
Raising Awareness in the Industry on Secure Code Review Practices

Andrei-Cristian Iosif
Siemens AG

Munich, Germany
email: andrei-cristian.iosif@siemens.com

Tiago Espinha Gasiba
Siemens AG

Munich, Germany
email: tiago.gasiba@siemens.com

Ulrike Lechner
Universität der Bundeswehr München

Munich, Germany
email: ulrike.lechner@unibw.de

Maria Pinto-Albuquerque
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR

Lisboa, Portugal
email: maria.albuquerque@iscte-iul.pt

Abstract—As products and services become increasingly digital
and software increasingly complex, all aspects of an industrial
software development lifecycle must contribute to quality. Code
review serves as a means to address software quality and fosters
knowledge exchange across teams. Nonetheless, code review
practices require resources and often require more resources than
planned, while the benefit of a code review to code quality is less
tangible. In our work, we address the effectiveness and efficiency
of code review practices and develop an understanding of what
is a good and valuable code review practice as part of a software
development lifecycle. Our focus is code reviews meant to identify
and address security weaknesses in an industrial context. This
work presents a design study on how to design a workshop
on code review. We conducted and evaluated three workshops
with 37 industrial software developers. The findings of our work
reveal that presenting constructive code review practices can
contribute to raising awareness of secure coding and software
lifecycle practices among software development professionals.
This contributes to the quality and, in particular, security of
software.

Index Terms—code review, cybersecurity, compliance, develop-
ment lifecycle, quality, standards

I. INTRODUCTION

As more of the modern world relies on digital infrastructure,
ensuring software quality is paramount. To address this issue
in a tangible and standardized way, the ISO/IEC 25000 series
[1] has been created as an international standard that provides
guidelines and frameworks for assessing quality in software,
encompassing various characteristics, such as functionality,
reliability, usability, efficiency, maintainability, and portability.
Among these quality aspects, security is a critical domain,
as it ensures the protection of sensitive data and prevention
and protection against potential cyber threats. The ISO 27000
series explicitly addresses information security management
systems, with ISO/IEC 27001 [2] playing an essential role
in establishing and maintaining a comprehensive security
framework within organizations.

Cybersecurity threats are constantly evolving, and the se-
curity of critical infrastructures is at risk. In developing
software for Operational Technology, security is an essential
requirement. Code reviews are one of the measures to detect
weaknesses in the code and address other quality aspects, such
as adhering to standards or policies. In contemporary software
development practices, industry practitioners are tasked with

creating functioning code, adhering to established standards,
and integrating their work within the company’s adopted
software development lifecycle pipeline without considerable
overhead. There is a growing push for standardized processes
within companies to ensure consistent and efficient practices in
the software industry. Compliance with established standards
is crucial for maintaining code quality and security. One way
of easing this goal is by employing code review focusing on
software security.

To achieve this, exposing practitioners to the concepts and
principles behind the code review process is imperative. By
providing practitioners with a clear understanding of method-
ologies, organizations can foster a culture of compliance,
enhance code quality, and promote a cohesive approach to
software development that adheres to industry best practices.
This endeavor requires disseminating knowledge across all
organizational levels, ensuring a shared understanding of best
practices and methodologies. Interactive workshops serve as
effective communication channels for achieving this goal, as
participants can engage with theoretical concepts and solidify
their understanding through hands-on exercises. By fostering a
collaborative learning environment, such workshops empower
industry practitioners to enhance their technical skills, align
with organizational standards, and contribute to the overall
betterment of the software development process.

On the other hand, automation technologies and especially
DevSecOps, are promising methods in reducing the human
load in auxiliary programming tasks, such as software test-
ing, according to Sánchez-Gordón et al. [3]. Nonetheless,
according to Mao et al., [4], these emerging fields come with
limitations – Static Code Analysis Tools (SAST), for example,
produce reports that often include many false positives that
need human attention for filtering. The perceived gain in
testing coverage and less human involvement may therefore be
lost through manual filtration and, more concerning, distract
developers from the false negatives, which are not included
in the output of SAST tools, and often require deep insight
into the code. Manual code review should, therefore, not be
disregarded in security-critical applications, as a professional’s
scrutiny can catch architecture-level bugs and vulnerabilities,
whereas tools often fail, as shown by Kupsch et al. [5].

