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Abstract—Since the Rust programming language was accepted
into the Linux Kernel, it has gained significant attention from the
software developer community and the industry. Rust has been
developed to address many traditional software problems, such as
memory safety and concurrency. Consequently, software written
in Rust is expected to have fewer vulnerabilities and be more
secure. However, a systematic analysis of the security of software
developed in Rust is still missing. The present work aims to
close this gap by analyzing how Rust deals with typical software
vulnerabilities. We also compare Rust to C, C++, and Java, three
widely used programming languages in the industry, regarding
potential software vulnerabilities. Our results are based on a
literature review, interviews with industrial cybersecurity ex-
perts, and an analysis of existing static code analysis tools. We
conclude that, while Rust improves the status quo compared to
the other programming languages, writing vulnerable software
in Rust is still possible. Our research contributes to academia
by enhancing the existing knowledge of software vulnerabilities.
Furthermore, industrial practitioners can benefit from this study
when evaluating the use of different programming languages in
their projects.

Keywords–Cybersecurity; Software development; Industry; Soft-
ware; Vulnerabilities.

I. INTRODUCTION

Rust, a systems programming language that originated in
2010, has significantly increased in popularity over the past
decade. According to a market overview survey by Yalantis
[1], which conducted more than 9,300 interviews, 89% of
developers prefer Rust over other widespread programming
languages like C and C++ due to its robust security properties.
Despite its steep learning curve, industry professionals argue
that the time invested in learning Rust yields added benefits
and fosters better programming skills, according to Garcia [2].
Stack Overflow [3] notes that developers appreciate Rust’s
focus on system-level details since it helps prevent null and
dangling pointers and its memory safety without needing a
garbage collector. These factors contribute to its growing
adoption in the industry. This sentiment is echoed by the
industry’s push toward adopting the Rust programming lan-
guage. Furthermore, according to Stack Overflow Developer
Surveys, Rust has been the most loved and admired language
since 2016. In the most recent Stack Overflow 2023 Developer
Survey [4], Rust secured the position of the most admired
language, with over 80% of the 87,510 responses favoring it.

Due to its focus on memory safety and concurrency, Rust
has become the language of choice for many tools developed
for Linux, FreeBSD, and other operating systems. Rust’s
adoption in Linux Kernel development [5], [6] underlines its
growing significance in an industrial context. Major platforms
like Google have started including Rust in systems, such as
Android [7], and forums like RustSec [8] provide real-time
updates and insights into the current state of Rust security.
Rust promotes itself as being safer than traditional lan-

guages like C and C++, which are widely used in an industrial
context, by borrowing many aspects from functional languages
like Haskell. However, in the realm of industry, particularly in
critical infrastructures, safety is not synonymous with security.
As the industry is obliged to follow secure development
standards, such as IEC 62443 [9], [10], the notion of safety in
Rust must be understood not just from a memory management
perspective but also from a security standpoint.
Developing industrial products and services follows strict

guidelines, especially for those products and services aimed at
critical infrastructures. In these cases, cybersecurity incidents
can severely negatively impact companies and society in
general. Therefore, the security of industrial products must be
tightly controlled. Consequently, Rust is considered a good
candidate for industrial software development.
While Rust has been celebrated for its safety features, less

research has been conducted on its security aspects. This lack
of research is primarily because this programming language is
still relatively young compared to longstanding players in the
industry, such as C, C++, and Java. Furthermore, developers
and users often conflate safety with security, potentially lead-
ing to software vulnerabilities. Therefore, this paper aims to
understand to what extent vulnerable software can be written
in Rust. We approach this topic in two ways:
1) Evaluating the difficulty of writing vulnerable software

based on industry-recognized security standards like
SysAdmin, Audit, Network, Security (SANS) Institute
TOP 25 [11], Open Web Application Security Project
(OWASP) 10 [12], and 19 Deadly Sins [13], and

2) Analyzing past known vulnerabilities in the Rust lan-
guage and its ecosystem.

