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Abstract—Agent systems have become almost ubiquitous in
smart grid research. Research can be roughly divided into carefully
designed (multi-) agent systems that can perform known tasks
with guarantees, and learning agents based on technologies such as
Deep Reinforcement Learning (DRL) that promise real resilience
by learning to counter the unknown unknowns. However, the
latter cannot give guarantees regarding their behavior, while the
former are limited to the set of problems known at design time.
In this paper, we present work in progress towards explaining
strategies learned in autocurriculum settings in Critical National
Infrastructures (CNIs), such as the power grid. We show how
our equivalent representation of DRL policies allows to study
agent behavior and ascertain learned strategies for resilient CNI
operation.
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I. INTRODUCTION

Over the last years, agent systems and especially Multi-
Agent Systems (MASs) [1]–[4] have emerged as one of the
most important tools to facilitate management of complex
energy systems. As swarm logic, they can handle numerous
tasks, such as maintaining real power equilibria, voltage control,
or automated energy trading [5]. The fact that MASs implement
proactive and reactive distributed heuristics allows to analyze
their behavior and give certain guarantees, a property that has
helped in their deployment.

However, modern energy systems have also become valuable
targets. Cyber-attacks have become more common [6], [7], and
establishing local energy markets, although being an attractive
concept of self-organization, can also be exploited, e. g., through
artificially created congestion [8]. Attacks on power grids are
no longer carefully planned and executed, but also learned by
agents, such as market manipulation or voltage band violations
[9]. Thus, carefully designing software systems that provide
protection against a widening field of adversarial scenarios has
become a challenge, especially considering that (interconnected)
Cyber-Physical Systems (CPSs) are inherently exploitable due
to their complexity [10].

Learning agents, particularly those based on DRL, have
gained traction as a potential solution: If a system faces
unknown unknowns, a learning agent can devise strategies
against it. In the past, researchers have employed DRL-based
agents for numerous tasks related to power grid operations, such
as voltage control [11]. Especially the approach to use DRL
for vulnerability assessment, cyber security attack mitigation,

and general resilient operation have gained traction among
researchers in the recent years [12]–[16]. In general, DRL
constitutes an attractive family of algorithms as it is at the
core of many noteworthy successes, such as MuZero [17], with
modern algorithms such as Twin-Delayed DDPG (TD3) [18],
Proximal Policy Gradient (PPO) [19], and Soft Actor Critic
(SAC) [20] having proved to be able to tackle complex tasks.

While the scientific corpus agrees that DRL-based agents
are a valuable topic of research in terms of cyber-security in
CNIs, their effectiveness can only be stated in a manner that
is (1) indirect and (2) case-based. Indirect, because there is no
direct method available that would ascertain a DRL agent’s
policy. Publications offer analysis of rewards and simulation
states; however, it is well known that optimizing a metric (i. e.,
maximizing the reward) is not necessarily the same as solving
the problem behind it. Second, many publications lack long-
term simulations, but consider certain well-described scenarios.
Thus, a DRL-based agent’s ability to generalize is inferred, but
not entirely proven.

eXplainable Reinforcement Learning (XRL) [21] promises
to fill this gap at least partially. However, the most common
techniques, such as saliency maps, give only indirect interpre-
tation and are useful for experts in the DRL domain, but not
for practitioners in CNIs. Recent approaches to convert a DRL
agent’s policy network into a rule-based representation, e. g.,
as decision tree [22], will satisfy the outlined requirements.
In a recent publication, we have presented an equivalent
transformation of a DRL agent’s policy network into a
compressed decision tree, called NN2EQCDT [23]. We have
also argued that such an equivalent representation should be a
default module in any modern architecture for learning agents
in CNIs and presented the Adversarial Resilience Learning
(ARL) agent architecture in this regard [24].

In this paper, we present an approach to explaining and
validating DRL autocurricula in CNIs, such as the power grid.
Previous publications have indicated that employing competing
agents can lead to faster learning and robust strategies, and
we have presented our ARL methodology to take advantage
of this [12]. In ARL, two agents (often dubbed “attacker”
and “defender”) work with an inversible reward function: The
defender aims to operate the CNI in a resilient manner, the
attacker aims to destabilize the CNI. The competition improves
the sample efficiency of the agents, which also learn more
robust strategies. As the goal of the ARL research is to develop
an actually deployable defender, an extended architecture (the
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Figure 1. Simplified components view of the ARL agent architecture.

