Predictor is a core com-
ponent that learns the normal behavior of a subsystem and
forecasts the next local feature values based on previous
observations. It uses a Multivariate Temporal Convolutional
Network (MTCN) model to learn hidden patterns from a
history of discrete observations in the form of a multivariate
stochastic time series. Behavior Predictor is implemented to
detect potential drifts in the stream data and adapt itself to not
to be fooled by attacks.

2) Inference Engine: Inference Engine is the other compo-
nent that decides based on a multi-modal view provided by its
associated Behavior Predictor and the underlying detectors. It
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Figure 3. AttackTracker Framework Architecture: Local detectors operate at Level 1;
regular detectors operate at all levels higher than Level 1.

enhances higher-level detectors by utilizing Behavior Predictor
to trace the collective behavior of their underlying subsystems.
Inference Engine is responsible for making decisions based on
the information provided by the Behavior Predictor compo-
nents and detectors, and it can help the end-user to choose the
best mitigative action by highlighting the attack target and its
potential cascading influences.

The Inference Engine component of the AttackTracker
framework utilizes individual scoring and system-wide scoring
as part of its anomaly detection process. The individual scoring
phase involves offline and online steps, where a model is
trained to detect anomalies based on transformed feature
vectors. This phase focuses on detecting local subsystem
anomalies. The system-wide scoring phase aggregates results
from individual detectors to identify system-wide attacks,
which individual detectors may miss due to the distributed
nature of the network. Simultaneous anomalies and global log-
based anomaly scores are considered in this phase.

The combination of individual and system-wide scoring
enhances attack detection accuracy and reduces false alarms.
This combination happens through the ”moving average” strat-
egy in the Inference Engine component. It helps to identify
collective and correlated anomalies as one single attack. This
decision-making strategy is based on the trade-off between
deviation and persistence, where a persistent anomalous inter-
val is more suspicious of being an attack than a single strike
caused by sensor noise or predictor faults.

3) Dynamic Scoring: The dynamic scoring method is based
on a sliding window approach that considers the current
observation and the previous observations to calculate the
anomaly score. The anomaly score is then compared to a
threshold value to determine whether an attack has occurred.
The threshold value is dynamically adjusted based on the

current state of the system and the historical data. The dynamic
scoring method is designed to ignore potential contextual noise
and errors in the Behavior Predictor components and to handle
regular spikes of observed ”anomalies” in cases where they
have not captured all the patterns of normal data.

B. Generic Attack Tracker

Our GenericAttackTracker framework advances the analytic
model and expands the scope of AttackTracker significantly
by encompassing two principal novel features called: Bayesian
View and System of Systems View (see below). Please note
that this paper emphasizes the principles of GenericAttack-
Tracker and their application, not the detailed implementation.

1) Bayesian View: A problematic aspect of time series
anomaly detection in control data streamed from a mission-
critical system is the rate of false positives: even when the
relative rate is low, the absolute number of false positives
may still be intolerable for high data volumes depending on a
system’s critical mission. One way to mitigate the problem is
fusing the results from control data analysis with contextual
information from other potential sources of actionable threat
intelligence to be used in the decision-making process. This
leads to Bayesian methods. The strength of the Bayesian
approach is its ability to combine information from multiple
sources, thereby allowing greater ‘objectivity’ in final conclu-
sions [33]. The result is a broader foundation for making more
reliable decisions [34], whereas ignoring actionable threat
intelligence originating from supplementary sources may come
at the expense of missing out on the bigger picture.