According to our experience, decision-supporting and pro-

62Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

cess tools must be enriched with human insight to ensure that
the software development lifecycle benefits from the team’s
expertise behind the software products being developed and
delivered. For this purpose, our current work aims toward
developing and evaluating an educational medium suitable for
the industry in which knowledge about code review, including
current standards and practical takeaways, can be disseminated
effectively.

This paper presents the initial design of a workshop to
train industrial software developers in code review. We also
present empirical results on the workshop’s evaluation and
the participants’ awareness of software development. The
present work poses and systematically addresses the following
research questions:
RQ1 What elements of the workshop contribute to raising

awareness on security when performing code review,
and are important and helpful for the participants when
conducting a workshop on code review?

RQ2 How can code review in practice be improved?
RQ3 How do practitioners receiving training on security

awareness compare against SAST tools?
Our work follows Action Design Research (ADR) method-

ology principles, and the present results shall serve as the first
step of ADR, with further refinement to be carried out in the
following, future design iterations.

The article is organized as follows: Section II provides an
overview of related work on code review and the standards that
may govern it. Section III follows by presenting the employed
methodology. The intervention is then presented in Section
IV. Based on the collected results, a discussion is presented in
Section V. Finally, Section VI reiterates our work and presents
further potential research directions based on the conclusions
reached in the present work.

II. RELATED WORK

The foundations of this work rely on established code
review standards and workflows, as well as the international
standards that govern code review and software security. To
elaborate on the workshop’s contents, a literature survey was
conducted on these two topics, and each of the two shall be
discussed in the remainder of this section.

A. Code Review

Code review is a practice that is well established within the
software development lifecycle, with one of the first works on
formalizing this process being formulated by Fagan [6], [7]
– where the author highlights code inspections in mitigating
errors during program development. The research emphasizes
how early identification and rectification of defects through
inspection processes leads to improved software quality and
increased productivity.

More recent research in the industry indicates that practi-
tioners consider a review beneficial primarily if the review
comments lead to improved code quality, as per Bosu et al.
[8]. In another study, MacLeod et al. [9] looked at the defining
characteristics of a code review that is perceived as useful by

the individuals that changed the code. Their findings highlight
the challenges of code review, e.g., the improper focus of
the review, uncertainty about the process, and lack of formal
training. The authors also provide recommendations for best
practices for all stakeholders – reviewers, change authors, and
the organization itself.

In his research, W. Charoenwet [10] conducted work on
integrating automated program security analysis into the code
review workflow. The work acknowledges the limitations of
automated findings and plans to design a review-assisting
framework based on tool findings. While similar in focus, the
research does not account for security standards and is not
explicitly targeted at the industrial work practices.

As previously mentioned, the studies serve as a consistent
foundation of insights into the benefits and pitfalls of code
review, pointing towards the potential trade-offs that need to
be considered when opting to integrate code review in an
industrial software development context. Though comprehen-
sive, the studies point to a gap in providing the necessary
knowledge for developers to perform a code review that is
considered beneficial within their teams.

Our work complements the existing body of knowledge
on code review by specifically focusing on reviews that aim
predominantly at reducing security flaws in code and which
follow the current standards. To the best of our knowledge,
there is no other ongoing research on raising industrial prac-
titioners’ awareness of cybersecurity-focused and standard-
compliant code reviews. We aim to heighten practitioners’
security awareness without having them rely on decision-
supporting tools.

B. Standards

The three standards we broadly covered as part of the
workshop presented in this work will be introduced in the
remainder of this section.

The ISO/IEC 62443 is an international series of standards
that address cybersecurity for Industrial Automation Control
Systems (IACS). The standard is divided into sections and
describes technical and process-related aspects of automation
and control systems cybersecurity. Furthermore, the standard
divides the cybersecurity topics by stakeholder category and
roles (e.g., operator, service providers, component and system
manufacturers). The different roles each follow a risk-based
approach to prevent and manage security risks in their activi-
ties. This standard includes code review as part of its Secure
Development Lifecycle (SDL) requirements for products in-
tended for use in the industrial automation and control systems
environment. Specifically, the IEC 62443-4-1 [11] outlines
process requirements for the secure development of products
used in IACS. One important aspect is that the standard
mentions that the people performing the review should have
specialized knowledge. This requirement leads to the need for
training and awareness, not only for software developers but
also for the parties involved in code review. The IEC 62443-
4-2 [12] details low-level technical requirements that need
to be fulfilled when implementing software for IACS. These

63Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

requirements must also be taken into consideration during code
review.

