
You Are Doing it Wrong - On Vulnerabilities in Low Code Development Platforms

Miguel Lourenço
Instituto Universitário de Lisboa

(ISCTE-IUL), ISTAR
Lisbon, Portugal

email: miguel_ponte@iscte-iul.pt

Tiago Espinha Gasiba
T CST SEL-DE
Siemens AG

Munich, Germany
email: tiago.gasiba@siemens.com

Maria Pinto-Albuquerque
Instituto Universitário de Lisboa

(ISCTE-IUL), ISTAR
Lisbon, Portugal

email: maria.albuquerque@iscte-iul.pt

Abstract—Low-Code Development Platforms (LCDPs) are
gaining more and more traction, even in the industrial context,
as a means for anyone with less coding experience to develop
and deploy applications. However, little is known about the
vulnerabilities resulting from this new software development
model. This paper aims to understand vulnerabilities in appli-
cations developed and deployed on these platforms. We show
that these vulnerabilities can be considered from three perspec-
tives: platform, developer, and plugins. We determine the top
three vulnerabilities for each perspective based on a review of
the literature and expert interviews. Our results contribute to
understanding LCDP applications’ security and raise awareness
of industry practitioners by providing typical LCDP security
pitfalls.

Keywords–low code; software development; web applications;
cybersecurity; industry; low code development platforms; vulnera-
bilities.

I. INTRODUCTION

Low-Code Development Platforms [1], a relatively new
technology to develop software, trace their roots to software
development tools from the 1990s and early 2000s. These
platforms allow applications to be developed without writing
code or only requiring small amounts of coding. The main
idea is to enable application development for everyone - any
user can quickly develop applications without needing to be
a software developer or having too much knowledge about
software development. Low-code development platforms bring
several additional advantages compared to traditional software
development. As such, developing software using LCDP is
not only easier but can be more prevalent. In a 2021 study by
Gartner [2], it was predicted that there would be an increase of
23% in the low-code development market due to the surge of
remote development during the pandemic. Hyperautomation
[3] was seen as one of the causes of the adoption of the low-
code through 2022, which came to be true in the most recent
study in 2023 by Gartner [4]. This latter study predicts that
the low-code development technologies market will grow by
20% in 2023. The same study predicts a significant increase in
the low-code application platforms, with an estimated growth
of 25% during the year 2023, achieving almost $10 billion in
revenue. Furthermore, the study predicts that the revenue will
increase to $12 billion by 2024.
In addition to the lesser need to develop software, low-

code development platforms can bring additional advantages.
According to North [5], some advantages that key players
in the market advertise include a shorter time to market,

cost savings, an increase in productivity, easier maintenance,
and support of digital transformation. The usage of LCDP
is also impacting and gaining traction in industrial software
development.
Bargury [6] and Liu [7] investigated cybersecurity incidents

resulting from the usage of LCDP. Their work shows that
cybersecurity incidents have steadily increased over the last
few years. Security incidents can cause serious problems, from
financial loss to loss of life, and are particularly important in
the industrial context, especially in cases that affect critical
infrastructure. Industrial cybersecurity standards, such as IEC
62.443 [8], provide several guidelines for the secure develop-
ment of software and applications for the industry.
A study by the Department of Homeland Security (DHS) [9]

calls attention to the fact that the root cause of more than 90%
of cybersecurity incidents can be traced back to poor software
quality. Developers can introduce these vulnerabilities through
written code or by including external third-party components
in products and services. While one of the main goals of
LCDPs is to reduce the amount of software being developed,
thus ideally reducing the number of security incidents, more
understanding is needed to know about the security implica-
tions of developing applications using LCDP. In particular,
there needs to be more understanding of the underlying
vulnerabilities resulting from deploying and developing LCDP
applications. This lack of knowledge is likely related to the
fact that LCDP is a new technology.
In this work, we want to address these issues and increase

our knowledge of LCDP vulnerabilities. Therefore, our work
aims to generate an artifact - a list of relevant vulnerabilities
that can affect applications developed and deployed using
LCDPs. Our study approaches the issues by 1) conducting a
lightweight systematic literature review relevant to the topic,
2) performing relevant database searches for known vul-
nerabilities, and 3) conducting interviews with cybersecurity
experts from the industry.
Our work contributes to industry and academia, enabling

the development of more secure applications and stimulating
research in the field. To the best of our knowledge, the present
work is the first to address and understand the vulnerabilities
and pitfalls of application development through low-code
development platforms. Therefore, through the present work,
industry practitioners can better understand the security pitfalls
of developing and deploying applications using LCDP and
thus actively address these pitfalls during the development of

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

the applications. Furthermore, the present work can serve as
an additional motivation for academic research and contributes
to the cybersecurity body of knowledge through empirical
evidence.
Our work is structured in the following way. Section II

briefly overviews previous work related to the present study.
In Section III, we provide details on the research method,
describe our approach to the problem, and also provide a
description of our experiment setup. Our results are presented
in Section IV and are discussed in detail in Section V. Finally,
we conclude our work with Section VI, which provides a quick
overview of our main results and details for further work.