ARL architecture) has been created. In this paper, we will
outline how the generation of an equivalent representation of a
policy network can be integrated in an agent architecture and
provide the first steps towards explaining DRL autocurriculae
for resilient operation of smart grids.

The remainder of this work-in-progress paper is structured as
follows: Section II gives a concise summary of our NN2EQCDT
algorithm and its integration into the ARL agent architecture.
In Section III, we then present a scenario that we explain using
NN2EQCDT. Section IV offers a discussion of our approach
and the experiment’s results. Finally, we outline the next steps
in Section V.

II. A SELF-EXPLAINING DEEP REINFORCEMENT
LEARNING AGENT

The concept of the ARL agent assumes two parallel policies:
An Adaptive Policy that is based on DRL, and a Rules-based
Policy that works on a decision tree. When an agent observes
the environment, the Discriminator chooses between the two
policies based on a trust value. Both policies are queried, and
in their Decision, they give the action and the reward value they
expect from executing the action. The Discriminator checks
both proposals against its internal world model and chooses
the one whose reward deviates the least from the reward the
world model returns. Then, each policy’s trust value is modified
according to a Linear Time-Invariant (LTI) system:

pt1 (y, u, t) =

 u if t = 0

y +
u− y

t
otherwise,

(1)

where y signifies the current trust value of the respective policy
module and u is the reward the world model yielded for the
policy’s decision proposal. The Discriminator’s world model
is based on data provided by the CNI operator.

The truest approach also means that the adaptive policy will
naturally be trusted for situations not covered by rules, but
is able to gain more trust to yield innovative strategies over
the course of the agent’s existence, while the LTI ensures that
mistakes do not immediately void the trust.

Whenever the DRL policy retrains, the new policy network
is transformed into a new decision tree using the XRL Rules
Extractor, which implements our NN2EQCDT algorithm [23].
Figure 1 depicts the component architecture of the ARL agent,
while Figure 2 shows the procedure described.

The NN2EQCDT algorithm works according to Figure 3.
The weight and bias matrices Wi and Bi from the Feed-
Forward Deep Neural Network (FF-DNN) model are processed
layer by layer. These are used to compute rules that are used
to add subtrees to the overall Decision Tree (DT). From the
second layer, when multiplying the weight and bias matrices,
it is necessary to take into account the position of the node
to which the generated subtree will be attached. This is done
by applying the slope vector a to the current weight matrices.
It represents the node position of the connection, since it is
the vector of choices according to the Rectified Linear Unit
(ReLU) activation function along the path from the root to the
connection node.

When adding a node of a newly created subtree to the overall
tree, each path from the root to the node in question is checked
for satisfiability. If there can be no input so that its evaluation
of the DT that takes this path, the node in question and thus
further subtrees are not added to keep the size of the DT
dynamically small.

Finally, the last checks are converted into expressions, and
the DT can be further compressed by removing unnecessary
checks, since they are evaluated the same for all possible inputs.

III. EXAMPLE OF APPLICATION

The ability to compress policies is important for an effective
operation of the hybrid DRL/rules-based agent. Not only
inference, but also analysis of extracted rules (e. g., changes
with regards to previous iterations) takes advantage of a small
tree. Considering that the ARL agent will run on edge devices
that are memory- and CPU-constrained, the ability to compress
the tree becomes an important feature of the algorithm. As a
first step in our work in progress, we experimentally tested
how an extrated decision tree is dependent on the size of the
policy network, even if the strategy the agent has learned is
seemingly simple.

To test this, we constructed a power grid with a simple linear
branch feeder. From the 110 kV/20 kV transformer extends a
branch with four nodes:

1) an inverter (Photovoltaics, PV), controlled by a “attacker”
agent

2) an inverter (PV), controlled by a “defender” agent
3) an independent hospital
4) an independent wind park.
True to the ARL autocurriculum setting, we provided two

largely invertable objectives to the agent, both of which targeted
the voltage band. The attacker’s task was to violate the voltage
band, whereas the defender should keep it within acceptable
boundaries. We used a bell-shaped curve centered at 1.0 pu.
The defender maximum reward was at 1.0 pu, while the attacker
used the inverted curve, with maximum reward at V < 0.8 pu
and V > 1.1 pu, respectively. Consider the reward function:
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Figure 2. Activity diagram for training and self-explaining of an ARL agent.