This study’s contributions are as follows: firstly, through
the present work, the authors aim to raise awareness, as
defined by Gasiba et al. [14], about Rust security and its
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pitfalls within the industry (for both industrial practitioners
and academia); secondly, our work provides expert opinions
from industry security experts on how to mitigate such issues
when developing software with Rust; furthermore, our work
contributes to academic research and the body of knowledge
on Rust security by adding new insights and fostering a deeper
understanding of Rust security; finally, our work serves as
motivation for further studies in this area.
The rest of this paper is organized as follows: Section II

discusses previous work that is either related to or served
as inspiration for our study. Section III briefly discusses the
methodology followed in this work to address the research
questions. In Section IV, we provide a summary of our results,
and in Section V, we conduct a critical discussion of these
results. Finally, in Section VI, we conclude our work and
outline future research.

II. RELATED WORK

A significant contribution to understanding Rust’s security
model comes from Sible et al. [15]. Their work offers a
thorough analysis of Rust’s security model, focusing on its
memory and concurrency safety features. However, they also
highlight Rust’s limitations, such as handling memory leaks.
While Rust offers robust protections, the authors emphasize
that these protections represent only a subset of the broader
software security requirements. Their insights are invaluable
for understanding both the strengths and limitations of Rust’s
security model.
In 2023, Wassermann et al. [16] presented a detailed explo-

ration of Rust’s security features and potential vulnerabilities.
They highlighted issues when design assumptions do not align
with real-world data. The authors stress the importance of
understanding vulnerabilities from the perspective of Rust
program users. They advocate for tools that can analyze
these vulnerabilities, even without access to the source code.
Discussions also touched upon the maturity of the Rust soft-
ware ecosystem and its potential impact on future security
responses. They suggest that the Rust community could benefit
from the Rust Foundation either acting as or establishing a
related CVE Numbering Authority (CNA). Their study further
enriches the understanding of Rust’s security model.
Qin et al. [17] conducted a comprehensive study revealing

that unsafe code is widely used in the Rust software they
examined. This usage is often motivated by performance opti-
mization and code reuse. They observed that while developers
aim to minimize the use of unsafe code, all memory-safety
bugs involve it. Most of these bugs also involve safe code,
suggesting that errors can arise when safe code does not
account for the implications of associated unsafe code. The re-
searchers identified Rust’s ’lifetime’ concept, especially when
combined with unsafe code, as a frequent source of confusion.
This misunderstanding often leads to memory-safety issues.
Their findings underscore the importance of fully grasping
and correctly implementing Rust’s safety mechanisms.

A. Security Standards and Guidelines
Various security standards and guidelines can be applied to

Rust programming. The International Electrotechnical Com-
mission Technical Report (IEC TR) 24772 [18] standard,
”Secure Coding Guidelines Language Independent,” provides
guidelines suitable for multiple programming languages, in-
cluding Rust. ISO/IEC 62.443 [9], especially sections 4-1 and
4-2, sets the industry standard for secure software development
[10]. The Common Weakness Enumeration (CWE) by MITRE
[19] offers a unified set of software weaknesses.
The French Government’s National Agency for the Security

of Information Systems (ANSSI) has published a guide titled
”Programming Rules to Develop Secure Applications with
Rust” [20], which is a valuable resource for developers.

B. Security Documentation and Tools
Rust’s safety guarantees and performance have led to its

growing adoption across various domains. Notably, Google
has integrated Rust into the Android Open Source Project
(AOSP) to mitigate memory safety bugs, a significant source
of Android’s security vulnerabilities [7]. Updates and dis-
cussions about Rust security are frequently shared on blogs,
forums, and other platforms.
Several Static Application Security Testing (SAST) tools are

available for Rust, such as those listed on the Analysis Tools
platform [21]. These tools play a crucial role in the secure
software development lifecycle.
Community-driven initiatives like RustSec [8] offer advi-

sories on vulnerabilities in Rust crates. Real-time updates from
RustSec and other platforms are invaluable for developers to
stay updated on potential security issues in Rust packages.

C. Secure Coding Guidelines
The paper ”Secure Coding Guidelines - (un)decidability” by

Bagnara et al. [22] delves into the challenges of secure coding.
It mainly focuses on the undecidability of specific rules,
such as ”Improper Input Validation”. The authors argue that
determining adherence to specific secure coding guidelines can
be complex due to factors like context.