II. RELATED WORK
This section characterizes the standards that influenced this

work and discusses relevant blogs and articles found during
the Lightweight Systematic Literature Review (LWLR) carried
out during the research.
The IEC 62443 cybersecurity standard provides guidelines

under which this research [8] is conducted. This standard
aims to increase system security by reducing the number
of system vulnerabilities. The increased security is achieved
by specifying technical security requirements that industrial
system elements must comply with. The IEC 62443 standard
is especially relevant for industries that deliver products and
services for critical infrastructures. One of the premises in the
standard aims to identify and secure valuable system assets.
The MITRE Corporation, a US-based organization, main-

tains the Common Weakness and Enumeration (CWE) stan-
dard. While the MITRE Corporation drives this standard, the
cybersecurity community influences it through open contri-
butions. As of 2023, the CWE standard identifies over 1000
software vulnerability types. Although this standard aims to
enumerate software vulnerabilities, it is general enough to
be used in other areas of cybersecurity. Due to the lack of
LCDP cybersecurity standards, in the present work, we use
this standard to specify security vulnerabilities.
We conducted surveys and LWLR in the present work.

Our survey design methodology finds its roots in work from
Grooves et al. [10]. As input to the design of our survey,
we conducted LWLR, a simplified version of the systematic
literature review method by Kitchenham et al. [11].
In this method, we used a handful of keywords to search for

literature about this topic, as follows: ”low-code”, ”low-code
development”, ”low-code platform”, ”low-code development
platform”, and ”security in low-code development”. With these
keywords, we put them on five different databases: Google
Scholar [12], IEEE Xplore [13], Springer Link [14], ACM
Digital Library [15] and ResearchGate [16]. To conduct a
selection of works, we defined a set of inclusion and exclusion
parameters. The inclusion parameters are as follows: docu-
ments are single works (articles, papers, and book chapters),
papers discuss LCDPs, and papers are available electronically
in full-text form. The exclusion parameters are as follows:
papers prior to 2020, papers not written in English, and studies
conducted that do not cover LCDP. This process resulted in

a small list of 10 articles listed in Table III in the appendix
section.
However, these articles show a need for more knowledge

regarding the security and vulnerabilities of LCDPs and appli-
cations developed using LCDPs. This issue is relevant since
there has been an increase in cybersecurity incidents. As such,
we expect this work to consolidate already-known information
and introduce new knowledge.

III. METHODOLOGY
The present section describes the methodology followed in

this work, which was used to create our artifact – a list of top
LCDP vulnerabilities. This work separates the process into
two focuses: the research method followed and the approach
used based on the research method.

A. Research Method
For the present work, we took inspiration from the Design

Science Research method by Peffers et al. [17], and Hevner
et al. [18]. Based on the guidelines provided by Peffers et al.
and our experience, we adopted four relevant guidelines for
this research: 1) design as an artifact, 2) problem relevance,
3) rigor, and 4) contributions.
Regarding the first point, our designed artifact consists of

a table of the top 3 vulnerabilities. Furthermore, this work’s
problem is relevant for the industry since cybersecurity is
essential in developing products and services. We aim to
achieve rigor in our research by using diversified sources
of information. In particular, we use existing information
in databases and blog posts and validate our work through
cybersecurity experts’ opinions and experience. Regarding the
last guideline related to DSR methodology, our work aims to
contribute to a better understanding of vulnerabilities in low-
code development platforms. Additionally, the present work
contributes to academia by deepening the existing knowledge
on this subject.
According to our experience in cybersecurity in the industry,

we decided to focus on three different perspectives to derive
the top LCDP vulnerabilities: platform, developer, and plugins.
We considered the platform perspective to be related to the
vulnerabilities of the environment where the application is
developed or runs, thus covering the LCDP application deploy-
ment aspect. We specify the developer perspective as the prob-
lems the LCDP developer causes or introduces to the LCDP-
developed application throughout the software development
lifecycle. This perspective focuses on problems generated by
the developer of the application him or herself and does
not consider problems incurred through the usage of external
components. Lastly, we defined the plugin’s perspective as
the problems that may occur in the developed solution due to
the inclusion of third-party components, e.g., from the LCDP
plugin marketplace.
To better understand the vulnerabilities of each of the

perspectives, we designed an approach that would fit our
research. This approach not only covers theoretical research
but also a more practical one.

