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Abstract—A Robust Convex Relaxation (RCR) Long Short-
Term Memory (LSTM) Deep Learning Neural Network 
(DLNN) can provide enhanced Entropic Wavelet Energy 
Spectrum (EWES) discernment regarding the potential use of 
packers, crypters, and protectors (it has been found that 
compressed or encrypted files have greater entropy values), 
which can be indicative of Metamorphic Malware (MM). The 
RCR-LSTM DLNN facilitates a more robust Recurrent Neural 
Network (RNN) to Feedforward Neural Network (FNN) 
progression via a bespoke Nonnegative Matrix Factorization 
(NMF) to Multiresolution Matrix Factorization (MMF) to 
Continuous Wavelet Transform (CWT) Sequence of 
Transformations (SOT). Preliminary experimentation 
pertaining to the RCR-LSTM DLNN framework indicates 
potential higher efficacy for an enhanced EWES discernment 
than traditional Machine Learning (ML) and DLNN methods. 
The potential impact includes the greater use of Industrial 
Internet of Things (IIOT) sensors, which have been beset by 
MM, for Industrial Control Systems (ICS), among others. 

Keywords-Industrial Systems; Industrial Control Systems; 
Distributed Control Systems; Operational Technology; Condition 
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I. INTRODUCTION 
The need for a greater volume and variety of sensors 

within the Operational Technology (OT) ecosystem — with 
higher resolution and enhanced edge analytics — has been 
steadily increasing over the past decade. As just one 
example, the involved Operation and Maintenance (O&M) 
Condition Monitoring Paradigm (CMP) is often established 
by policy in a top-down fashion and may be uniform 
throughout a region (without considering the greatly varied 
ambient factors affecting the locales); by way of example, 
Region A may be subject to seismic activity, Region B by 
high wind and salinity, Region C by heavy rainfall, high 
humidity, and lightning, and Region D by drought and high 
temperatures. Intuitively, the CMPs should be tailored to fit 
the regions accordingly, but quite frequently, this is not the 
case. As the equipment in these varied areas have 
experienced faster than anticipated degradation and failure 
rates, the introduction of specialty sensors to detect for 
aberrant conditions has become paramount. Yet, the use of 
such Industrial Internet of Things (IIOT) sensors are also 
beset by an array of potential cyber-related vulnerabilities, 

which has hindered their deployment and utilization. In 
particular, there has been a surge in polymorphic and 
metamorphic malware in this arena. If timely patching — 
which is often difficult in numerous OT environs that have 
high uptime requirements — is problematic, then alternative 
mitigation pathways are quite limited. Along this particular 
vein, the study space is still, comparatively, fairly nascent. 

This paper posits that an amalgam of Nonnegative Matrix 
Factorization (NMF), Multiresolution Matrix Factorization 
(MMF), and Continuous Wavelet Transform (CWT) can be 
of some value-added proposition in MM discernment. This 
amalgam, particularly with regards to the Numerical 
Implementation (NI) of CWT, was operationalized via a 
particular class of Convolutional Neural Networks (CNNs) 
— a RCR-based Convolutional LSTM DLNN, which 
leverages deeper cascade learning (thereby nicely emulating 
CWTs). In addition to its value-added proposition of convex 
relaxation adversarial training, the RCR-LSTM DLNN 
framework also enhances the bounds tightening for the 
successive convolutional layers (which contain the 
cascading of ever-smaller “CWT-like” convolutional filters) 
for an Enhanced Discernment Accuracy or EDA capability, 
via support of the facilitation for an enhanced MM EWES 
Discernment (M2ED). 

This paper is structured as follows. Section I provides a 
backdrop and introduces the problem space. Section II 
presents relevant background information and discusses the 
operating environment, as well as the state of the challenge. 
Section III provides some theoretical foundations and the 
posited/utilized approach. Section IV delineates a strategy 
for a Sequence of Transformations (SOT) and delineates 
some preliminary experimental forays regarding the 
referenced RCR-LSTM DLNN framework. Section V 
concludes with some preliminary reflections, puts forth 
envisioned future work, and the acknowledgements close the 
paper. 

II. BACKGROUND INFORMATION 
Over the past several years, there has been a rapid 

convergence at the nexus of Information Technologies (IT) 
and OT, particularly in the realm of Industrial Systems (IS). 
As the requisite uptime and High Availability (HA) of 
various IS, such as Industrial Control Systems (ICS), 
Distributed Control Systems (DCS), etc. have increased, the 
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need for an enhanced O&M CMP has also increased. This 
has involved the desire for a greater use of IIOT sensors, 
which can have higher resolution, greater reliability, and the 
potential for providing advance warning with regards to the 
potential failure of the involved devices (i.e., single item) 
and equipment (i.e., multiple items) within the CMP.  

Legacy IS architecture has been, traditionally, bus 
topology-centric; this presumes that the involved 
devices/equipment are connected to the bus and have a 
common protocol. However, to leverage the wide array of 
specialized IIOT devices/sensors, which might not share the 
same protocol, REpresentational State Transfer (REST) 
Application Programming Interfaces (APIs) are often relied 
upon. IT/OT engineers have utilized REST APIs so as to 
obviate the need for protocol conversion, middleware, 
and/or gateways. These APIs are now heavily relied upon to 
detect issues, within IT/OT-related paradigms, such as that 
of unusually high temperatures, vibrations, etc. Yet, many 
other parameters are in need of monitoring as well. 
Unfortunately, many of the utilized APIs fall into the 
category of, among others, Open Worldwide Application 
Security Project (OWASP) API9:2023 and API10:2023; 
OWASP 9 (Improper Inventory Management) cites the use 
of deprecated API versions and exposed debug endpoints, 
and OWASP 10 (Unsafe Consumption of APIs) cites the 
use of potentially compromised third-party APIs. 

According to a Dragos report, while 65% of advisories 
contain a patch to fix the cited vulnerability, it was 
challenging to implement the patch due to the downtime risk 
for the involved OT system [1]; in addition, there was no 
viable alternative mitigation, if patching was not an option. 
This paradigm is aggravated by the fact that, according a 
SysAdmin, Audit, Network, and Security (SANS) Institute 
survey, “Threat-Informed Operational Technology Defense: 
Securing Data vs. Enabling Physics,” “47% of ICS 
organizations do not have internal dedicated 24/7 ICS 
security response resources to manage OT/ICS incidents” 
[2]. Furthermore, cyberattacks are occurring with high 
prevalence; the World Economic Forum’s (WEF) Global 
Risk Report notes that these attacks on critical infrastructure 
operations (e.g., OT) are among the top five “currently 
manifesting risks” [3]. McKinsey & Company notes that OT 
cyberattacks have higher and more profound negative 
impacts, such as shutdowns, outages, and explosions [4]. 

Nevertheless, despite the fact that deprecated API 
versions and compromised third-party APIs are at play, 
advances in the area of mitigation have remained fairly 
nascent, if patching is not an option. Meanwhile, there has 
been an increase in the use of packers (i.e., self-extracting 
archives that unpack in memory upon execution of the 
packed file), crypters (i.e., a paradigm, wherein the use of 
obfuscation and/or encryption is at play), protectors (i.e., a 
paradigm, wherein a hybridization of both packing and 
encrypting is at play), etc. to obfuscate malicious intent 
from detectors. For example, packers greatly increase the 
complexity for the detectors to successfully perform 

statistical analysis (a prevalent approach by defenders). To 
aggravate matters, attackers are also anticipating the use of 
detection of the involved cryptor stub (i.e., a code segment 
or binary that accepts the malicious encrypted payload, 
decrypts, and executes it) signature and are now dividing the 
cryptor stub into multiple stages so as to obviate detection 
efforts. Along this vein, many attackers are now utilizing 
legitimate installers and supplanting the appended data with 
the crypter. They are also instantiating hollowed processes 
within trusted areas. Furthermore, they are often generating 
a unique binary for each compilation. Yet others utilize 
polymorphic code (i.e., code that utilizes a polymorphic 
engine to mutate its shape and signature while ensuring that 
the involved algorithm is preserved); indeed, the prevalence 
of polymorphic code is high, and researchers have noted 
that “94% of malicious executables are polymorphic” [5]. 
Compared to polymorphic malware, MM is even more 
complex, as it leverages numerous transformation 
techniques (successive and/or concurrent).  

Researchers at Tripwire, among others, have posited that 
the rise in polymorphic or metamorphic malware is possibly 
tied to the current predominant signature-based security 
paradigm, wherein cyber threat intelligence-sharing has, to 
date, tended to be more heavily based upon the sharing of 
file hashes; hence, if the polymorphic or MM changes its 
file in each instance, potentially, “the effectiveness of 
defenses sharing threat intelligence about that piece of 
malware will drop drastically” [5]. 

III. THEORETICAL FOUNDATIONS AND APPROACH 
The theoretical approach towards contending with 

metamorphic malware detection ranges from, by way of 
example, Ling et al., who focused upon leveraging NMF for 
detecting smaller subsets of the overarching set, via the 
utilization of structural entropy (which was deemed to 
exhibit greater promise than structural compression ratios) 
[6], to Begenholtz et al., who found that it is possible to 
accurately determine whether a file has been packed by a 
metamorphic packer “with an accuracy of up to 89.36% 
when trained on a single packer, even for samples packed by 
previously unseen packers” [7]; the latter study also focused 
upon leveraging Multilayered LSTM Networks for the 
involved detection. Along this vein, Ling et al. and many 
others have also focused upon structural entropy, such as via 
the use of Multilayer Perceptron (MLP) Neural Networks 
(NN) and other constructs, such as that of a Recurrent 
Neural Network (RNN) for behavioral feature extraction 
combined with a Feedforward Neural Network (FNN) (e.g., 
a Deep Feed Forward Concurrent Neural Network for 
classification, as put forth by Zhou [8]). 

The premise is that when an executable file changes 
between states, such as from its native uncompressed state 
to a compressed, encrypted, etc. state, the file’s 
representative structural entropy also changes. According to 
Lyda et al., compressed or encrypted files have greater 
entropy values [9]. Leveraging this heuristic, Wojnowicz et 
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al. utilized wavelet decomposition (which can successfully 
decompose complex information/patterns into lower rank 
representations) on the representative structural entropy of 
files to obtain the associated EWES, which provides insight 
into the potential use of packers, crypters, and protectors 
[10]. Moreover, while Singular Value Decomposition 
(SVD) has been widely used to obtain low-rank matrix 
approximation, the advantage of NMF when contending 
with structural entropy is that it is a fairly robust 
unsupervised learning approach for the analysis of high-
dimensional data, and it can facilitate feature extraction 
from very large sparse matrices [11], whereas other 
approaches are not as readily able to process very large 
matrices due to various issues, including, but  not limited to, 
missing entries or prolonged convergence [12]. The classic 
example involves a very large matrix A being factorized 
into, let us say, matrices B and C. Ultimately, the desire is 
that all the involved matrices have no negative elements 
[13]. However, if a prototypical method of matrix 
factorization (e.g., SVD) is used, the resulting SVD-based 
lower rank representation leads to both positive and 
negative elements (which is the antithesis of the intent to 
have no negative elements), thereby making interpretation 
quite challenging due to the ensuing ambiguity. In contrast 
to SVD, because NMF has the inherent constraint that the 
factorized matrices be comprised of non-negative (i.e., 
positive) elements, it can facilitate a more robust 
interpretation of the original matrix data, as it segues to a 
more intuitive structural representation by parts; as 
previously discussed in [12], the involved 
approximation/representation as the sum of positive 
elements (e.g., matrices, vectors, integers) is more intuitive, 
logical, and naturalistic given the matrices of positive 
integers. By leveraging the advantage of NMF’s non-
negative element constraint, various high-level features are 
more readily discerned from the hidden layers of the 
involved NN. Hence, the more naturalistic NMF-based 
approach reduces the need for feature engineering (i.e., a 
coarser and less elegant approach of extraction). 
Consequently, when the posited SOT is utilized, which 
starts at NMF and ends at a CWT, it is indeed possible to 
extrapolate upon the works of Ling et al., Begenholtz et al, 
and Wojnowicz et al., among others. 

IV. EXPERIMENTATION 

A. Experimental Considerations 
MM utilize various concealment/obfuscation methods 

while preserving the functionality of their intent. According 
to Borello et al., these methods can be classified as: data 
flow obfuscation (e.g., dead or junk code insertion, variable 
or register substition, instruction permutation or 
replacement, etc. [14]) and control flow obfuscation (e.g., 
code transposition, flattening — control flow flattening is a 
technique used not only to legitimately safeguard software 
from being reverse engineered, but is also illegitimately 

used by malware creators to obfuscate and hinder reverse 
engineering by cyber defenders, via the use of modification 
of the statement and loops in the code, layered obfuscation, 
etc. [15]). With regards to data flow obfuscation, Srdihara, 
et al. reported that by inserting a large amount of dead/junk 
code derived from benign files, the statistical properties of 
the ensuing MM morphed code could possibly be 
indistinguishable from benign codes [16]. With regards to 
control flow obfuscation, the transformed/obfuscated MM is 
semantically equivalent with regards to its original intent, 
but also immensely more difficult for detectors to analyze.  

Various researchers have contributed to the detection of 
malware. For example, Ekhtoom et al. had classified MM 
families and obtained experimental results of 77% accuracy 
[17]. Bhattacharya et al. experimented with similarity 
measures and wavelet analysis and achieved an accuracy of 
82.1% [18]. Bat-Erdene et al. experimented with entropy 
estimations and achieved an accuracy of 94.13% [19]. Alam 
et al. have asserted that they achieved a MM detection rate 
of 98.9% (with a false positive rate of 4.5%) [20]. 

B. Experimental Design & Implementation 
Based upon the cited experimental consideration 

statistics, any posited MM detection should be in a similar 
range of detection efficacy to be of meaningful value-added 
proposition in the applied realm. This work chose to build 
upon the work of Ling et al., Begenholtz et al, and 
Wojnowicz et al., among others. An RNN paradigm was 
used for the behavioral feature extraction of the MM, and a 
FNN was utilized for the classification. However, one of the 
main contributions of this paper resided in the fact that an 
RCR-LSTM DLNN was utilized to support the RNN to 
FNN progression by facilitating a M2ED/output between 
the RNN and FNN; this would lead to improved 
discernment accuracy. 

The RCR-LSTM DLNN accomplished its facilitation by 
operationalizing the posited SOT. The involved SOT in the 
experimentation for this paper progresses from NMF to 
MMF to Corresponding Wavelet Transform (CORWT) to 
an Enhanced CORWT (ECORWT), which was 
operationalized by way of a CWT PyWavelet Schema. The 
central aim of this approach was to arrive at a CWT 
paradigm, which does not substantively experience the 
energy leakage issues experienced by other commonly 
utilized transforms, such as Discrete Wavelet Transforms 
(DWT). For the involved experimentation, a particular NI of 
CWTs was utilized, via the referenced RCR-LSTM DLNN.  

To successfully progress through the SOT, a non-
conventional NMF approach is needed in the form of an 
Input Synthesis Model (ISM), which facilitates the MMF 
(the chosen method for ascertaining the involved multiscale 
structure and the delineation of the involved wavelets for a 
multi-resolution representation) [21] as well as, in turn, the 
determination of the MMF’s CORWT, ECORWT, and the 
ensuing CWT. There is also a subtlety; certain operations 
are needed to fully transform the interim Gaussian 
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Composite Model (GCM) to a fully formed ISM, which 
then segues to the MMF. There is yet another subtlety. As 
illuminated in [12], the leveraging of a CWT PyWavelet 
schema (a Python-based open-source WT library) must be 
accompanied by the cognizance of the contained Mother 
Wavelets (i.e., families of Wavelets, which encompass both 
DWT and CWT); within each of these Wavelet families, 
there may be varied subordinate Wavelet subcategories, 
which are, generally speaking, differentiated by the number 
of coefficients (i.e., the number of vanishing moments, 
which refers to the state wherein the Wavelet coefficients 
are zero for those polynomials with a degree of at most 𝑝−1, 
and the scaling function alone can be utilized to represent 
the function) as well as the level of decomposition — as the 
number of vanishing moments increases, the polynomial 
degree of the wavelet also increases, the involved graph 
tends to become smoother, and it also turns out that the 
leveraging of CWT well enables the intricate structural 
characteristics of the NMF input, within the transform 
space, to be more amenable to the process of analysis and 
discernment [22][23]. The experimental design and 
implementation is summarized in Fig. 1 below. 

 

 
Figure 1.  EDA Instantiation via an NI-enabled SOT for a M2ED Pathway 

Ultimately, the experimental implementation involved 
three facets: utilization of an RNN for behavior feature 
extraction of the MM, utilization of a FNN for classification 
of the MM, and an RCR-LSTM DLNN-based NI to 
operationalize the SOT. The first facet addressed the static 
features (e.g., operation codes or opcodes, byte-level n-
grams [extracted from, by way of example, Portable 
Executables or PEs], as a non-signature- based approach for 
detection, etc.) and dynamic features (e.g., recorded API 
calls) of the MM file. The feature vectors derived from the 
static and dynamic information were concatenated. The 
RCR-LSTM DLNN assisted the RNN in the conversion to a 
M2ED/output, which the FNN then utilized for 
classification; in other words, the RCR-LSTM DLNN 
facilitated the RNN to FNN progression. 

C. Experimental Results 
It should be noted that the utilized RNN was utilized for 
behavioral feature extraction. It should further be noted that 
the FNN was utilized for MM sample classification. While 
prototypical NNs have numerous layers, DLNN is a type of 
NN that is comprised of numerous hidden layers. Medina et 
al. had shown that the use of CNNs reduces the false 
positive rate [24]. Along this vein, Moradi et al. and others 
have described how the use of LSTMs addresses the 
gradient vanishing issue (a consequence of the derivative of 
the activation function used to instantiate the NN, which can 
be, by way of example, obviated by using an activation 
function, such as Rectified Linear Unit or ReLU instead of 
sigmoid), which besets RNNs [25]. The bespoke RCR-
LSTM DLNN is one such CNN leveraging a LSTM. The 
RCR-LSTM DLNN was evaluated against other 
prototypical ML and DLNN methods. As just one indicator, 
the bespoke RCR-LSTM DLNN classification results are 
shown in Table 1 below. As a summary, a preliminary 
version of the posited bespoke RCR-LSTM DLNN method 
was able to achieve comparable ACC as other well-known 
methods, such as KNN, RNN, and RBF SVM; however, 
despite the fact that the posited bespoke method did not 
achieve the 98.9% rate (with a false positive rate of 4.5%) 
reported by Alam et al., it is hoped that future versions of 
the RCR-LSTM DLNN may possibly break the glass ceiling 
that is currently constraining the aforementioned methods. 
Future work will tell. 

TABLE I.  CLASSIFICATION RESULTS OF VARIOUS ML METHODS 

Methods Models Accuracy 
(ACC) 

Prototypical ML 
methods 

Decision Tree (DT) [26] 82.4% 
Hidden Markov Models 
(HMM) [27] 

87.3% 

Random Forest (RF) [28] 91.43% 
Sigmoid Support Vector 
Machine (SVM) [26] 

95% 

k-Nearest Neighbor (KNN) 
[29] 

97.6% 

Radial Basis Function 
(RBF) SVM [26] 

97.9% 

   
Prototypical 
DLNN methods 

CNN [30] 96.96% 
RNN [31] 97.8% 

   
Posited bespoke 
RCR-LSTM 
DLNN method 

RCR-LSTM DLNN 97.9% 

 
MM samples were obtained by using krmaxwell/maltrieve 
and jstrosch/malware-samples. The Cuckoo Sandbox was 
utilized to record the API calls and analyze the MM; 
however, while the use of API calls to unveil behavioral 
patterns was utilized to great effect by Hansen et al., Daeef 
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et al., and others [32][33], it seems to have limited efficacy 
against potent MM. Prototypical ML libraries (e.g., Keras, 
Scikit-learn, etc.) were utilized. Experimental variations 
included PyTorch (PT), Tensorflow (TF), Caffe (CE), 
Caffe2 (CE2), and SciPy (SP). PT and TF were the favored 
implementations due to their prevalence and robust 
documentation. The choice of leveraging NMF, via the 
utilization of structural entropy (rather than structural 
compression ratios) seems to have been affirmed; after all, 
NMF’s non-negative element constraint provides more 
ready discernment of high-level features from hidden layers. 
Likewise, the use of LSTM for the detection (to mitigate 
against the RNN deficiency of the gradient vanishing issue), 
seems to have been prudent; in addition, although 
Begenholtz et al., had experimented with multi-layer LSTM 
models, Catak et al. and others found that single-layer and 
multi-layer LSTM models attained similar classification 
outcomes [26]. For the experiment discussed in this paper, a 
single-layer LSTM was utilized, per Catak’s findings.  

On the entropy front, generally speaking, entropy refers 
to the measure of uncertainty pertaining to the data of an 
involved file, and the measurement value ranges between 0 
to 8. The lower the value, the lower the probability that the 
code has been obfuscated, encrypted, etc. The higher the 
value, the higher the probability that the code has been 
obfuscated, encrypted, etc. [9]. A M2ED/output (associated 
with an enhanced wavelet decomposition) will segue to 
more accurate values for the involved measurement values. 
As an additional heuristic, MM coefficient scores tend to 
condense close to 1.0, whereas the substantive portion of 
benign files tend to have “smaller similarity coefficient 
scores as they are relatively far from 1.0” [34]. Preliminary 
experimentation has shown that the posited bespoke RCR-
LSTM DLNN method does segue to enhanced measurement 
values, and the determination of entropy values is enhanced 
(i.e., M2ED), thereby providing greater confidence in 
utilizing the heuristic of “compressed or encrypted files 
have greater entropy values” [9]. 

A prototypical confusion matrix (utilized to depict the 
classification  performance) was utilized for evaluation. 
True Positive Rate (TPR) equates to True Positive 
(TP)/Positive (P), wherein P = TP + False Negative (FN). 
Along this vein, False Positive Rate (FPR) equates to False 
Positive (FP)/Negative (N), wherein N= FP + True Negative 
(TN). Furthermore, Accuracy Rate (AR) equates to (TP + 
TN)/(P + N). The Receiver Operating Characteristic (ROC) 
curve was utilized to depict the classification performance at 
various classification thresholds with the two parameters of 
TPR and FPR. Following the lead of Zhou and others [8], 
Area Under the [ROC] Curve (AUC) was utilized for the 
measure of separability (i.e., classification performance). 
The performance of the nine classifiers cited in Table 1 was 
also supported by the utilization of N-fold cross-validation, 
via Waikato Environment for Knowledge Analysis 
(WEKA). As our posited approach is predicated upon an 
Adaptive Weighting System (AWS) [35], the subtle intent 

of cross-validation is somewhat obviated. For example, if all 
data samples were utilized to train the involved NN, the 
ensuing weights and bias values would tend to overfit 
(thereby setting the stage for poor performance again new, 
previously unseen data). To mitigate again overfitting, the 
convention is to separate the data into training data (e.g., 
80%) and test data (e.g., 20%) so as to find an apropos 
balance. With an AWS, the mechanics of N-fold cross-
validation become evidently more trite. The prototypical 
number of folds utilized is 10, and the involved 
experimentation uses this figure. The n-fold cross-validation 
provides a measure of quality (i.e., classification error) of 
each fold; axiomatically, the smaller the ensuing value, the 
better the performance. It was prudent to adhere to the 
standard of utilizing an artifically suppressed number of 
training iterations (a high number yields will result in higher 
performance) to provide a more realistic sense of 
performance. Generally, the performance at the first fold is 
better than that at the last fold. As noted in the next section, 
more experimentation will be conducted for augmenting the 
training data and studying classification performance [36]. 

V. CONCLUSION 
The increase in cyber threat information feeds has 

provided an expanding corpus of malware samples to 
analyze. The discussed corpuses include, among others, 
krmaxwell/maltrieve and jstrosch/malware-samples. 
Meanwhile, as ML approaches have become more robust 
and sophisticated, ML-based MM detection approaches 
have improved as well. This is opportune due to a 
convergence of factors: (1) the required uptime and HA of 
ICS and DCS, among others, have increased, the necessity 
of IIOT sensors for an enhanced O&M CMP has also risen, 
(2) the necessity for higher resolution and greater reliability 
IIOT sensors, (3) the dependence upon APIs to detect for 
CMP-related issues, (4) the range of cyber-related 
vulnerabilities, particularly MM, which have plagued the 
APIs of IIOT sensors, (5) the dramatic rise and prevalence 
of MM, (6) the fact that strategic/critical infrastructure IIOT 
sensors and OT are part of the top five “currently 
manifesting risks,” as noted by the WEF. 

The theoretical approach utilized, to operationalize the 
discussed M2ED/output for an improved MM detection 
paradigm, involved non-conventional NMF and MMF (used 
in conjunction so as to facilitate the capture of the structure 
and content of the involved matrices so as to attain higher 
resolution and EDA) to more elegantly segue to CWT (via 
the intermediary steps of CORWT and ECORWT). This 
NMF-MMF-CWT paradigm, operationalized by the 
discussed RCR-LSTM DLNN (which supported the RNN to 
FNN progression), was the key SOT for EDA (i.e., M2ED) 
and one of the main contributions of this paper. The RCR 
LSTM DLNN amalgam brings several value-added 
propositions to bear: (1) the CNN amalgam construct itself 
reduces the false positive rate, (2) the RCR construct 
facilitates more robust bounds tightening, and (3) the LSTM 
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mitigates against the RNN deficiency of the gradient 
vanishing issue. The operationalization of the SOT (the 
leveraging of wavelet decomposition on the representative 
structural entropy to ascertain the associated EWES) for an 
enhanced EWES, which was referenced as M2ED, provided 
a form of Indications and Warnings (I&W) for the potential 
use of packers, crypters, and protectors. Future work will 
involve more quantitative experimentation in this area. 

Overall, the paper discussed the theoretical foundations 
and approaches utilized within this ecosystem, various 
experimental designs, and results related to MM detection. 
The paper also explored various pertinent techniques and 
methods, including leveraging RCR, LSTM, DLNN, NMF, 
MMF, CORWT, ECORWT, CWT, RNN, and FNN. The 
paper further details an experimental design using a bespoke 
RCR-LSTM DLNN method and presents the results, 
comparing them with other ML methods. The paper’s focus 
on MM detection should be of relevance to the current 
cybersecurity landscape, particularly as attacks on OT for 
strategic/critical infrastructure operations are among the top 
currently manifesting risks. 
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