D. Secure Code Awareness
Secure code awareness is crucial, especially in critical in-

frastructures. A study by Gasiba et al. [23] explored the factors
influencing developers’ adherence to secure coding guidelines.
While developers showed intent to follow these guidelines,
there was a noticeable gap in their practical knowledge. This
highlights the need for targeted, secure coding awareness
campaigns. The authors introduced a game, the CyberSecurity
Challenges, inspired by the Capture The Flag (CTF) genre, as
an effective method to raise awareness.
The Sifu platform [24] was developed in line with these

challenges. Sifu promotes secure coding awareness among
developers by combining serious gaming techniques with cy-
bersecurity and secure coding guidelines. It also uses artificial
intelligence to offer solution-guiding hints. Sifu’s successful
deployment in industrial settings showcases its efficacy in
enhancing secure coding awareness.
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III. METHODOLOGY
Our research methodology, aimed at examining the security

in the Rust programming language compared to Java and
C, and its interaction with security assessment tools, was
composed of four main stages:

• Literature Exploration
• Interviews with Security Experts
• Mapping to CWE/SANS, OWASP, and 19 Deadly Sins
• Analysis with Rust/SAST Tools

A. Literature Exploration
Due to the scarcity of academic resources, we commenced

with an integrated literature review, primarily focusing on gray
literature, such as reports and blog posts. We also conducted
an academic literature review using the ACM, IEEE Xplore,
and Google Scholar databases, with search terms including
”Rust Security”, ”Java Security”, ”C Security”, and ”Static
Application Security Testing”. The time frame was set from
2010 to 2023.

B. Interviews with Security Experts
We held discussions with five industry security experts

with experience with Rust, Java, C, and security assessment
tools. The experts from the industry are consultants with
more than ten years of experience and work on the topic
of secure software development. Their insights contributed
significantly to our understanding and interpretation of the
literature. Additionally, we conducted informal interviews
with two students who regularly use Rust and contribute
to open-source projects developed in the same programming
language. The student’s background is a master’s in computer
science with five years of programming experience with Rust.
The informal interviews with industry experts and computer
science students were conducted in August 2023 and lasted
about thirty minutes.

C. Mapping to CWE/SANS, OWASP, and 19 Deadly Sins
In this phase, we categorized Rust security issues according

to the Common Weakness Enumeration (CWE), SANS Top
25, and OWASP 10 and 19 deadly sins. This step helped in
classifying and understanding the security threats relevant to
Rust.

D. Analysis with Rust/SAST Tools
A comparative study was undertaken with Rust and Static

Application Security Testing (SAST) tools to assess the effec-
tiveness of these tools in identifying Rust’s security vulnera-
bilities.

E. Definitions
In our research, we employed three categories to assess the

level of security protection against specific issues in Rust: Rare
and Difficult (RD), Safeguarded (SG), and Unprotected (UP).

• Rare and Difficult (RD): This category refers to security
issues Rust’s inbuilt features or mechanisms can fully
mitigate or prevent. The language itself provides robust

protection against such issues. Security vulnerabilities
falling into this category are rare and difficult to spot.
They occur infrequently, making it challenging to en-
counter them. Rust’s inherent protections are usually
effective in addressing these issues, unless unsafe blocks
are used. These issues are often not commonly observed
and may require specific circumstances or careful analy-
sis, often associated with a Common Vulnerabilities and
Exposures (CVE) identifier.

• Safeguarded (SG): Issues falling under this category
benefit from protective measures provided by Rust. The
programming language offers safeguards to mitigate these
issues, reducing their likelihood or impact. However,
additional precautions or interventions may be necessary
in specific scenarios.

• Unprotected (UP): This category encompasses security
issues that the language does not inherently guard against
or if the CWE does not apply to the language. The
language lacks built-in mechanisms to protect against
these issues. Addressing them requires utilizing external
libraries or tools or a comprehensive understanding of
the language and underlying systems. In cases where a
particular CWE is irrelevant to the language, it is also
categorized as UP.

We utilized this methodology to evaluate the SANS Top
25, OWASP Top 10, and 19 Deadly Sins of Software Security
within the context of Rust. Additionally, we created Proof-
of-Concept (PoC) Rust code [25] to validate its feasibility,
containing vulnerabilities for the following weaknesses: Com-
mand Injection, Integer Overflow, Resource Leakage, SQL
Injection, and Time-of-Check-Time-of-Use (TOCTOU).