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

B. Approach

To address our research goal and create our artifact, we
collected data from different sources and validated the re-
sults through expert review. Figure 1 visually represents our
approach. Data collection was carried out in three ways: 1)
lightweight literature review, 2) database search, and 3) expert
interviews. The last step (4) consisted of the consolidation of
the results through expert review.
The lightweight literature review method which was fol-

lowed is inspired by Kitchenham and Charters’ Systematic
Literature Review [11], but on a smaller scale. In particular,
we did not conduct a review using the snowball method,
and our selection process and reporting on the review are
simplified. The following search engines and repositories were
taken into consideration: IEEE [13], ACM [15], Springer [14],
Research Gate [16], and Google Scholar [12]. We searched
for papers with publishing dates between 2019 and 2023. The
keywords used for the search were: ”Low-Code”, ”Low-Code
Development Platforms”, ”Security in Low-Code Platforms”,
and derived terms from these.
Regarding the database search, it was conducted on the

Common Vulnerability and Exposures(CVE Details) [19]
database, a free-of-use database on common vulnerabilities
and exposures on most software available worldwide. To get
a list of relevant LCDPs, we consulted the ”Magic Quadrant
for Enterprise Low-Code Application Platforms” provided by
Gartner [20], along with the following additional sources: [21],
[22]. With the list of LCDPs, we searched for any vulnerabili-
ties for these platforms in CVE Details. From this, we obtained
the vulnerabilities for each platform, their corresponding CWE
ID [23] and a brief description of the vulnerability. It is es-
sential to mention that, despite searching for all platforms, not
all were in the database. Therefore, we consider the following
low-code development platforms: Mendix [24], OutSystems
[25], Salesforce [26], ServiceNow [27], Appian [28], Pega
[29], Oracle Apex [30], Zoho [31], Claris Filemaker [32],
Airtable [33], Blueprism [34], Processmaker [35], Wavemaker
[36], HCL Domino [37], 1C [38], Intrexx [39], Agilepoint
NX [40], Joget Dx [41], Openedge [42], Decisions [43], and
Nintex [44]. Also, some vulnerabilities did not have a CWE
ID, meaning they were either unmapped or unspecified. Thus,
those vulnerabilities were not taken into consideration for the
research. The list of vulnerabilities and affected platforms
and their impact were collected in an Excel table. After
obtaining this data, we grouped all vulnerabilities by their
CWE ID and calculated the number of occurrences of each
vulnerability across all frameworks. Finally, we ordered them
by the number of occurrences and impact, and when two or
more vulnerabilities had the same frequency value, we asked
for security experts’ opinions as a means for a tie-breaker.
Based on the gathered list of vulnerabilities, we designed a

simple survey. The following process resulted from the design:
1) present our findings from database search and literature
review, 2) ask if the experts agree with the findings, and 3)
ask what the experts would change. We used the survey to

interview six security experts in the industry. The industry
professionals had diversified years of field experience, which
ranged from beginners (two experts with less than five years
of experience) to senior developers (four experts with more
than twenty years of experience). These interviews were per-
formed during May 2023, were recorded with the respondents’
consent, and lasted between 30 and 60 minutes. The format
was an open discussion using a questionnaire based on our
findings. With all the gathered data, the information was coded
and grouped into each perspective from the artifact, as shown
in Table I. Following this, each perspective’s vulnerabilities
were prioritized to get a top 3 for the developer and plugins’
perspective.
In the last step, all gathered data and information were

reviewed by experts from the industry to validate and approve
all the research and interviews done. To do this, we consulted
three industry experts to validate all the information gathered.
Also, we appealed to the experts to help narrow down and
prioritize the list in case of double results. For example, when
a double vulnerability result appeared, we consulted them to
have a better prioritization, according to their experience.
Table I summarizes the mapping between the data input and

the LCDP vulnerability perspective.

TABLE I
MAPPING OF INFORMATION

LWLR CVE Details Interview
Platform •
Developer •
Plugins • •

This table shows that the CVE details database mainly
influences our understanding of platform vulnerabilities. Se-
curity expert interviews mainly influence our understanding
of developer vulnerabilities. Finally, the lightweight literature
review and the conducted security expert interviews mainly
influence the understanding of plugin vulnerabilities.

IV. RESULTS
In this section, we present the main results from our research

in the following sub-sections: mainly identified vulnerabilities
from the CVE details database, results of experts’ interviews,
and final consolidated results in the form of an artifact
containing the top LCDP vulnerabilities.

A. Platforms’ Vulnerabilities
The bar chart in Figure 2 summarizes the ten most recurrent

vulnerabilities identified in the analyzed platforms and the
number of findings. We observe that the vulnerability which
contains the highest number of recorded data is the CWE-
79, i.e., the cross-site scripting vulnerability. In the second
place, we found CWE-89 and CWE-352, with six findings
each. These vulnerabilities correspond to SQL injection and
cross-site request forgery. In the third place, we found CWE-
20, with five findings, a vulnerability related to improper
input validation. In the fourth place, with four findings each,

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

Select Sources

Light Weight
Literature Review

Database Search

Interview

Grouping in
Categories

Coding

Prioritizing

Grouping Prioritizing

Ex
p

er
t

R
ev

ie
w

1

2

3

4

Figure 1. Process of approach for this work.

we found CWE-668, CWE-918, CWE-269, CWE-400, and
CWE-287, which correspond to resource exposure, server-
side request forgery, improper privilege management, uncon-
trolled resource consumption, and improper authentication,
respectively. Finally, in the fifth place, we found CWE-611
with three findings corresponding to the XML external entity
vulnerability.