The ISO/IEC 20246 [13] standard establishes a generic
framework for work product reviews. It can be referenced
and used by all organizations managing, developing, testing,
and maintaining systems and software. The standard contains
a generic process, activities, tasks, review techniques, and
documentation templates applied during the review of a work
product, i.e., any artifact produced by a process. This docu-
ment defines work product reviews that can be used during
any phase of the life cycle of any work product. It is intended
for parties involved across all levels – i.e., project managers,
development managers, quality managers, test managers, busi-
ness analysts, developers, testers, customers, and others in-
volved in developing, testing, and maintaining systems and
software. Following a code review standard is vital during the
SDL process, audits, and accreditation.

From a programming-language perspective, the ISO/IEC TR
24772-1 [14] standard provides low-level guidance to avoiding
vulnerabilities in programming. This standard is programming-
language agnostic. It specifies vulnerabilities to be avoided
in developing systems where assured behavior is required for
security, safety, mission-critical, and business-critical software.
Another broad secure coding standard is provided by MITRE
[15] through the Common Weakness Enumeration (CWE).
Our work is based on the 2023 release of this standard. The
Open Web Application Security Project (OWASP) releases the
OWASP Top 10 [16] standard on a regular basis that is specific
to software developed for the web. Our work is based on the
2021 release of this standard.

III. METHODOLOGY

The research design is guided by the Action Design Re-
search (ADR) method. As stated by Sein et al. [17], ADR is a
research method for generating prescriptive design knowledge
through building and evaluating ensemble IT artifacts in an
organizational setting. It deals with (1) addressing a problem
encountered in a specific organizational setting by intervening
and evaluating and (2) constructing and evaluating an IT
artifact that addresses the class of problems typified by the
encountered situation. ADR is done in close collaboration
between researchers and practitioners in an iterative way in
which problem understanding, action-taking, and evaluation
are closely intertwined.

This research is situated in an industrial software develop-
ment context in which cybersecurity is paramount. We aim
to generate knowledge on code review practices to increase
code review effectiveness and to raise awareness for security
and code review. Designing and evaluating instruments for
training industrial software developers are critical activities
in our research design. Two researchers are embedded in
an industrial software development context and dispose of
several years of experience in industrial software development
and secure coding. This industrial context is open to collab-
orating with academia to bring in new ideas for individual
and organizational learning and rigorous evaluation of current

practices. In this article, we describe the results from activities
undertaken in industrial practice to design a workshop format
and content to raise awareness for code review as a practice
in the software lifecycle. We report on three workshops and
the evaluation of data from the workshops.

The first step in our research process was identifying
relevant scholarly literature and findings, de-facto standards
and norms on code reviews, software quality, and the software
lifecycle. Then, relevant content was selected and tailored to
the organization’s needs, and a workshop was designed. We
developed original code review exercises to be part of this
workshop to activate workshop participants and foster transfer
from the workshop practice to the everyday job situation.

We conducted three workshops as three separate events
with 37 participants between May and June 2023. These
workshops included semi-structured interviews for evaluation
of the code review training. We analyze data from the in-
terviews, together with the participatory observations. The
intervention was conducted in the context of industrial training
aimed at professionals in software development for operational
technology that are not specialized in cybersecurity.

The three workshops had between 7 and 16 participants.
Workshop participants aged between 21 and 63, each with a
technical background. The professional functions varied – each
of the three workshops included representatives for software
developers, project managers, and product owners.

Following the workshop, we conducted semi-structured in-
terviews. All the participants were informed clearly about the
purpose of the study. Moreover, it was noted that participation
in the review was optional, and the collected results shall
be collected anonymously. In total, 20 individual feedbacks
were collected. The survey was conducted online via Microsoft
Forms, with the participants being granted indefinite access to
the questionnaire at the end of the workshop. The interviews
conducted in our work follow a semi-structured methodology,
as per Wilson et al. [18] – the questions delivered to the
participants were aimed towards assessing the workshop’s
content in terms of balance between the topics it spanned
across. The questions are not directly addressing security but
rather the workshop design itself. Following the principles of
action design research, the initial phase of workshop planning
is meant mainly to collect information for further design steps.