IV. RESULTS

A. SANS 25 (2023)
This section presents the findings of our analysis concerning

vulnerabilities in Rust, with a particular focus on evaluating
vulnerable software based on the SANS Top 25 list. Table I
summarizes the protection levels for different CWE vulnera-
bilities in Rust. These are categorized into three groups: Rare
and Difficult (RD), Safeguarded (SG), and Unprotected (UP).
It is crucial to note that complete protection is extended to all
code that does not use ’unsafe’ blocks.
Among the analyzed CWE vulnerabilities, the following

are identified as having Full Protection in Rust: CWE-787,
CWE-125, CWE-416, CWE-476, CWE-362, and CWE-119.
This finding suggests that Rust offers robust protection against
these vulnerabilities, thereby minimizing the likelihood of their
occurrence in Rust-based software, provided the code does not
employ ’unsafe’ blocks.
Conversely, several vulnerabilities, including CWE-79,

CWE-22, CWE-352, CWE-434, CWE-502, CWE-287, CWE-
798, CWE-862, CWE-306, CWE-276, CWE-918, and CWE-
611, exhibit No Protection in Rust. This finding implies that
Rust lacks built-in mechanisms to prevent or mitigate these
vulnerabilities, even when ’unsafe’ blocks are not in use. It is
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vital for developers working with Rust to be cognizant of these
vulnerabilities and implement additional security measures to
counteract them.
For certain vulnerabilities, such as CWE-79, CWE-20,

CWE-78, CWE-190, CWE-77, CWE-400, and CWE-94, Rust
provides some protection and safeguards. This result indicates
that Rust incorporates certain features or constructs that can
help diminish the likelihood of these vulnerabilities. However,
additional precautions may still be necessary to mitigate the
associated risks fully.
These findings underscore the importance of understanding

the vulnerabilities inherent in Rust and implementing suitable
security measures. While Rust provides strong protection
against specific CWE vulnerabilities, there are areas where
additional precautions are necessary. Developers should ex-
ercise caution when dealing with vulnerabilities categorized
as UnProtected, as these require meticulous attention and
specialized security practices.
In addition to analyzing the vulnerabilities in Rust, it is

insightful to contrast the protection levels Rust offers with
those provided by other prominent programming languages,
such as C, C++, and Java. Table II facilitates a side-by-
side comparison across these languages. In this table, the
protection levels are denoted as follows: Rare and Difficult
(RD), Safeguarded (SG), and Unprotected (UP) for C, C++,
and Java.
Upon examining Table II, it is evident that C, being an older

language, demonstrates fewer protections compared to C++
and Java, especially regarding memory-related vulnerabilities
like CWE-787. For instance, C does not provide safeguards
for CWE-787, while C++ and Java offer robust protections.
Java, owing to its managed memory model and sandboxed

execution environment, shows strong defenses against some
vulnerabilities that are particularly problematic in C and C++,
such as CWE-416.
Interestingly, for some vulnerabilities like CWE-79 and

CWE-22, all three languages - C, C++, and Java - display
limited or no protection. This observation accentuates the
importance of following secure coding practices irrespective
of the language used.
Furthermore, C++ seems to find a middle ground between C

and Java regarding protection levels, which could be attributed
to its evolution from C and its incorporation of modern
language features.
Developers must be cognizant of these variations in protec-

tion levels across languages and carefully weigh the security
aspects alongside other factors, such as performance and
ecosystem, when choosing a language for their projects.

B. OWASP 10
The OWASP Top 10 is a standard awareness document for

developers and web application security. It represents a broad
consensus about web applications’ most critical security risks.
The following is an assessment of how the Rust language can
offer protection against these vulnerabilities, according to the
OWASP standard from 2021:

TABLE I
SANS TOP 25 CWE VS. PROTECTION LEVELS IN RUST

CWE ID Short Description RD SG UP
CWE-787 Out-of-bounds Write •
CWE-79 Cross-site Scripting •
CWE-89 SQL Injection •
CWE-20 Improper Input Validation •
CWE-125 Out-of-bounds Read •
CWE-78 OS Command Injection •
CWE-416 Use After Free •
CWE-22 Path Traversal •
CWE-352 Cross-Site Request Forgery •
CWE-434 Unrestricted Dangerous File Upload •
CWE-476 NULL Pointer Dereference •
CWE-502 Deserialization of Untrusted Data •
CWE-190 Integer Overflow or Wraparound •
CWE-287 Improper Authentication •
CWE-798 Use of Hard-coded Credentials •
CWE-862 Missing Authorization •
CWE-77 Command Injection •
CWE-306 Missing Critical Function Authentication •
CWE-119 Buffer Overflow •
CWE-276 Incorrect Default Permissions •
CWE-918 Server-Side Request Forgery •
CWE-362 Race Condition •
CWE-400 Uncontrolled Resource Consumption •
CWE-611 Improper Restriction of XXE •
CWE-94 Code Injection •