45

6 6 5 4 4 4 4 4 3

0

10

20

30

40

50

CW
E-7
9

CW
E-8
9

CW
E-3
52

CW
E-2
0

CW
E-6
68

CW
E-9
18

CW
E-2
69

CW
E-4
00

CW
E-2
87

CW
E-6
11

Figure 2. Identified CWE IDs together with the number of identified platform
vulnerabilities from CVE details database.

B. Experts’ Interview
After presenting the initial artifact, the six experts agreed

with the obtained results, with few exceptions. In particular,
we obtained feedback on the topic of ”access control”, ”admin-
istrative features”, and ”injection vulnerabilities”. The experts
claimed that the two first topics could be grouped as they could
be seen to overlap. Furthermore, the experts raised the point
that injection vulnerabilities have not been considered, and,
according to their experience, these are significant enough to
belong to the list. Based on the results of the interview with the
experts, not only did we validate our findings, but we could
also improve and extend them.

C. Final Results
Table II shows each perspective’s final results on the top

vulnerabilities. The table briefly describes the vulnerability
and the associated CWE ID.
Our results show that from the platform perspective, the

collected top three LCDP vulnerabilities are: T.1-1 – cross-
site scripting, T.1-2 – SQL injection, T.1-3 – cross-site request

TABLE II
FINAL RESULTS ON TOP THREE VULNERABILITIES, FOR EACH

PERSPECTIVE

Perspective Ref. CWE-ID Vulnerability Description
T.1-1 79 Cross-Site Scripting

Platform T.1-2 89 SQL Injection
T.1-3 352 Cross-Site Request Forgery
T.2-1 284 Access Control and Administrative Features

Developer T.2-2 840 Business Logic
T.2-3 250 Injections
T.3-1 – Custom-made plugins and interfaces

Plugins T.3-2 200 Data Breaches
T.3-3 285 Unauthorized access to systems

forgery. Regarding the developer perspective, our collected top
three LCDP vulnerabilities are: T.2-1 – access control and
administrative features, T.2-2 – business logic, and T.2-3 –
injections. Regarding the plugins perspective, our collected
top three LCDP vulnerabilities are: T.3-1 – custom-made
plugins and interfaces, T.3-2 – data breaches, and T.3-3 –
unauthorized access to systems. We note that, in Table II, for
each individual perspective, the three found vulnerabilities are
listed according to their impact, e.g. T.1-1 has higher impact
than T.1-3.

V. DISCUSSION
This section focuses on discussing all the results obtained

from the research and some possible threats to validity.
The present work considers three vulnerabilities for each

perspective ordered by importance. However, we note that
the order of vulnerabilities between different perspectives has
yet to be considered. For example, while T.1-1 - cross-site
scripting is the top vulnerability from the platform perspective,
we do not compare its importance to T.2-1 - access control
and administrative features of the developer perspective.
Concerning the platform’s perspective, the results achieved

were expected by the authors. The outcome of developing
software with LCDP is a web application. As such, the
results obtained according to the platforms’ perspective were
unsurprising, i.e., not only do they constitute typical web
vulnerabilities, according to the OWASP Top 10 project [45],
but they also match previous known platform incidents. Our
results provide an indicator that the deployment of the LCDP
platform itself should be carefully monitored, hardened, and
patched. Our experience has shown that the problems present

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

in the platform perspective only occur sometimes in the
applications developed within LCDP.
Regarding the developer’s perspective, our results indicate

that wrong configurations and implementation of business
logic are the main concerns when developing LCDP appli-
cations. These results are not surprising, as the typical LCDP
developer is inexperienced. However, a surprising result is the
inclusion of the CWE-250 in the developer perspective. An
application developed using an LCDP is typically well pro-
tected against injection attacks. However, injection problems
can occur when custom components need to be developed.
Thus, our results indicate that the vulnerabilities that occur
using pre-defined or pre-packaged components by the LCDP
vendor consist of configuration and business logic issues (T.2-
1, and T.2-2). However, when custom-written components
are integrated into the application, typical web development
problems can occur (T.2-3).
Concerning the perspective of plugins, except for the T.3-1,