A holistic view of threat activities calls for integrating data-
with knowledge-driven threat analysis as a basis for applying
Bayesian inference [35]. Assuming an evidential interpretation
of probability, Bayes’ rule is used to update the probability for
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a hypothesis H as more evidence or information E becomes
available. Formally, this is stated as a conditional probability:

P (H|E) =
P (E|H) · P (H)

P (E)
, for P (E) > 0, (1)

where P (E) is calculated as follows:

P (E) = P (H) · P (E|H) + P (¬H) · P (E|¬H) (2)

In our case, P (H|E) describes the probability of observing
actual malicious activity as associated with a cyberattack based
on prior knowledge of conditions that may be related to the
event (abnormal patterns in the control data stream) before
and after accounting for corroborative evidence from another
threat intelligence source. A basic example is the Indicator Of
Attack (IOA) status [36]: any digital or physical evidence that
a cyberattack is likely imminent or in progress. IOAs generally
focus on the intent of what an attacker is trying to accomplish,
regardless of the malware or exploit used in an attack [37].
Events indicative of suspicious activity include: HTTP/HTTPS
connections via non-standard ports (rather than port 80 or
port 443); unusual network traffic; multiple user logins from
different regions; internal hosts communicating with countries
outside of the business range, among many others.

The following example illustrates the idea using numbers
are not based on real-world or experimental data but are solely
meant for the sake of explanation.

• Prior belief, P (H): The value is determined by the Infer-
ence Engine component. Based on control data patterns,
the anomaly detector estimates there’s a 30% chance an
attack is occurring: P (H) = 0.30.

• Evidence, E: The value is based on contextual informa-
tion, for instance, an external threat intelligence feed that
alerts us to an ongoing global cyber attack campaign.

• Likelihood, P (E|H): This is the probability of receiving
an external threat alert given that an attack is in progress.
From past data, a value of P (E|H) = 0.70 is assumed.

• Probability of evidence, P (E|¬H): The probability of
receiving an alert even when there is no attack is assumed
to be P (E|¬H) = 0.10 based on past data.

First, the probability of getting the external alert is calculated
using Equation 2:

P (E) = 0.30× 0.70 + 0.70× 0.10 = 0.28

Next, the posterior (updated) probability of being under attack
given the alert is calculated using Equation 1:

P (H|E) =
0.70× 0.30

0.28
≈ 0.75

Given the alert from the external threat intelligence feed, our
updated belief that we’re under attack went up from 30%
(based solely on anomaly detection) to 75% (after accounting
for the external threat intelligence).

Feeding supplementary IOA status information or threat
intelligence from other alternative sources into the inference

component of detector modules of GenericAttackTracker re-
quires only a limited modification of AttackTracker’s basic
Inference Engine component. An example is threat intelligence
derived from interdependencies between separate CIs. This
reveals how an incident in one CI can ripple through and affect
other CIs. A deeper exploration of this concept is provided in
the following section.

2) System of Systems View: Generally, CI entities are highly
interdependent in complex ways; an incident in one infras-
tructure can directly or indirectly affect related infrastructures,
resulting in cascading and escalating failures [4]. The nature
and reverberations of interdependencies are a complex and
difficult problem to analyze. In their work, Rinaldi et al. [12]
describe six dimensions of infrastructure interdependencies:
types of interdependencies, infrastructure environment, cou-
pling and response behavior, infrastructure characteristics,
types of failures and state of operations. Although each has
distinct characteristics, these classes of interdependencies are
not mutually exclusive. Understanding these dimensions and
applying them to the analysis of interdependencies among
different CIs is crucial for maintaining a resilient system of
systems. Incidents like the ransomware attack on the Colonial
Pipeline in 2021 [38], or the large-scale electric grid failures
cited in Section I, are vivid reminders that the impact due to
interdependencies is very real.

Many studies of individual CI systems overlook their in-
terconnection and mutual dependency [12]; only a few take
interdependencies into account. However, these works either
use simplified simulation platforms to analyze interdependen-
cies among a limited type of CI entities, e.g., in [18], or
they only measure risk based on interdependencies [39][40].
In contrast, GenericAttackTracker is designed to facilitate the
modeling of CI systems with complex relations between their
constituent entities. Our model abstractly identifies linked
infrastructure entities as populations of interacting agents, in
accordance with [12]. Nowadays, complex technical systems
frequently comprise a large number of interacting, multi-
typed components interconnected through communication and
control networks. The information infrastructure of many
such systems can abstractly be viewed as Heterogeneous
Information Networks (HINs) [41] and be analyzed through
Heterogenous Information Network Analysis (HINA) [42]. The
HINA paradigm has gained wide attention from researchers in
data mining and information retrieval fields; especially, it is
used to mine hidden patterns through mining link relations
from networked data [43].

The concepts of HIN/HINA align with our situation where
multiple linked CIs with different interdependencies with
each other are using GenericAttackTracker for online anomaly
detection. GenericAttackTracker enhances our methodological
framework by utilizing HINA [44][43]. This way, we model
and analyze static representations of CI interdependencies for
a more realistic approach to anomaly detection. With this
objective, we define the following sets as interdependency
categorises [12]:
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Figure 4. The Network schema NSG comprises four different infrastructure types;
directional links between the various node types state constraints on CI interdependencies.

Class = {Physical, Cyber,Geographic, Logical}
Direction = {uni− directional, bi− directional}
Degree = {loose, tight}
We build on the HIN definition in [43]: A heterogeneous in-

formation network G(V,E,A,R) is composed of an object set
V = {n1, n2, ..., nn} with object types A = {a1, a2, ..., am},
and a set of links E = {e1, e2, ..., ek} with relation types
R = {r1, r2, ..., rl}, where |A| > 1 or |R| > 1 (to differentiate
HINs from regular graphs). Two surjective function mappings
assign object types to objects and relation types to links. If
two links belong to the same relation type, the two links share
the same starting object type as well as the ending object type.

For a better understanding of the composition of a complex
HIN G, the network schema NSG is a template that describes
the meta network structure of G by specifying type constraints
on the sets of objects and links of G. The result is a directed
graph defined over object types A, with edges that are relation
types from R. An HIN that conforms with a network schema
is called a network instance of the schema. For a link type R

connecting object type S to object type T , denoted by S
R−→ T ,

S and T are the source and target object type of link type R.
A meta path P is a path defined on a schema SG = (A,R),

and is denoted in the form of A1
R1−−→ A2

R2−−→ ...
Rl−→ Al+1,

which defines a composite relation R = R1 ◦ R2 ◦ ... ◦ Rl

between objects A1, A2, ..., Al, where ◦ denotes the compo-
sition operator on relations. The rich semantics of meta path
is an important characteristic of HIN. Based on different meta
paths, objects have different connection relations with diverse
path semantics, which may affect many data mining tasks
including clustering, classification, link prediction, ranking,
and information fusion [43].

Figure 4 is an example of a HIN graph, G, that shows a
network schema, NSG, of four SCADA-based CI entities and
their interdependencies derived from the NIST guide to ICS
security [4]. These CIs are natural gas pipelines, electric power
grids, water distribution systems, and railway transportation

systems. Natural gas pipelines need electric power for their
compressors, storage and control systems. On the other hand,
electric power generation needs natural gas as a main or
backup fuel for its generators. Thus, the physical interdepen-
dencies between these two CI types are bidirectional. Natural
gas pipelines also might need water from case to case for
cooling or emission reduction. So this is a unidirectional and
loose physical interdependency.

Not only is electric power supply essential for the operation
of railway transportation and water distribution systems but
these two CI types are essential for power generation. Hence,
the physical interdependencies between them are bidirectional.
Within the GenericAttackTracker framework, each of these CI
types acts as an agent that interacts with other CI entities. Bi-
directional cyber interdependencies must be considered for all
interdependent CIs. Building upon the graph in Figure 4, it is
plausible that a disruption in the natural gas infrastructure can
cause power disruptions, and electric power failures may lead
to disruptions in other infrastructures.

In Figure 5, we delve deeper into a specific instance of the
NSG of Figure 4, where the CIs are not just represented in their
general form. Indeed, by identifying and analyzing different
meta paths P within this schema graph, we can undertake a
range of data mining tasks. Each unique meta path reveals
distinct insights into the intricate interdependencies existing
among the CIs.

Finally, it is not necessary to manually produce complex
HIN graph structures as these can be generated automatically
through the use of representation learning methods [45]. The
details are beyond the scope of this paper.

Going beyond identifying and understanding normally static
interdependencies, the final challenge is how to operationalize
the cyber situational awareness framework and analytic model
as needed for determining the broader impact of dynamically
cascading and escalating failure scenarios in a timely manner.
The state of operation of an infrastructure can be thought of
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Figure 5. Network instance of schema NSG: i) Natural gas pipeline (NG),
ii) Electric grid (EG), iii) Water distribution systems (WS), iv) Railway

transportation systems (RW).

as a continuum that exhibits different behaviors during normal
operation conditions, times of severe stress or disruption, or
repair and restoration activities. At any point in the continuum,
the state of operation is a function of interrelated factors and
system conditions [12]. This may be the hardest task after all.

Any viable solution does require continual reassessment of
the security status of complex CIs and their constituent entities
to account for emerging cyber threat events and incidents. By
viewing linked infrastructure entities as interacting agents, the
impact of threat activities on the operational status of related
entities is modeled in terms of a distributed abstract machine.
The model computes the situational awareness status of a
complex CI based on the combined status of the component
CI entities. The underlying formal model for developing the
abstract machine builds on the operational modeling paradigm
of Abstract State Machines (ASM) [46] and its method for
stepwise refinement [47].

A distributed ASM, by definition, is a collection of asyn-
chronously interacting ASM agents that collectively update a
distributed global state. In previous work, we have success-
fully used the ASM paradigm as formal semantic founda-
tion for modeling a complicated distributed situation analysis
framework for maritime security [48] and also designed and
developed a computational platform for making such models
executable [49]. The design of the CI abstract machine model
exceeds the scope of this paper but will be the subject of a
separate paper.

Finally, in a system-of-systems context, the dynamic analysis
of the operational status of interacting CI entities can also
generate threat intelligence as input for the Inference Engine of
GenericAttackTracker to enhance anomaly detection accuracy
and overall system resilience. An attack on one entity may also
spell trouble for other interdependent entities downstream.

V. Conclusion and Future Work
With evermore sophisticated and damaging threats targeting

critical infrastructure, cyber risks are intensifying and security
breaches are more and more inevitable. In light of expanding
the attack surface for advanced threats and zero-day exploits,
enhancing the resilience of operational technology against the
most serious threats is critical. Risk mitigation strategies call
for a complete assessment of vulnerabilities and consequential
risks to make informed decisions for effective risk mitigation
and remediation on rational grounds.

Our main technical contribution, GenericAttackTracker, is
a distributed and scalable analytic framework for detection
of threat activity patterns in supervisory control data; its
novel features significantly advance and expand the scope
of the analytic core of the basic AttackTracker model in
two principal ways: 1) fusing results from control data anal-
ysis with contextual threat intelligence from IOA sources
into actionable insights yields a broader, more reliable de-
cision basis, expected to further reduce false positive rates;
2) modeling infrastructures as interacting agents linked in
complex ways—both physically and through ICT, i.e., what
happens to one infrastructure can directly or indirectly affect
other infrastructures—supports a “system of systems” view
for situational awareness of the security status of multiple
interdependent infrastructure entities.

Handling CI security is a complex and challenging task. In
our research, we tackle this problem by combining advanced
analytic methods with intuitive modeling paradigms to manage
complexities. The ultimate goal is a coherent and consistent
integration in an abstract methodical framework that facilitates
a holistic view of the full scale problem scope.

While putting a spotlight on SCADA, a prevalent industry
standard for monitoring and control of vital services not only
in North America, the strategies we discuss here do likely
apply to a much broader range of industrial process control
systems. By exploring the feasibility of our approach for
SCADA architectures, we aim to show the practical relevance
of our analytic framework for ICS/OT at large.

Our future work, will continue the research to model and
analyze complex network schemas of linked infrastructures to
extract and interpret more intricate interdependencies. We be-
lieve HIN/HINA provides the expressiveness needed to tackle
these tasks. Further, we will build upon our previous work on
modeling distributed situation analysis processes as Abstract
State Machine models, focussing on dynamically evaluating
the status of complex CIs in near real-time.
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