24% 28% 48%

TABLE II
SANS TOP 25 CWE VS. PROTECTION LEVELS IN C, C++, AND JAVA

CWE C C++ Java
RD SG UP RD SG UP RD SG UP

CWE-787 • • •
CWE-79 • • •
CWE-89 • • •
CWE-20 • • •
CWE-125 • • •
CWE-78 • • •
CWE-416 • • •
CWE-22 • • •
CWE-352 • • •
CWE-434 • • •
CWE-476 • • •
CWE-502 • • •
CWE-190 • • •
CWE-287 • • •
CWE-798 • • •
CWE-862 • • •
CWE-77 • • •
CWE-306 • • •
CWE-119 • • •
CWE-276 • • •
CWE-918 • • •
CWE-362 • • •
CWE-400 • • •
CWE-611 • • •
CWE-94 • • •

0% 0% 100% 0% 24% 76% 20% 28% 52%

• A01-Broken Access Control (SG): While Rust does
not inherently provide web application access control, its
strong type system and ownership model can help prevent
logical errors that might lead to such vulnerabilities.

• A02-Cryptographic Failures (SG): Although Rust does
not provide built-in cryptographic features, it has high-
quality cryptographic libraries that can help mitigate these
failures to some extent.

• A03-Injection (SG): Rust’s strong type system and ap-
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proach to handling strings can help prevent injection
attacks. However, poor programming practices may still
result in these attacks; see PoC code in [25].

• A04-Insecure Design (UP): This vulnerability is more
about the design of the application rather than the lan-
guage itself. While Rust offers memory safety, it does
not inherently protect against insecure design, which
encompasses many issues.

• A05-Security Misconfiguration (UP): This vulnerability
is more about the application and environment configu-
ration than the language itself.

• A06-Vulnerable and Outdated Components (SG):
Rust’s package manager, Cargo, and its ecosystem can
help manage dependencies and their updates.

• A07-Identification and Authentication Failures (UP):
Rust does not inherently provide user authentication and
session management features.

• A08-Software and Data Integrity Failures (UP): Rust’s
ownership model and type system can help ensure data
integrity, but it is up to the programmer to leverage these
features effectively.

• A09-Security Logging and Monitoring Failures (UP):
This vulnerability is more about the application’s logging
and monitoring capabilities than the language itself.

• A10-Server-Side Request Forgery (SSRF) (UP): Rust
does not inherently protect against SSRF attacks.

We note that in literature, the numbering of the OWASP
vulnerabilities can also appear together with the date of the
OWASP standard, e.g., A01:2021.

TABLE III
MAPPING OF OWASP TOP 10 FROM 2021 TO RUST PROTECTION

LEVELS

OWASP Vulnerability RD SG UP
A01-Broken Access Control •
A02-Cryptographic Failures •
A03-Injection •
A04-Insecure Design •
A05-Security Misconfiguration •
A06-Vulnerable and Outdated Components •
A07-Identification and Authentication Failures •
A08-Software and Data Integrity Failures •
A09-Security Logging and Monitoring Failures •
A10-Server-Side Request Forgery •

0% 50% 50%

C. 19 Deadly Sins of Software Security
The book ”19 Deadly Sins of Software Security: Program-

ming Flaws and How to Fix Them” identifies and guides how
to fix 19 common security flaws in software programming.
Rust, a programming language, is designed to prevent some
of the most common security vulnerabilities. Below is a brief
analysis of how Rust addresses the 19 sins:

• Buffer Overflows (RD): Rust has built-in protection
against buffer overflow errors. It enforces strict bounds
checking, preventing programs from accessing memory
they should not.

• Format String Problems (SG): Rust does not support
format strings in the same way as languages like C,
thereby reducing the risk of this issue. It provides strong
protection against format string problems through its
type-safe formatting mechanism. The std::fmt module in
Rust offers a rich set of formatting capabilities while
enforcing compile-time safety.