the resulting findings also align with the authors’ experience
in the industry. The major problem we have identified is
the usage of custom-made plugins and interfaces (T.3-1).
This problem relates to the fact that plugins included in the
LCDP application are typically custom developed, might only
implement some security features, and might even lack secu-
rity documentation. Therefore, custom-made plugins possess a
security risk when integrated into LCDP applications without
careful checking. Additionally, including externally developed
plugins can lead to data leakages and data breaches, e.g.,
when the integrated plugin connects to an external unknown
or authorized party (e.g., the plugin’s vendor). This problem
can lead to unauthorized access to systems (T.3-3) due to the
vendor’s potentially malicious usage of the components.
Finally, most analyzed platforms have a dedicated market-

place where LCDP developers can get plugins. The main
idea is that the developers need not worry about security
since the plugins are developed and tested by the respective
vendors, and the vendors build a security stance and reputation
within the marketplace. Although plugins are being vetted
in the marketplace, it is still necessary to be cautious not
to integrate any form of malware into the environment and
projects. Acquiring third-party components through external
marketplaces or specialized companies is also possible. In this
case, according to our experience in the industry, it is advisable
to be extra careful regarding discontinued products, obsolete
versions, and malware.

A. Threats to Validity
Our lightweight literature review methodology might not

have considered all existing articles on low-code-development
platforms, thus potentially skewing our results. Furthermore,
using the CVE Details database as the single source for the
platform’s vulnerabilities can bias our conclusions. Further
work should therefore consider additional sources to provide
a more solid validation of our results.
The present study considers a limited number of interviews

with industry experts. While this small number of interviews

is typical for work performed in an industrial context, this
can lead to skewed and situated results. LCDPs are a new
technology that, according to the author’s experience, is as-
sumed to improve and become more mature. Therefore, our
results might only partially apply to current or future versions
of LCDPs. As the present study is carried out in an industrial
setting, it is subject to its inherent limitations in terms of the
available number of experts. Nevertheless, the results obtained
in the study are in agreement with the authors’ experience.
These results are not only corroborated by additional experts
through their insightful reviews but also through practical
real-world examples as obtained from feedback from the
interviewed pentesters. We also note that more precise results
might be obtained when the LCDP field is more mature.
Furthermore, our work summarizes vulnerabilities across

different LCDPs. Due to its nature, different results might be
obtained for each platform. Nevertheless, our work aims to
capture an overall picture; therefore, the authors do not focus
on individual platforms.

VI. CONCLUSION AND FUTURE WORK
Low-code development platforms constitute a new technol-

ogy that is revolutionizing software development. Thanks to
these platforms being end-user friendly, even people with little
or no coding experience can develop software applications ac-
cording to their ideas and requirements. With more convenient
access to software development and the increase of citizen
developers, it is necessary to raise awareness of the security
aspects of these platforms. With this work, we study common
vulnerabilities when developing and deploying applications
created with LCDPs. Towards this goal, we conducted a
lightweight literature review, analyzed openly known platform
vulnerabilities, and interviewed six industry security experts.
Our results shed light on the top three vulnerabilities of
applications developed using LCDPs into three perspectives:
platform, developer, and plugins. We show that not only
typical software development vulnerabilities can occur but also
additional vulnerabilities due to the development and deploy-
ment platform itself and the inclusion of third-party plugins. In
future work, we intend to further understand and validate our
results by taking a broader approach to the topic, considering
additional information from a more significant number of
sources, and conducting a large-scale survey. Furthermore, the
authors would like to conduct a longitudinal study approach
to understand the evolution of CWE vulnerabilities in LCDPs
over time. This detailed study can contribute to acknowledge
on the dynamic nature of vulnerabilities, their relevancy and
their potential changes.

ACKNOWLEDGEMENTS
Portuguese national funds partially finance this work

through FCT–Fundação para a Ciência e Tecnologia,
I.P., under the projects FCT UIDB/04466/2020 and FCT
UIDP/04466/2020. Furthermore, Miguel Lourenço and Maria
Pinto-Albuquerque thank the Instituto Universitário de Lisboa
and ISTAR for their support.

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

Siemens acknowledges funding for project CONTAIN by
the Federal Ministry of Education and Research under project
number 13N16585.

REFERENCES
[1] M. K. Pratt, “What are Low-Code and No-Code Development Plat-

forms?” https://www.techtarget.com/searchsoftwarequality/definition/lo
w-code-no-code-development-platform, [Online, 2023.09.18].

[2] Gartner, “Gartner Forecasts Worldwide Low-Code Development Tech-
nologies Market to Grow 23% in 2021,” https://www.gartner.com/en/n
ewsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low
-code-development-technologies-market-to-grow-23-percent-in-2021,
[Online, 2023.05.10].

[3] Gartner, “Definition of Hyperautomation - Gartner Information Tech-
nology Glossary,” https://www.gartner.com/en/information-technology/
glossary/hyperautomation, [Online, 2023.05.10].

[4] Gartner, “Gartner Forecasts Worldwide Low-Code Development Tech-
nologies Market to Grow 20% in 2023,” https://www.gartner.com/en/n
ewsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low
-code-development-technologies-market-to-grow-20-percent-in-2023,
[Online, 2023.05.10].