IV. INTERVENTION – THE CODE REVIEW WORKSHOPS

A. Design of the Code-Review Training Workshop

The workshop was designed to last a day with a target
group of software developers and people holding managerial
positions. The delivery method was designed to be suitable
for both on-site and remote settings. A vital element of the
workshop was an exercise consisting of Python code which
contained several security vulnerabilities. The goal of the
exercise was for the participants to spot these vulnerabilities
through code review. The exercise allowed the participants
to put to practice the theoretical concepts that were learned
during the workshop.

64Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

The covered topics included: a taxonomy of common
software vulnerabilities, code review standards, and available
security and review tooling, as well as practical examples
of exploitation, mitigation, and reviewing methodology. The
designed workshop was conducted three times in an industrial
setting. Table I summarizes the three interventions. A ques-
tionnaire followed each intervention, the contents of which
can be observed in Table II.

TABLE I
INDUSTRY INTERVENTIONS

IN Date NP No. CWEs Delivery Participants from

1 3.05.2023 14 21 Online Germany, India
2 25.05.2023 7 21 Online Germany
3 12.06.2023 16 21 On-site United Kingdom

IN - Intervention Number, NP - Number of Participants

The first two interventions took place online through Mi-
crosoft Teams with participants mainly from Germany. During
the first workshop, four participants joined the online meeting
from India. The third workshop took place on-site in the
United Kingdom. We conducted a small survey at the end to
evaluate the workshop design. Additional details on the survey
are provided in Section IV-C.

B. Design of the Exercise

The exercise was developed to engage participants, as these
were tasked to work as a group, with a time limit of 15
minutes, and spot as many potential flaws in the code as
possible. Participants were also asked to use the SAST tool
Bandit [19] to enhance their code review. A discussion based
on their findings accompanied the exercise, with opinions
being exchanged about what lessons could be drawn.

As this workshop is taking part in an industrial context, a
requirement for the delivery was to traverse the contents of the
training in a manner with adequate pacing for the given time
constraints given for disseminating information to participants.

We, therefore, opted for a compact code snippet with a high
density of defects per Line of Code (LoC) - see Appendix.
As the participant’s programming background was polyglot,
we opted for a Python Flask Web Application to serve as a
snippet. This choice is due to the popularity and readability
of the Python language [20], as well as the rising prevalence
of web applications overall – see Collins [21]. Nonetheless,
a codebase’s security is a quality metric that is considered
non-negotiable, according to our experience in the industry
as security researchers, irrespective of the type or scope of
application – no application meant for an end-customer can
be insecure and standards-compliant at the same time.

The specially crafted code, although relatively small, con-
tains a high number of vulnerabilities (22) - this is meant to
cover as much of OWASP Top 10 [16] and CWE [15] through
the breadth of exposure. Excluding blank lines, include
statements, and rewrapping a multi-line statements, the snippet
comprises thirty-six lines of code. Of the thirty-six LoC,

expert security professionals managed to uncover 20 vulner-
abilities. This observation translates into an average of 0.55
vulnerabilities per LoC. The annotated snippet is provided as
an Appendix to the paper. The exercise targets code defects
rather than architectural defects, as the architecture design
and planning should be carried out earlier in the lifecycle of
an application, and the majority of industry reviews mostly
concern themselves with code rather than the underlying
architecture.

The exercise under scrutiny serves as a way of quantifying
the behavior aspect from Hänsch et al. [22] in the broader
context of the workshop. In the context of the present study,
Perception refers to disseminating knowledge of possible
issues, Protection addresses knowledge of possible counter-
measures, and behavior describes the observed performance
of the participants during practical exercises. Gaining insight
into the proposed RQs is intended to lead to a well-designed
workshop, such that Perception, Protection, and Behavior of
the practitioners can be improved.

C. Empirical Evaluation

The evaluation is done in a semi-structured interview. In the
evaluation of the workshop content and perceived usefulness of
the workshops to the participants, we refer to the definition of
awareness as given by Hänsch et al. [22], who structure aware-
ness into three constituent components: perception (knowledge
of issues), protection (available countermeasures) and behavior
(individuals actively employing countermeasures).