• Integer Overflows (SG): In Rust, integer overflow is
considered a ”fail-fast” error. By default, when an integer
overflow occurs during an operation, Rust will panic
and terminate the program. This behavior helps catch
bugs early in development and prevents potential security
vulnerabilities. It also offers ways to handle integer
overflows gracefully.

• SQL Injection (SG): Rust itself doesn’t inherently pro-
tect against SQL injection. This protection is usually
provided by libraries that parameterize SQL queries, such
as rusqlite; see PoC code in [25].

• Command Injection (SG): Rust offers strong protec-
tions against command injection vulnerabilities through
its string handling and execution mechanisms. The lan-
guage’s emphasis on memory safety and control over
system resources helps mitigate the risk of command
injection; see PoC code in [25].

• Cross-Site Scripting (XSS) (UP): Rust does not provide
inherent protection against XSS. However, web frame-
works in Rust, such as Rocket and Actix, have features
to mitigate XSS.

• Race Conditions (RD): Rust’s ownership model and type
system are designed to prevent data races at compile time.

• Error Handling (RD): Rust encourages using the Result
type for error handling, which requires explicit handling
of errors.

• Poor Logging (SG): Poor logging is more of a design
problem than a language issue. Rust offers powerful
logging libraries, such as log and env_logger.

• Insecure Configuration (UP): Although Rust’s strong
typing can catch some configuration errors at compile
time, it does not offer direct protections against insecure
configurations.

• Weak Cryptography (SG): Rust has libraries that sup-
port strong, modern cryptography. However, the correct
implementation depends on the developer.

• Weak Random Numbers (RD): Rust’s standard library
includes a secure random number generator.

• Using Components with Known Vulnerabilities (SG):
This is more related to the ecosystem than the language
itself. Rust’s package manager, Cargo, simplifies updating
dependencies.

• Unvalidated Redirects and Forwards (UP): Protection
against this is usually provided by web frameworks.

• Injection (SG): Rust’s strong typing and absence of eval-
like functions lower the risk of code injection.

• Insecure Storage (UP): Not directly related to the lan-
guage itself.

• Denial of Service (SG): Rust’s memory safety and
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control over low-level details can help build resilient
systems, but it does not inherently protect against all
types of DoS attacks.

• Insecure Third-Party Interfaces (UP): This issue is
usually independent of the programming language.

• Cross-Site Request Forgery (CSRF) (UP): Typically,
handled by web frameworks rather than the language
itself.

TABLE IV
MAPPING OF NINETEEN DEADLY SINS OF SOFTWARE SECURITY

TO RUST PROTECTION LEVELS

Security Flaw RD SG UP
Buffer Overflows •
Format String Problems •
Integer Overflows •
SQL Injection •
Command Injection •
Cross-Site Scripting (XSS) •
Race Conditions •
Error Handling •
Poor Logging •
Insecure Configuration •
Weak Cryptography •
Weak Random Numbers •
Using Known Vulnerable Components •
Unvalidated Redirects and Forwards •
Injection •
Insecure Storage •
Denial of Service •
Insecure Third-Party Interfaces •
Cross-Site Request Forgery (CSRF) •

21% 47% 32%

In summary, Rust provides strong protections against sev-
eral of the ”19 deadly sins”, particularly those related to mem-
ory safety and data races. However, some issues, particularly
those related to web development or design decisions, are not
directly addressed.
In the following sections, we will delve deeper into the

analysis of past vulnerabilities in the Rust language and its
ecosystem and shed light on the time taken to address these
vulnerabilities and the current open issues in the Rust security
landscape. This comprehensive analysis aims to provide a
better understanding of the vulnerabilities in Rust and guide
developers and researchers in effectively addressing security
concerns in Rust-based software.

D. CVEs Addressed by Rust Security Advisory

A quick search on CVE Mitre with the keyword ”Rust”
returns over 400 vulnerabilities at the time of writing. Various
researchers have analyzed the CVEs, and the Rust community
actively fixes them once discovered [8], [26]. However, Rust’s
security advisory only addresses six of these vulnerabilities:
CVE-2021-42574 [27], CVE-2022-21658 [28], CVE-2022-
24713 [29], CVE-2022-36113 [30], CVE-2022-36114 [30],
and CVE-2022-46176 [31].

The most recent CVE acknowledged by the Rust security
advisory on their blog is CVE-2022-46176 [31]. This vulner-
ability, found in Cargo’s Rust package manager, could allow
for man-in-the-middle (MITM) attacks due to a lack of SSH
host key verification when cloning indexes and dependencies
via SSH. All Rust versions containing Cargo before 1.66.1 are
vulnerable. Rust version 1.66.1 was released to mitigate this,
which checks the SSH host key and aborts the connection if
the server’s public key is not already trusted.
E. Comparison of Rust Static Analysis Tools with Python,
Java, and C++
Rust has been gaining traction due to its focus on safety and

performance. As a young language, Rust’s ecosystem of static
analysis tools is still in rapid development. The primary tool
for static analysis in Rust is the Rust compiler, which includes
a robust type system and borrow checker that prevents many
bugs at compile time. Moreover, tools like Clippy provide lints
to catch common mistakes and improve Rust code.
In contrast, languages like Python, Java, and C++ have been

around for a considerable time and have a mature set of static
analysis tools. Python, a dynamically typed language, relies
on tools like PyLint, PyFlakes, and Bandit for static analysis.
With its static type system, Java uses tools like FindBugs,
PMD, and Checkstyle. C++, known for its complexity and
flexibility, employs tools like cppcheck and Clang Static
Analyzer.
While each language has its unique set of static analysis

tools, the effectiveness of these tools can vary based on the
language’s features and characteristics. The rapidly evolving
Rust ecosystem is a testament to the language’s growing
popularity and commitment to safety and performance. On
the other hand, the mature toolsets of Python, Java, and
C++ provide robust support for detecting potential bugs and
improving code quality, backed by years of development and
refinement.

V. DISCUSSION
In this study, we have explored the security implications

of using the Rust programming language, which is gaining
traction in the software industry due to its claims of safety and
security. Our findings indicate that while Rust offers certain
security advantages, it is not immune to vulnerabilities, and
there are areas where it falls short compared to other, more
mature languages.
Our research has shown that writing vulnerable software in

Rust is possible. This finding is essential, as it challenges the
perception that Rust is inherently secure. While Rust’s design
does make some types of vulnerabilities harder to introduce,
it is not a panacea. Other security aspects are as problematic
in Rust as in any other language. This point underscores the
fact that while language choice can influence the security of
a software system, it is not the only factor. Good security
practices are essential, regardless of the language used.
Some vulnerabilities are hard or impossible to solve through

an improved programming language as these belong to a ”non-
decidable” category. Therefore, writing a compiler or defining
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a programming language that identifies and eliminates such
problems is impossible. However, we have observed that Rust
does offer improvements over other languages in handling
these issues, which is a positive sign.
One of the challenges we encountered in our research is

the relative immaturity of Rust compared to other languages.
There are fewer studies on Rust security, and the tools and
support for secure development are not as robust. For example,
SonarQube [32], a popular tool for static analysis of code to
detect bugs, code smells, and security vulnerabilities, does not
currently support Rust. This lack of tooling can significantly
impede Rust’s adoption in an industrial context, where such
tools are critical for finding vulnerabilities and passing cyber-
security certifications.
Our discussions with industry experts found that Rust’s

high learning curve is another potential barrier to its adop-
tion. More investigation is needed to understand the security
consequences of this compared to other languages that might
be easier to learn. The lack of a ”competent” workforce skilled
in Rust is another challenge that needs to be addressed.
In our analysis of the SANS Top 25, Rust provides inherent

protections against 24% of the vulnerabilities, some safeguards
against 28% of vulnerabilities, and does not offer protection or
does not apply to 48% of the vulnerabilities. We made notable
observations when comparing Rust with other programming
languages like C, C++, and Java. C does not offer any
inherent protections against the vulnerabilities listed in the
SANS Top 25, as it was designed to be minimal and efficient.
C++, on the other hand, provides safeguards against particular
vulnerabilities, such as CWE-787 and CWE-15. Examples of
language features that can protect against these vulnerabilities
include the C++ Standard Template Library (STL) and other
features. Nevertheless, the C++ programming language does
not inherently protect against them. In our study, we observe
that C++ safeguards against only 24% of the vulnerabilities in
the SANS Top 25. However, Java utilizes a garbage collector
that inherently protects against memory-related issues. This
feature puts Java closer to Rust in terms of protection.
Our analysis of the OWASP findings revealed that not a