[5] J. North, “Will Low-Code Replace Developers?” https://www.101way
s.com/is- low-code-development-a-threat- to-software-engineering/,
[Online, 2023.05.10].

[6] M. Bargury, “Major Security Breach From Business Users’ Low-Code
Apps Could Come in 2023, Analysts Warn,” https://www.darkreading.
com/edge-articles/major-security-breach-from-business-users-low-cod
e-apps-could-come-in-2023-analysts-warn, [Online, 2023.05.10].

[7] N. Liu, “Forrester: Low-Code, Citizen Development Will Lead to Major
Data Breach in 2023,” https://www.sdxcentral.com/articles/analysis/for
rester-low-code-citizen-development-will-lead-to-major-data-breach-i
n-2023/2022/11/, [Online, 2023.05.10].

[8] International Electrotechnical Commission, “Understanding IEC 62443,”
https://www.iec.ch/blog/understanding-iec-62443, [Online, 2023.05.10].

[9] Department of Homeland Security, US-CERT, “Software Assurance,”
https://tinyurl.com/y6pr9v42, [Online, 2020.09.07].

[10] R. M. Groves, F. J. Fowler Jr, M. P. Couper, J. M. Lepkowski, E. Singer,
and R. Tourangeau, Survey methodology. John Wiley & Sons, 06 2009.

[11] B. Kitchenham and S. Charters, “Guidelines for Performing Systematic
Literature Reviews in Software Engineering,” Information and Software
Technology, vol. 2, pp. 1–65, 01 2007.

[12] Google, “Google Scholar Website,” https://scholar.google.com, [Online,
2023.05.10].

[13] IEEE, “IEEE Xplore,” https://ieeexplore.ieee.org/Xplore/home.jsp,
[Online, 2023.05.10].

[14] Springer Nature, “Springer - International Publisher,” https://www.spri
nger.com/gp, [Online, 2023.05.10].

[15] Association for Computing Machinery, “ACM Digital Library,” https:
//dl.acm.org, [Online, 2023.05.10].

[16] ResearchGate GmbH, “ResearchGate Website,” https://www.researchga
te.net, [Online, 2023.05.10].

[17] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A Design
Science Research Methodology for Information Systems Research,”
Journal of Management Information Systems, vol. 24, pp. 45–77, 01
2007.

[18] A. Hevner, S. Chatterjee, A. Hevner, and S. Chatterjee, “Design Science
Research in Information Systems,” Design research in information
systems: theory and practice, pp. 9–22, 2010.

[19] MITRE Corporation, “CVE Details Website,” https://www.cvedetails.c
om/, [Online, 2023.05.10].

[20] Gartner, “Magic Quadrant for Enterprise Low-Code Application Plat-
forms,” https://www.gartner.com/en/documents/4022825, 12 2022,
[Online, 2023.05.10].

[21] Gartner, “Enterprise Low-Code Application Platforms Reviews and
Ratings,” https://www.gartner.com/reviews/market/enterprise-low-c
ode-application-platform, [Online, 2023.05.10].

[22] G2.com, “Top Free Low-Code Development Platforms,” https://www.
g2.com/categories/low-code-development-platforms/free, [Online,
2023.05.10].

[23] MITRE, “CWE List Version 4.11,” https://cwe.mitre.org/data/, [Online,
2023.05.10].

[24] Mendix, “Mendix Website,” ht tps : / /www.mendix .com, [Online,
2023.05.10].

[25] OutSystems, “OutSystems Website,” https://www.outsystems.com,
[Online, 2023.05.10].

[26] Salesforce, “Salesforce Website,” https://www.salesforce.com/eu/,
[Online, 2023.05.10].

[27] ServiceNow, “ServiceNow Website,” https://www.servicenow.com,
[Online, 2023.05.10].

[28] Appian, “Appian Website,” https://appian.com, [Online, 2023.05.10].
[29] Pega, “Pega Website,” https://www.pega.com/, [Online, 2023.05.10].
[30] Oracle, “Oracle APEX Website,” https://apex.oracle.com/en/, [Online,

2023.05.10].
[31] Zoho, “Zoho Website,” https://www.zoho.com, [Online, 2023.05.10].
[32] Claris Filemaker, “Claris Filemaker Website,” https://www.claris.com/f

ilemaker/, [Online, 2023.05.10].
[33] Airtable, “Airtable Website,” https:/ /www.airtable.com, [Online,

2023.05.10].
[34] Blueprism, “Blueprism Website,” https://www.blueprism.com, [Online,

2023.05.10].
[35] Processmaker, “Processmaker Website,” https://www.processmaker.c

om, [Online, 2023.05.10].
[36] Wavemaker, “Wavemaker Website,” https://www.wavemaker.com,