We group the questions into four distinct categories, as per
Table II: keep factors (K), reject (discard) factors (R), delivery
of the content (D), and perceived value (V). All questions
were delivered via Microsoft Forms, with the answering op-
tions consisting of freeform text, except for questions Q11
and Q12, which employed a 5-point Likert [23] scale that
spanned between ”Very unlikely” to ”Very likely” and ”Very
dissatisfying” to ”Very satisfying” respectively.

Refering to our driving research questions, answering RQ1
can be done by observing the answers to the questions
pertaining to the keep factors (K), as well as the discard factors
(R) serving as counter-examples.

Observing what participants rank as valuable from the
training can provide insight into RQ2, with their answers
serving as tangible measures of what can be done to improve
code review in practice.

V. EVALUATION RESULTS

In total, 20 individual feedback results were collected from
the structured interviews across the three interventions.

Regarding keep factors, practical examples were the most
mentioned among the participants’ answers, with seven men-
tions across the 20 collected answers.

In terms of discard factors, participants consistently men-
tioned the medium of delivery for the exercise, as usage of
the platform sometimes hindered the intended goal of the
exercises. The employed medium for conducting the exercise
was Microsoft Conceptboard, a generic collaboration and

65Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

TABLE II
SURVEY QUESTIONS

QN Category Question

Q1 K What would you keep from this training?
Q2 R What would you discard from this training?
Q3 K What did you find most useful/valuable in this

presentation/training?
Q4 D Was the content presented clearly and effectively?
Q5 R Were there any parts of the presentation/training

that you found confusing or difficult to understand?
Q6 K & R Did the presentation/training meet your

expectations? If not, what could have been
improved?

Q7 K Were there any specific examples or case studies
that resonated with you?

Q8 D Did you feel the presentation/training was engaging
and interactive enough?

Q9 V Did the presentation/training meet your learning
objectives?

Q10 K Were there any additional topics or areas you
would have liked to see covered in this
presentation/training?

Q11 V How likely are you to recommend this
presentation/training to others?

Q12 V Overall, how would you rate the quality of the
presentation/training?

QN - Question Number, K - Keep, R - Reject, D - Delivery, V - Value

brainstorming platform. Approximately half of the participants
also expressed a lack of familiarity with the platform, which
might influence the perception in this regard. Other negatively
received aspects of the training were advanced concepts that
were mentioned, but not sufficiently addressed, specifically
formal verification and advanced pentesting techniques as sup-
plementary means of code testing. Furthermore, through an-
swers on Q10, participants expressed interest in the following
additional topics/aspects: receiving supplementary practical
guidance, such as a sample code review report and strategies
in finding issues.

Focusing on the answers to question Q3, which inquires
about the most useful part of the presentation, the participants’
answers can be clustered into two main categories: practical
examples and standards. This clustering is in line with the
expectations considering their demographic, as the audience
consisted of a balanced crowd of developers and managerial
and organizational professionals.

The positive results collected from Q11 and Q12 encourage
the pursuit of further design cycles – Recommending the
training to others was responded to with 50% Very likely,
41% Likely and 9% Neutral; The quality of the training was
considered by 58% of the participants to be Very Satisfying,
25% reported it as Satisfying, and 17% Neutral.

In terms of delivery, the participants considered the overall
format adequate, sans the delivery method for the exercises.
The workshop also contained a dedicated section of Do’s and
Don’t regarding code review comments, where best practices
were suggested. As coding style is often highly a matter of per-
sonal preference, some debate was expected. This discussion
occurred organically across all three interventions, initiated
from the participants’ side, and denotes a high degree of im-

plication and opinion, which proved valuable in opening up the
workshop for fruitful open discussion concerning what affects
and does not affect code security. Through open dialogue,
a consensus was reached that coding style does not impact
security as long as readability is not negatively impacted.

In addition to the questions from Table II, participants were
encouraged to provide additional thoughts they considered
worth sharing. This free-form feedback was observed to be
more brief and sparse than its semi-structured counterpart.

Some examples of replies from the participants include:
• ”Thank you, I really liked it and am happy to get the

slides as a reference for later.”
• ”Consider adapting the exercises to the Conceptboard.”
• ”Keep up the great work. Thanks.”
In order to do a preliminary exploration of RQ3, we

introduce the metrics collected from the practical exercise in
Table III.

TABLE III
NUMBER OF IDENTIFIED VULNERABILITIES

IN PF EF TF

1 11 22 5
2 12 22 5
3 14 22 5

IN - Intervention Number, PF - Participant Findings
EF - Expert Findings, TF - Tool Findings (SAST tool Bandit)

None of the participants had cybersecurity knowledge or
familiarity with Python Flask applications for all three in-
tervention runs. Referring to the discussion following the
exercise, participants were positively impressed to see how
they outperformed the SAST tool provided to them, consid-
ering the group’s cumulative experience and the exercise’s
time limit. Observing the limitation of automated security
testing was beneficial to the participants’ general awareness
of vulnerabilities and the threat of false negatives from tools.

It is interesting to point out that the participants’ findings
constantly ranked, across all interventions, at approximately
the halfway point between the number of findings from the
tools and the number of findings from security experts. This
indicates that any party involved in the software development
lifecycle may positively impact the security of the work
product, even after just minimal training.

Furthermore, based on the discussion following the exercise,
the participants reached an intended conclusion: deep familiar-
ity with the technology under review (programming language
and libraries) is necessary to uncover all underlying security
issues fully.

A. Threats to validity

The results of this work rely on data interpreted from
the collected from surveying a total of 37 working profes-
sionals. The limited number of participants and variance in
their backgrounds may introduce bias in the conclusions.
Preliminary results are positive for the most part, which could
partly be influenced by the voluntary nature of the survey

66Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

and participant number – a negative reviewer may opt out of
feedback submission, and it is typical for participants that are
aware of the purpose of a study’s purpose to display positive
bias.

Nevertheless, the results of this work are in line with
previous and related work in the field of security awareness
conducted in the industry. This fact, together with the inherent
limitation of design science studies carried out in an industrial
context, leads us to regard that the formulated conclusions of
the present study would not be subject to significant variation
if the participant number had been higher.

According to the design science paradigm by Hevner et al.,
[24], we are dealing with a wicked problem – the requirements
dealt with in the industry and in practice are unstable and
changing, as conducting the interventions cannot be done
with respect to a control group, and the demographics of the
participants and their capabilities are changing from one run to
the other. In this case, conducting a quantitative measurement
would constitute a tedious endeavor, and we, therefore, employ
the active design methodology laid out by Hevner et al.

As ADR employs iteration across multiple design cycles,
the authors would like to expand the participant pool through
industrial interventions to gain more refined insight and vali-
date the current results.

B. Lessons Learned

Through investigating RQ3, we conclude that SAST tools
do not cover all the aspects of code review. Coding guidelines
contain both decidable and non-decidable problems – this
translates into automated assessment being a helpful decision-
supporting mechanism but not a final solution for the adher-
ence to standards.

The false sense of security provided by the tools also trans-
lates into a more relaxed attitude during manual code review
– practitioners have been observed to sometimes overlook the
banal security malpractices that are reported by SAST tools
while focusing on the more subtle defects introduced in the
snippet presented in the exercises.

The series of industrial interventions was conducted together
with audiences that were heterogeneous in terms of knowledge
and professional role. We have found that our generalist
approach to the content of the workshop was suitable for this
context, as focus and time could be reallocated dynamically
throughout the workshop to suit better the gaps in each of the
audience’s awareness.

VI. CONCLUSIONS AND FURTHER WORK

As experience in the industry includes adhering to rigorous
standards, practitioners at all layers of the software develop-
ment lifecycle must be made aware of the aspects governing
processes that are part of adhering to current standards. In
our study, we have observed that, though code review has
been established, it is not yet widespread. Although the ISO
20246 standard on code review found its roots in 2008, through
IEEE 1028, general awareness of its practice was lacking
in our study group. With the inclusion and actualization of

formalized code reviews within ISO 62443, companies are
sure to include more code reviews in their internal processes.
Raising awareness concerning this standard is therefore needed
in the industry.

To address this issue, we propose raising awareness of
security issues through code review by means of an interactive
workshop. In our training, the participants are given a snippet
of vulnerable code and are tasked with finding issues within
it, similar to a real-life review.

Our work contributes to understanding how to structure a
workshop in the industry to address the participants’ needs.
We evaluated the workshop through semi-structured interviews
spanning three separate interventions, throughout which 37
practitioners participated, and feedback from 20 individuals
was collected. Preliminary results indicate that the workshop’s
content, with emphasis on the practical side, was well received.
Having the participants formulate some of the workshop’s
intended takeaway points during follow-up discussions of the
hands-on parts of the training serves as substantial validation
that the exercises contained in the workshop are fulfilling their
purpose of building and raising awareness on code review in
the context of software security.

In further work, the authors would like to refine the
implementation of the practical exercises toward a serious
game. Based on the feedback, the new iteration shall cover
elements that would steer the participant’s information toward
the content while keeping interface and interaction elements
at a minimum necessary. Accounting for the current studies’
participants, future content may be added in the direction
of an appendix of tailored code review checklists based on
the intended objective of the review (e.g., audit, release).
Furthermore, the authors would like to assess practitioners’
current awareness of the interplay between code review and
software security by employing a representative survey.

ACKNOWLEDGMENTS

This work is partially financed by Portuguese national
funds through FCT–Fundação para a Ciência e Tecnologia,
I.P., under the projects FCT UIDB/04466/2020 and FCT
UIDP/04466/2020. Furthermore, Maria Pinto-Albuquerque
thanks the Instituto Universitário de Lisboa and ISTAR, for
their support. We acknowledge funding for project CONTAIN
by the Federal Ministry of Education and Research under
project numbers 13N16581 and 13N16585.

The authors would like to thank Anton Bartl for the useful
discussions and provision of the original starting idea for the
vulnerable code snippet used in the study.

REFERENCES

[1] ISO/IEC 25000:2014, “Systems and software engineering – systems and
software quality requirements and evaluation (square) – guide to square,”
International Organization for Standardization, Geneva, CH, Standard,
2014.

[2] ISO/IEC 27001:2013, “Information technology – Security techniques
– Information security management systems – Requirements,” Interna-
tional Organization for Standardization, Geneva, CH, Standard, 2013.

67Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

[3] M. Sánchez-Gordón and R. Colomo-Palacios, “Security as culture: A
systematic literature review of DevSecOps,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ser. ICSEW’20. New York, NY, USA: ACM, 2020, p.
266–269. [Online]. Available: https://doi.org/10.1145/3387940.3392233

[4] R. Mao, H. Zhang, Q. Dai, H. Huang, G. Rong, H. Shen, L. Chen, and
K. Lu, “Preliminary Findings about DevSecOps from Grey Literature,”
in 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security (QRS), 2020, pp. 450–457.

[5] J. A. Kupsch and B. P. Miller, “Manual vs. Automated Vulnerability As-
sessment: A Case Study,” in First International Workshop on Managing
Insider Security Threats (MIST), 06 2009, pp. 83–97. [Online]. Avail-
able: pages.cs.wisc.edu/∼kupsch/va/ManVsAutoVulnAssessment.pdf

[6] M. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 38, no. 2.3, pp. 258–287, 1999.

[7] M. Fagan, “A History of Software Inspections,” in Software Pioneers.
Springer Berlin Heidelberg, 2002, pp. 562–573.

[8] A. Bosu, M. Greiler, and C. Bird, “Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, 2015, pp. 146–
156.

[9] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka,
“Code reviewing in the trenches: Challenges and best practices,” IEEE
Software, vol. 35, no. 4, pp. 34–42, 2017.

[10] W. Charoenwet, “Complementing Secure Code Review with Automated
Program Analysis,” in Proceedings of the 45th International Conference
on Software Engineering: Companion Proceedings, ser. ICSE ’23. IEEE
Press, 2023, p. 189–191.

[11] ISO/IEC 64223-4-1:2018-1, “ISO/IEC 62443-4-1:2018 Security for
industrial automation and control systems - Part 4-1: Secure prod-
uct development lifecycle requirements,” International Organization for
Standardization, Geneva, CH, Standard, 1 2018.

[12] ISO/IEC 64223-4-2:2019-12, “Security for Industrial Automation and
Control Systems - Part 4-2: Technical Security Requirements for IACS
Components,” International Electrical Commission, Geneva, CH, Stan-
dard, 1 2019, ISBN 978-2-8322-6597-0.

[13] ISO/IEC 20246:2017, “Software and systems engineering – Work prod-
uct reviews,” International Organization for Standardization, Geneva,
CH, Standard, 2017.

[14] ISO/IEC TR 24772-1:2019, “Programming languages – Guidance to
avoiding vulnerabilities in programming languages – Part 1: Language-
independent guidance,” International Organization for Standardization,
Geneva, CH, Standard, 2019.

[15] “CWE Top 25 Most Dangerous Software Weaknesses,”
https://cwe.mitre.org/top25/archive/2023/2023 top25 list.html, MITRE
Corporation, 2023, online, accessed 2023.07.24.

[16] “OWASP Top 10 - 2021,” https://owasp.org/Top10/, OWASP Founda-
tion, 2021, online, accessed 2023.07.24.

[17] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren,
“Action Design Research,” MIS Quarterly, vol. 35, pp. 37–56, 2011.

[18] C. Wilson, “Semi-Structured Interviews,” in Interview Techniques for
UX Practitioners. Burlington, Massachusetts, USA: Elsevier, 2014, pp.
23–41. [Online]. Available: https://doi.org/10.1016/b978-0-12-410393-
1.00002-8

[19] “Bandit,” https://pypi.org/project/bandit, PyCQA, 2023, online, accessed
2023.07.24.

[20] GitHub, “Why Python Keeps Growing, Explained,”
https://github.blog/2023-03-02-why-python-keeps-growing-explained/,
March 2023, online, accessed 2023.07.24.

[21] V. Collins, “Why You Don’t Need to Make an App:
A Guide for Startups Who Want to Make an App,”
https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-
need-to-make-an-app-a-guide-for-startups-who-want-to-make-an-app/,
April 2019, online, accessed 2023.07.24.

[22] N. Hänsch and Z. Benenson, “Specifying IT Security Awareness,” in
Proceedings - International Workshop on Database and Expert Systems
Applications, DEXA. Munich, Germany: IEEE, 12 2014, pp. 326–330.

[23] R. Likert, “A Technique for the Measurement of Attitudes.” Archives
of psychology, vol. 22, no. 140, pp. 1–55, 6 1932, . [Online]. Available:
https://legacy.voteview.com/pdf/Likert 1932.pdf

[24] A. Hevner, S. March, J. Park, and S. Ram, “Design Science in Informa-
tion Systems Research,” Management Information Systems Quarterly,
vol. 28, pp. 75–, 03 2004.

APPENDIX - VULNERABLE FLASK APP

Listing 1. Code snippet used for manual review
import sqlite3, random
from flask import Flask, abort, request, jsonify
from flask_cors import CORS

app = Flask(__name__)
CORS(app)
database = ’./login.db’

def create_response(message):
response = jsonify({’message’: message})
response.headers.add(’Access-Control-Allow-

Origin’, ’*’)
TODO Ticket: id91263
return response

@app.route(’/setup’, methods=[’POST’])
def setup():

connection = sqlite3.connect(database)
SECRET_PASSWORD = "letMeIn!";
THIS_IS_A_VARIABLE = "WBneKJw1fHch8Qd3XFUS";
print("Super Secret Password SSH Server Password

to 10.10.10.1:22: " + SECRET_PASSWORD)
connection.executescript(’CREATE TABLE IF NOT

EXISTS login(username TEXT NOT NULL UNIQUE,
password TEXT NOT NULL);INSERT OR IGNORE
INTO login VALUES("user_1","123456");’)

return create_response(’Setup done!’)

@app.route(’/login’, methods=[’POST’])
def login():

username = request.json[’username’]
password = request.json[’password’]
connection = sqlite3.connect(database)
cursor = connection.cursor()
cursor.execute(’SELECT * FROM login WHERE

username = "%s" AND password = "%s"’ % (
username, password))

user = cursor.fetchone()
if user:

response = create_response(’Login successful
!’)

response.set_cookie(’SESSIONID’, str(random.
randint(1,99999999999999999999999)),
httponly=False,secure=False)

response.set_cookie(’TESTID1’, str("
TESTSTRING1"), httponly=True,secure=True
)

response.set_cookie(’TESTID2’, str("
TESTSTRING2"))

return response
else:

response = create_response(’Login failed!’)
response.delete_cookie(’username’)
return response, 401

if __name__ == "__main__":
app.run(host=’0.0.0.0’, port=8080, debug=True)

68Copyright (c) IARIA, 2023. ISBN: 978-1-68558-113-8

CYBER 2023 : The Eighth International Conference on Cyber-Technologies and Cyber-Systems