single finding is of the type RD, which is to be expected, as
Rust is more a system-level programming language rather than
a programming language for web technologies. Compared to
C, C++, and Java, which are widely used in the industry, Rust
shows promise but has limitations.
Our analysis of the 19 Deadly Sins showed that Rust

provides inherent protections against 21% of these sins, offers
safeguards for 47% of them, and leaves 32% of the sins
unprotected.
We do not expect any current or future programming

language to be able to cover 100% of the vulnerabilities, as
many coding guidelines in CWE are non-decidable. However,
our work shows that Rust does a commendable job addressing
many CWE guidelines.
Our inspiration to use a three-point scale (RD, SG, and UP)

in our analysis is based on the work by Jacoby (1971) [33],
who argued that ”Three-point Likert scales are good enough.”

The authors consider the present work essential as Rust’s
usage for software development continues to grow. Without
awareness of potential vulnerabilities, we risk replacing one
problem with another. It is crucial to emphasize the security
limitations of Rust early on rather than treating security as
an add-on feature. Security should be prioritized from the
inception of every project. Furthermore, due to Rust being a
relatively new language, standardized testing tools for assess-
ing compliance with ISO/IEC security standards are not yet
available, or very few. This lack of tools makes it challenging
to introduce Rust into the industry.
The present work does not focus on finding novel soft-

ware weaknesses specific to the Rust programming language
but rather on comparing well-known vulnerabilities, e.g., as
present in secure programming standards, and their relation to
the Rust programming language. Additional investigation is
needed to understand potential vulnerabilities when develop-
ing software in Rust which are caused by the language itself.
In conclusion, our work contributes to scientific knowledge

and industry practice by shedding light on the security impli-
cations of using Rust. While Rust is rising in significance
and the industry is starting to adopt it, there is a lack of
studies on its security aspects. Our work closes this gap and
shows that while it is still possible to write vulnerabilities in
Rust, some problems are well-considered. As Rust continues
to grow in popularity, we hope our findings will help guide
its development in a direction that prioritizes security and that
our work will serve as a foundation for further research in this
area.
While the interviews carried out in the present work include

a limited number of participants, the results of the present
work are validated. The authors did not only confirm some
vulnerabilities with proof-of-concept code but also conducted
interviews with highly experienced security experts. Never-
theless, the mapping to protection levels, while dependent on
the authors’ and interviewees’ experience, can also change in
future releases of the Rust programming language.

VI. CONCLUSION AND FUTURE WORK
Our research provided valuable insights into the secu-

rity implications of the Rust programming language. While
Rust has significantly enhanced software security, we have
demonstrated that it is not immune to vulnerabilities. Our
findings challenge the notion that Rust is inherently secure
and highlight the need for robust security practices, regardless
of the language used.
Our study has also shed light on the challenges associated

with Rust’s relative immaturity compared to other, more estab-
lished languages. The lack of comprehensive studies on Rust
security, the absence of robust tooling for secure development,
and the high learning curve associated with Rust are all areas
that require attention. Furthermore, the shortage of a skilled
workforce in Rust is a significant barrier that needs to be
addressed to facilitate its broader adoption in the industry.
Despite these challenges, Rust shows promise. Its design

makes specific vulnerabilities harder to introduce and of-
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fers improvements over other languages in handling ”non-
decidable” problems. As Rust continues gaining traction in
the software industry, it is crucial to investigate its security
implications and develop tools and practices to mitigate po-
tential vulnerabilities.
As the following steps, there are several avenues for future

work. One of the critical areas is the development of tools to
support secure development in Rust. These tools include static
application security testing tools like SonarQube, which are
critical for finding vulnerabilities and passing cybersecurity
certifications. Another area of focus is the development of
comprehensive training programs to lower Rust’s learning
curve and build a competent workforce skilled in Rust. In
further research, the authors would like to understand the
security consequences of Rust’s high learning curve through
comparative studies of software projects developed in different
programming languages.
As more software is developed in Rust, it is crucial to

maintain a sense of urgency in highlighting its security short-
comings. Security should not be an afterthought but should
be integrated from the beginning of every project. We hope
our work will contribute to developing safer and more secure
software systems.
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