[Online, 2023.05.10].
[37] HCLDomino, “HCLDomino Website,” https://www.hcltechsw.com/do

mino, [Online, 2023.05.10].
[38] 1C, “1C Website,” https://1c-dn.com, [Online, 2023.06.18].
[39] Intrexx, “Intrexx Website,” h t tps : / /www. in t r exx .com, [Online,

2023.06.18].
[40] AgilepointNX, “AgilepointNX Website,” https://www.agilepoint.com,

[Online, 2023.06.18].
[41] JogetDx, “JogetDx Website,” https://www.joget.org/product/joget-dx/,

[Online, 2023.06.18].
[42] Openedge, “Openedge Website,” https://www.progress.com/openedge,

[Online, 2023.06.18].
[43] Decisions, “Decisions Website,” ht tps : / /dec is ions .com, [Online,

2023.06.18].
[44] Nintex, “Nintex Website,” h t t p s : / /www . n i n t e x . c om, [Online,

2023.06.18].
[45] Open Web Application Security Project, “OWASP Top Ten,” https://ow

asp.org/www-project-top-ten, [Online, 2023.06.18].
[46] F. Sufi, “Algorithms in Low-Code-No-Code for Research Applications:

A Practical Review,” Algorithms, vol. 16, no. 2, 2023.
[47] J. Cabot and R. Clarisó, “Low Code for Smart Software Development,”

IEEE Software, vol. 40, no. 1, pp. 89–93, 2023.
[48] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and

M. Wimmer, “Low-Code Development and Model-Driven Engineering:
Two Sides of the Same Coin?” Softw. Syst. Model., vol. 21, no. 2, pp.
437–446, 2022.

[49] A. Trigo, J. Varajão, and M. Almeida, “Low-Code Versus Code-
Based Software Development: Which Wins the Productivity Game?”
IT Professional, vol. 24, no. 5, pp. 61–68, 2022.

[50] A. Bucaioni, A. Cicchetti, and F. Ciccozzi, “Modelling in Low-Code
Development: A Multi-Vocal Systematic Review,” Softw. Syst. Model.,
vol. 21, no. 5, pp. 1959–1981, 2022.

[51] S. Käss, S. Strahringer, and M. Westner, “Practitioners’ Perceptions
on the Adoption of Low Code Development Platforms,” IEEE Access,
vol. 11, pp. 29 009–29 034, 2023.

[52] J. Kirchhoff, N. Weidmann, S. Sauer, and G. Engels, “Situational
Development of Low-Code Applications in Manufacturing Companies,”
in Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, ser.
MODELS ’22, 2022, p. 816–825. [Online]. Available: https:
//doi.org/10.1145/3550356.3561560

[53] D. Pinho, A. Aguiar, and V. Amaral, “What About the Usability in
Low-Code Platforms? A Systematic Literature Review,” Journal of
Computer Languages, vol. 74, p. 101185, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S259011842200082X

[54] F. Khorram, J.-M. Mottu, and G. Sunyé, “Challenges & Opportunities in
Low-Code Testing,” in Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, ser. MODELS ’20, New York, NY, USA,
2020. [Online]. Available: https://doi.org/10.1145/3417990.3420204

[55] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting
the Understanding and Comparison of Low-Code Development Plat-
forms,” in 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2020, pp. 171–178.

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

https://www.techtarget.com/searchsoftwarequality/definition/low-code-no-code-development-platform
https://www.techtarget.com/searchsoftwarequality/definition/low-code-no-code-development-platform
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/information-technology/glossary/hyperautomation
https://www.gartner.com/en/information-technology/glossary/hyperautomation
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.101ways.com/is-low-code-development-a-threat-to-software-engineering/
https://www.101ways.com/is-low-code-development-a-threat-to-software-engineering/
https://www.darkreading.com/edge-articles/major-security-breach-from-business-users-low-code-apps-could-come-in-2023-analysts-warn
https://www.darkreading.com/edge-articles/major-security-breach-from-business-users-low-code-apps-could-come-in-2023-analysts-warn
https://www.darkreading.com/edge-articles/major-security-breach-from-business-users-low-code-apps-could-come-in-2023-analysts-warn
https://www.sdxcentral.com/articles/analysis/forrester-low-code-citizen-development-will-lead-to-major-data-breach-in-2023/2022/11/
https://www.sdxcentral.com/articles/analysis/forrester-low-code-citizen-development-will-lead-to-major-data-breach-in-2023/2022/11/
https://www.sdxcentral.com/articles/analysis/forrester-low-code-citizen-development-will-lead-to-major-data-breach-in-2023/2022/11/
https://www.iec.ch/blog/understanding-iec-62443
https://tinyurl.com/y6pr9v42
https://scholar.google.com
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.springer.com/gp
https://www.springer.com/gp
https://dl.acm.org
https://dl.acm.org
https://www.researchgate.net
https://www.researchgate.net
https://www.cvedetails.com/
https://www.cvedetails.com/
https://www.gartner.com/en/documents/4022825
https://www.gartner.com/reviews/market/enterprise-low-code-application-platform
https://www.gartner.com/reviews/market/enterprise-low-code-application-platform
https://www.g2.com/categories/low-code-development-platforms/free
https://www.g2.com/categories/low-code-development-platforms/free
https://cwe.mitre.org/data/
https://www.mendix.com
https://www.outsystems.com
https://www.salesforce.com/eu/
https://www.servicenow.com
https://appian.com
https://www.pega.com/
https://apex.oracle.com/en/
https://www.zoho.com
https://www.claris.com/filemaker/
https://www.claris.com/filemaker/
https://www.airtable.com
https://www.blueprism.com
https://www.processmaker.com
https://www.processmaker.com
https://www.wavemaker.com
https://www.hcltechsw.com/domino
https://www.hcltechsw.com/domino
https://1c-dn.com
https://www.intrexx.com
https://www.agilepoint.com
https://www.joget.org/product/joget-dx/
https://www.progress.com/openedge
https://decisions.com
https://www.nintex.com
https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten
https://doi.org/10.1145/3550356.3561560
https://doi.org/10.1145/3550356.3561560
https://www.sciencedirect.com/science/article/pii/S259011842200082X
https://doi.org/10.1145/3417990.3420204