1: Ŵ = W0

2: B̂ = B⊤
0

3: rules = calc_rule_terms(Ŵ , B̂)
4: T,new_SAT_leaves = create_initial_subtree(rules)
5: set_hat_on_SAT_nodes(T,new_SAT_leaves, Ŵ , B̂)
6: for i = 1, . . . , n− 1 do
7: SAT_paths = get_SAT_paths(T )
8: for SAT_path in SAT_paths do
9: a = compute_a_along(SAT_path)

10: SAT_leave = SAT_path[−1]
11: Ŵ , B̂ = get_last_hat_of_leave(T,SAT_leave)
12: Ŵ = (Wi ⊙ [(a⊤)×k])Ŵ

13: B̂ = (Wi ⊙ [(a⊤)×k])B̂ +B⊤
i

14: rules = calc_rule_terms(Ŵ , B̂)
15: new_SAT_leaves =

add_subtree(T,SAT_leave, rules, invariants)
16: set_hat_on_SAT_nodes(T,new_SAT_leaves,

Ŵ , B̂)
17: convert_final_rule_to_expr(T )
18: compress_tree(T )

Figure 3. NN2EQCDT algorithm for generating equivalent represen-
tation of DRL policy networks.

g

(
x =

∑|V |
i=1 Vi

|V |
, A, µ, C, σ

)
= A·exp

(
− (x− µ)

2

2σ2
− C

)
,

(2)
where V are voltages at the observed “victim buses” to which
the hospital and the wind park are connected. The parameters
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Figure 4. Setpoint and reward of the defender agent

A, µ, C, and σ shape the curve, so that we define:

rewardattacker

(
x =

∑|V |
i=1 Vi

|V |

)
=

g(x,A = −12.0, µ = 1.0, C = −10.0, σ = −0.05)

+ g(x,A = −12.0, µ = 0.83, C = 0.0, σ = 0.01)

+ g(x,A = −12.0, µ = 1.16, C = 0.0, σ = 0.01) (3)
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Figure 5. Decision tree as an equivalent representation of the agent’s
q-control policy

rewarddefender

(
x =

∑|V |
i=1 Vi

|V |

)
=

g(x,A = 10.0, µ = 1.0, C = 0.0, σ = 0.032) (4)

From Figure 4, we can see the setpoints and rewards of the
defender agent. From these values alone, we can deduce that
they have learned a very simple strategy (namely, one setpoint).
This is expected in the simple scenario. We provided both
agents with a larger-than-necessary policy network (a FF-DNN
with [2, 8, 8, 1] neurons).

IV. DISCUSSION

Even if the number of neurons in the policy network
of the agents seems low compared to many Deep Neural
Networks (DNNs), such a network would already suffer from
co-adaptation. However, Figure 5 shows that the resulting
DT contains only the single setpoint strategy over the range
of perceived voltage levels. Moreover, when calculating the
invariants of the DT and, thus, compressing it even further,
it collapses to one node that exactly represents the simple
learning strategy.

We can conclude that our NN2EQCDT algorithm is able to
extract a reasonable representation even if the policy network
is larger than needed. This is especially important considering
that, as seen in Figure 1, the policy network is evolved through
neuroevolution. We cannot assume that it is always of an
appropriate minimal size, since the neuroevolutionary algorithm
is not automatically fed size constraints based on the agent’s
memory.

All data of this experiment is available from [25].

V. CONCLUSION AND FUTURE WORK

In this work-in-progress paper, we presented preliminary
results of our approach to explain learned strategies of agents
in CNIs, which have been obtained in a autocurriculum setting.

In the future, we will expand our approach to more complex
scenarios and a comprehensive experimentation regimen in or-
der to show benefits and boundaries of our approach, especially
focusing on scalability. We will present an extensive standard
benchmarking scenario for our ARL methodology that will be
based on a simulated power grid that includes a wide range of
Distributed Energy Resources (DERs), consumers/prosumers,
and assets the grid operator has access to. We will then show
the benefits of the autocurriculum and, especially, our extended
ARL agent architecture [24]. Through the steps outlined in
this work-in-progress paper, as well our previous publications,

we work towards making introspection of learned strategies in
CNIs a default.
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