APPENDIX

TABLE III
FINAL LIST OF REVIEWED ARTICLES FROM LIGHTWEIGHT LITERATURE REVIEW

Title Year Reference Short Summary

Algorithms in Low-Code-No-Code for Research Ap-
plications: A Practical Review

2023 [46] This work gives us information about the advantages and downsides of the
LCDPs, supported by some examples. It also shows how to create artificial
intelligence (AI) without coding, followed by an example of an algorithm
that monitors cyber-attacks through a LCDP.

Low Code for Smart Software Development 2022 [47] In this article, the authors explore the potential and challenges of low-
code environments, which enable quick delivery of AI-enhanced software
solutions, and provide a ”wish list” for developers to consider in these tools.

Low-code development and model-driven engineer-
ing: Two sides of the same coin?

2022 [48] This expert-voice paper compares low-code and model-driven approaches,
identifying differences, commonalities, strengths, and weaknesses, and sug-
gests cross-pollination directions.

Low-Code Versus Code-Based Software Develop-
ment: Which Wins the Productivity Game?

2022 [49] This article presents an experiment comparing low-code and code-based
software development technologies, aiming to answer which technology
enhances productivity. Results show clear productivity gains can be achieved
using low-code technology in management information system development.
The article reviews concepts, methodology, results, discussion, and limita-
tions and suggests future research.

Modeling in low-code development: a multi-vocal
systematic review

2022 [50] This article presents a systematic review of low-code development, focusing
on its relationship with model-driven engineering. The article, based on 58
primary studies, provides a comprehensive snapshot of low-code develop-
ment during its peak of inflated expectations technology adoption phase.

Practitioners’ Perceptions on the Adoption of Low
Code Development Platforms

2022 [51] In this work, a study was conducted in which 17 experts identified 12 drivers
and 19 inhibitors for LCDP adoption. The consensus was that these factors
are crucial, but the ranking is context-dependent. The study validates these
factors, adds six new drivers and six new inhibitors to the knowledge, and
analyzes their importance.

Situational development of low-code applications in
manufacturing companies

2022 [52] This paper presents an initial version of a situational software development
method for manufacturing companies, enabling low-code application devel-
opment. The method can be customized based on application requirements,
low-code platform features, and team characteristics. Feedback from expert
interviews supports the method’s usefulness.

What about the usability in low-code platforms? A
systematic literature review

2022 [53] In this article, the authors performed a Systematic Literature Review
procedure on the usability of LCDPs to understand the advantages and
disadvantages of these platforms. Also, in their work, they point out that the
drag-and-drop feature and end-user ability to develop software are among
the characteristics more commonly mentioned in literature.

Challenges & Opportunities in Low-Code Testing 2020 [54] This paper analyzes five commercial Low-Code Development Platforms
(LCDP) testing components to present business advancements in low-
code testing. It proposes a feature list for low-code testing, a baseline for
comparison, and a guideline for building new ones. Challenges include the
role of citizen developers, high-level automation, and cloud testing.

Supporting the understanding and comparison of
low-code development platforms

2020 [55] The authors worked on a technical review comparing eight representative
LCDPs’ characteristics and a short report on the experience of using each
one. They conclude a set of features covering functionalities and each
platform’s services. This work aims to raise the understanding of how LCDPs
can cover user requirements.

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Research Method
	Approach

	RESULTS
	Platforms' Vulnerabilities
	Experts' Interview
	Final Results

	DISCUSSION
	Threats to Validity

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX

