
Sterilized Persistence Vectors (SPVs): Defense Through Deception on
Windows Systems

Nicholas Phillips
Department of Computer and Information Sciences

Towson University, Towson, MD, USA
nphill5@students.towson.edu

Aisha Ali-Gombe
Division of Computer Science and Engineering

Louisiana State University, Baton Rouge, AK, USA
aaligombe@lsu.edu

Abstract—The vicious cycle of malware attacks on infrastruc-
tures and systems has continued to escalate despite organizations’
tremendous efforts and resources in preventing and detecting
known threats. One reason is that standard reactionary practices
such as defense-in-depth are not as adaptive as malware devel-
opment. By utilizing zero-day system vulnerabilities, malware
can successfully subvert preventive measures, infect its targets,
establish a persistence strategy, and continue to propagate, thus
rendering defensive mechanisms ineffective. In this paper, we
propose sterilized persistence vectors (SPVs) - a proactive Defense
by Deception strategy for mitigating malware infections that
leverages a benign rootkit to detect changes in persistence areas.
Our approach generates SPVs from infection-stripped malware
code and utilizes them as persistent channel blockers for new
malware infections. We performed an in-depth evaluation of our
approach on Windows systems versions 7 and 10 by infecting
them with 1000 different malware samples after training the
system with 1000 additional samples to fine-tune the learning
algorithms. Our results, based on a memory analysis of pre-and
post-SPV infections, indicate that the proposed approach can
successfully defend systems against new infections by rendering
the malicious code ineffective and inactive without persistence.

Keywords— Malware, Computer Security, Reverse Engineering,
Persistence, Rootkit.

I. INTRODUCTION

Malware is a continued threat against cyber systems. Characterized
by stealthiness, persistence, and mutation, new-generation malware
often utilizes various system vulnerabilities for infection and then
leverages standard system functionality to maintain persistence. With
a suitable persistence strategy, malware can remain active and prolong
its existence on a host system. One of the strengths of modern mal-
ware development is its adaptability: methodologies mutate rapidly,
targeting areas where security measures are weaker or nonexistent.
In both related literature and practice, many malware defensive
techniques have been proposed - (1) anti-virus and host-based in-
trusion detection [29], (2) integrity checking [27], [38], detection
[7], [24], [36], [37] and (3) after-effect or post-mortem analysis [2],
[9], [30], [40], [41] of modern malware. However, as evidenced by
the continued rise in stealthier attack scenarios, new samples, and
variant development [15], these existing defensive approaches fall
short in addressing a growing threat. The common theme of these
techniques is identifying the problem either before infection through
signature or anomaly detection or after infection through system
scans. Neither provides a general means to stop malware due to its
adaptability. These ideas of a responsive or reactionary approach to
detecting and preventing malware infections, in many respects, play
to malware’s strengths. Because of the limitations mentioned above,
we propose SPVs - a Defense by Deception approach. The goal of our
methodology is to drastically reduce malware infections by reducing
the available areas of persistence for a malicious actor’s exploits,
including zero-day attacks. Our approach employs the use of malware

code segments to defend a target system against future infection, thus
serving as a defensive mechanism. This novel technique is a drastic
shift from the conventional utilization of malware code for signature
detection and fingerprinting. In our proposed approach, we place
blockers called SPVs in critical areas of persistence on target systems.
These SPVs are persistence and deployment elements stripped from
the various malware samples analyzed. Essentially, SPVs prevent a
new malware infection by either blocking it from writing its own
vector or overwriting the persistence vector associated with already
established malware. With this approach, malware loses its ability to
persist and is prevented from executing its payloads, and consequently
propagating further. We implemented the prototype of our SPV by
manually building a library of 75 payload-stripped SPVs into the
Defense by Deception code base, which is then compiled into a target
system and deployed at system startup. The Defense by Deception
code called the SPVExec is then administered as a malware defensive
apparatus on a need basis automatically at system runtime without
user intervention. The empirical results of the evaluation on Windows
7 and 10 for pre- and post SPV deployment infected of 1000 malware
samples showed that the use of SPVs is a very effective strategy for
malware defense. For 99% of the samples in the data set, the SPV
Defense by Deception process rendered them inert - the malware sets
were not able to execute their payloads, persist, or propagate.

Contributions - Our proposed novel SPV strategy provides the
following salient features:

• Defense Against Malware: The development of a practical
approach to preventing new malware infections by simulating
and inventing the perception that the system is already infected.

• Fully Automated Deployment Process: The deployment and
rendering of the SPVs at runtime is done without human
intervention.

• Efficiency: The SPV code incurs very minimal overhead on
run-time system resources.

• Usability: The generated SPVs are reliable and seldom flagged
as malware by system defense and antiviral tools. Furthermore,
the proposed system allows for legitimate programs to be
installed without hindrance based upon internal whitelisting.

The rest of the paper is organized as follows: Section 2 presents
the problem statement and an overview of rootkit infection; Section
3 provides a detailed description of the SPV process; Sections 4
and 5 present the implementation and evaluation of our research,
respectively; Section 6 reviews the related literature; and Section 7
concludes the paper.

II. RELATED WORK

Means of malware detection have grown more stagnant in the last
ten years. As shown in Tahir, Alsmadi, and El Merabet [42], [43],
[44], most of the improvements have been focused on implementing
machine learning. This implementation is worked by classifying
individual features within malware samples and rejecting non-specific
elements found within a large number of malware samples. While
this is an improvement upon the standard malware detection means,

56Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

there is the limitation that they are process intensive, both in the
means of teaching algorithms for detection also in the scanning of
the multitude of files that are presented to the system. The remainder
of the detection methodologies can be broken down into Host-based
detection, Hypervisor-based detection and Post-mortem analysis.

A. Host-based Detection
The more traditional technique for rootkit detection is a host-based

intrusion detection system that checks for anomalies or footprints of
known malware. For example, the System Virginity Verifier verifies
the validity of in-memory code for critical system DLLs and kernel
modules; [35] checks the legitimacy of every kernel driver before it
is loaded into the operating system; Panorama [36] is designed to
perform behavioral runtime tracking; and SBCFI [22] detects threats
by examining the control flow integrity of the kernel code. A smaller
subset of methods, such as Autovac, utilizes forensics snapshot
comparison engines to detect the execution of malware on the system
to prevent it [34]. Other host-based rootkit detection systems include
HookFinder [36] and HookMap [32]. These techniques use systematic
approaches to detect and remove malware hooks in target operating
systems. One major drawback of traditional host-based detection
methodologies is the ability of the malicious entity to evade detection,
since it is running with the same level of privilege as the detection
systems. Since most of these tools are designed to probe for the
rootkit signature and/or behavior, malware can easily subvert this
effort by hiding its footprint. Malicious actors can employ obfuscation
techniques, such as altering the checksums, implementing collection
encryption, and setting file wiping [7] to thwart analysis. The SPV
code does not scan for malware footprint or traits; instead, it takes
the more aggressive approach of hijacking the persistence area of
a potential rootkit, leaving the malware with no place to hide.
Furthermore, the SPV code is built so that the malware cannot eject
or terminate its process.

B. Hypervisor-based Detection
Integrity checking is a technique that requires continuous moni-

toring of the kernel code for changes to signatures, control flow, and
kernel data structures. For kernel-level rootkits, the most practical
approach for maintaining kernel integrity is hypervisor-based systems
that leverage virtual machine introspection (VMI) [1], [13], [14],
[24], [26], [27], [38], [39]. VMI systems and tools are built to
introspect the virtual environment through the hypervisor. Since the
hypervisor runs at a much lower level than the virtual OS, these
mechanisms are often seen as an effective means of detecting rootkits
and monitoring their behavior. However, their major limitation is
the fact that they target only virtualized environments and cloud
infrastructures and cannot be applied to introspect real hardware-
based systems. Moreover, most kernel integrity-check-based systems
are susceptible to return-oriented rootkit attacks [13]. Methods used
to detect the integrity of a system have been proven to be limited
based upon the existence of UEFI bootkits. These malicious code
elements work by making the operating system accept that malicious
code pieces are a legitimate portion of the system’s code [8], [12],
[23], [33]. With our proposed SPV Defense by Deception process, the
system is designed to execute on both hardware and virtual systems,
thus circumventing this limitation.

C. Post-mortem Analysis
The last category of rootkit detection methods is postmortem

analysis systems, designed to analyze the after-effects of rootkit
execution. These forms of analysis are often passive and involve
examining kernel memory snapshots looking for evidence of rootkit
infection, persistence, and stealth. Disk forensics tools, such as [2],
[9], [30], [40] are used for general system incident response. These
tools can examine a target system for file modifications, running
processes, network activities, and more. In much the same way as

integrity checkers, disk forensics tools are limited by their coverage.
If malicious code hides its elements in specific system files or
structures, these will generally be missed by the aftereffect analysis
[6]. With memory forensics, aftereffect analysis is carried out on a
snapshot of volatile memory. The most widely used memory anal-
ysis framework is the volatility framework [41]. This methodology
is restricted to current events and processes. Terminated malware
behaviors cannot be retrieved. Furthermore, modern rootkits can
evade detection from memory forensics tools by performing direct
kernel object manipulations that hide their presence from registering
in major kernel structures or by altering the memory collection
or imaging process as a whole [17]. In comparison to a more
passive malware detection approach, our SPV process is an offensive
approach that prevents malware infections in real time. The SPVs are
designed to block malware from executing, thus forcing the malware
to terminate its process.

D. Problem Statement
Malware has always had the strength of its adaptability, which

enables it to use multiple mechanisms to infect and evade detection or
bypass many of the elements of system defense [11]. Either through
using out-of-date signatures, exploiting unknown vulnerabilities, or
targeting the weakest link - the human - malware will cause the
defense to fail, even if only one of these falls short. Current detection
and prevention tools are at a significant disadvantage in that malware
is evolving at a much faster rate than defense tools. Stealthy zero-day
attacks are becoming increasingly common, and it takes only a single
unknown offense or human error to bring down the whole gauntlet
of defenses [16].

Thus, we present the SPV Defense by Deception process - a novel
technique that attempts to hijack the areas in which malware in
general and rootkits in particular can land their persistence vectors.
Rootkit persistence vectors are specifically selected in this research
because they are the most common persistence mechanism used by
malware of all families [11].

The motivation to use persistence vectors stems from the fact that,
in practice, infection vectors are unpredictable, meaning that exploits,
especially zero-day exploits used to launch malware attacks, evolve
with newly found vulnerabilities. However, the persistence vectors
with which the malware maintains a presence on a victim’s machine
are often deterministic. As such, the most effective way to curtail
rootkit infections and ultimately render them ineffective is to place
blockers in the potentially persistent channels in the system. Long-
term malware campaigns, specifically those utilized by Advanced
Persistent Threats (APTs), do not wish to bring a targeted system
down immediately. Instead, they wish to complete target profiling
against the network, exfiltrate sensitive data, and work further into the
system. It can sometimes be months before the threat actors launch
their final attack target. For this, they require a means to remain in
the system. They require persistence. One of the longest of these
types of campaigns was the Harkonnen Operation. Malicious actors
could utilize their malware persistence and operate on a network
for twelve years before they were finally detected. During this time,
the malware implanted could assist with further target development,
stealing essential data, such as corporate financial documentation, and
pilfering money for the attackers [19]. Our approach injects the SPV
code into the system startup process and can be rendered on both bare
hardware and virtualized environments. The SPV process blocks all
malware by first detecting in real-time when the malware deploys
its persistence vector. It then hijacks the malware area of persistence
by automatically selecting and overwriting the malware code with
certain SPVs. This process consistently blocks target malware from
maintaining a presence on a defended system. Although our approach
is currently limited to the categories of malware containing persis-
tence vectors, ”fileless” malware has only existed substantially since
2002. It is still not utilized as substantially as persistent malware [20],
thus making this limitation minimal.

57Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

III. THE SPV - DEFENSE BY DECEPTION PROCESS

The SPV process is a code implementation of “sterilized” malware,
or malware that has had its malicious content removed, injected
via a common infection mechanism. It is a technique designed to
prevent malware persistence on a system. SPV process involves
injecting a malware persistence vector into a clean system to block
potential malware from maintaining access. This process requires
combining standing entries consisting of stripped malware persistence
vectors and infection code fragments with filler code. With SPVs,
the malicious payload code fragments are entirely stripped off while
retaining the core elements of malware, such as API hooking, process
manipulation, and service control in the SPV. The workflow for our
proposed approach is made up of the SPV development phase and
SPVExec code deployment and integration.

A. Development Phase
This phase begins with the identification and extraction of malware

persistence vectors, followed by the reprogramming of the extracted
persistence code fragments into one executable module.

1) Persistence Extraction: The mechanism in this stage re-
quires manual extraction through detailed reverse engineering. We
completed our reverse engineering via both static and dynamic
malware analysis techniques. Malicious samples were collected from
virus repositories: VirusShare [1] and Malshare [21]. One thousand
samples were run through the two phases of reverse engineering. This
was completed in a series of virtualized environments of the Windows
operating system: Windows 7 and 10, with two copies of each, one
for dynamic analysis and one for static analysis. Each machine had
two 2.4 GHz cores and 4 GB RAM. For each target malware, we
ran the sample against an unpacker to remove any possible common
packers and cryptors, leaving behind the bare-bones malware code
that would be evaluated by the analysis tools. In this initial phase,
the stripped malware code was executed in a custom-built dynamic
analysis sandbox running ProcMon, CaptureBat, CFF Explorer, API
Monitor, and RegShot.

This static analysis identifies specific part of the executable
targeted during the dynamic analysis phase. Such code construct
include specific API invocation, non-normal network traffic, registry
modification, and file creation. We executed the samples through
a debugger and disassembler for the dynamic analysis, specifically
IDAPro and OllyDbg, targeting the identified elements in static
analysis. Then through the utilization of the HexRay program within
IDAPro, the code section was removed and converted to a C program
snippet.

2) SPV Generation: With the elements of persistence and
infection identified and removed from the base malware code, we
developed the SPVs. Since the identified persistence code was disas-
sembled, we began this stage by converting the assembly code into
C programming language.

PVs upon extraction reflect specifically that individual sample of
the malware, but additionally can be utilized against the majority of
the samples of that specific malware family of that generation. For
example, an extracted persistence vector from Zeus Botnet would
identify not only that specific file but also the different samples in
that same generation of Zeus. Specific PVs could also be utilized
against other families, dependent upon source code sampling utilized
by the author upon its creation. Prior or future versions would require
additional PV extractions depending on the evolution of the malware
sample.

Figure 1 shows the PV extracted from Necurs Rootkit. The
Necurs sample persists using multiple techniques but notably the
implementation of boot and registry modification. These specific
PVs were identified through our two-phased reverse engineering and
exported for inclusion in the SPV library.

These 800 individual SPV extracted from the 1000 malware
samples are loaded into the SPV Defense, including the deployment

Fig. 1. Extracted PV

code elements. These were selected as they covered the range of
persistence vectors and allowed for broad defense of the SPVs when
deployed on the system.

To build a stronger SPV defensive process, we developed an SPV
library consisting of a combination of multiple SPVs.

B. SPVExec Deployment and Integration
The proposed SPV mechanism uses these extracted PVs to form

a benign rootkit of the SPV and implements persistence elements in
the areas extracted in the SPV code called the SPVExec. Additional
persistence scanning mechanisms, like the Wingbird scanning ability
for its infections, were added to the code to overwrite non-whitelisted
persistence modifications. Additionally, previously removed malware
functionality deployed a FAT32 file system within the bootstrap
code section was added to the system. This area was used for
SPV library, whitelisting, and the SPV Defense base code. The
data remained encrypted, utilizing a 256-bit key to protect against
registering on scans. The SPVExec was implemented as a single
Windows executable program loaded alongside the essential boot files
at system startup. The prototype is approximately 1800 lines of code
in the C programming language. The code is a collection of SPVs,
filler code consisting of protective measures extracted from malware,
dynamic white- and blacklisting, the learning algorithm, and the SPV
launcher.

1) Infection Code Scanning and Rewriting: After successful
loading of the SPVExec, the persistence vectors employ two scanning
techniques to validate and ensure that an intruder has not altered
the injected SPVs at runtime. The first check utilizes time-based
scans, similar to those employed by current protective tools. In the
current implementation, this check runs a scan every second. Our
secondary scanning technique leverages API hooking to check for
malware intrusion. The SPV instances are injected into kernel-level
processes. Any attempts to access the protected area of persistence
are redirected to one of the SPV Defended DLLs. Both scanning
techniques utilize hash lookups. During SPV code deployment, a
hashmap of the injected SPVs and the region of persistence are stored.
The rewriters dynamically replace code elements within the SPVExec

58Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

codebase and are designed to look up any changes to the injected
SPVs. The dynamically computed hashes of the injected vectors are
then compared against the hashes of the SPVs that are expected to
be at those regions. If any of the values return no match, then the
code rewrites those SPVs as expected.

IV. EVALUATION OF THE SPV DEFENSE BY DECEPTION
PROCESS

We evaluate the effectiveness of our proposed SPV defense
mechanism by performing four major experiments that answered the
following questions:

• Persistence of the SPV Defense process - Can the SPV
Defense survive and persist through system restarts and power
removal?

• Defense against malware - Can the SPVs be used as an
effective strategy to block potential malware from writing to
protected areas of persistence?

• Defense Through Deception - Does the SPV Defense identify
as malware to other malware and legitimate to legitimate
programs?

• System Performance - Can the SPV Defense process be used
as an efficient apparatus for system defense without depleting
system resources?

• White Listing Capability - Does the SPV Defense allow
legitimate programs to install without being replaced with SPV
code?

A. Test Environment
To test SPVs across operating systems, we generated Testbed-3 and

Testbed-4, utilized Windows testbeds using the same baseline oper-
ating systems as in the persistence extraction phase, i.e., Windows 7
and Windows 10. They both contain sets of virtual machines and bare
metal with two 2.4 GHz cores and 4 GB RAM. Testbed-1 remained at
the same level of security as that of the persistence extraction environ-
ment; this removes the chance of malware failing to infect because of
patching or security tools. Unlike in persistence extraction, however,
this testbed has most of its nonsecurity functionality restored. This
allows the system to act similarly to a standard user system that would
be part of a normal network. Testbed-2, Testbed-3 and Testbed-4 are
equipped with system security monitoring tools, such as operating
system inbuilt defense, i.e., Windows Defender, Host-based Security
System, and other commercial off-the-shelf antivirus products. For
all the testbeds, user programs were installed to simulate a working
system that would be on a network and typical applications that are
often targeted for compromise. To provide better containment during
our analysis and testing, we implemented FakeDNS to resolve any
network traffic.

B. Post-Mortem Analysis Environment
We leverage an in-depth analysis of the extracted memory snap-

shots of the target systems to evaluate the accuracy, resilience, and
performance of the overall SPV Defense process. To perform forensic
examinations of the memory dumps, we created a separate system
equipped with FTK and Volatility. Additionally, to protect the data
from being compromised on the system after malware infection, the
collection tools were loaded on a USB. This allowed the acquisition
to have a limited impact on the system while also keeping the tools
from being impacted by any potential built-in anti-analysis approach.

C. Experiments
1) Experiment I: Persistence: Vital to the functionality of the

SPVExec benign rootkit is its ability to maintain persistence. To test
this functionality, we took the Testbed-2 system post SPV deployment
and saved it as “X-Security-TestingPost.” We then performed a power
cycle. An start up alert was entered into the code to present a popup if
the SPV remained in tact. This alert displays the first SPV value and

Fig. 2. SPV Evaluation: Regular Testing

a “Hello World” message. Upon powering the system on, a memory
collection was completed utilizing FTK Imager. The memory image
was processed by Volatility Memory Framework with the following
plugins: psxview, malfind, ldrmodules, apihooks, dlldump, procdump,
and threads. Processes and Dynamic Link Libraries (DLLs) of the
SPVExec were found that proved that it could maintain its persis-
tence, and a popup was displayed.

2) Experiment II-A: Defense Against Malware: The primary
functionality of the SPVExec is its ability to stop malware attacks
against the system. To provide a sufficient test of the defensive
capabilities of our approach, we conducted this experiment with 1000
malware samples with diverse infection and persistence vectors and
varying degrees of stealthiness. We utilized Testbed-2, Testbed-3, and
Testbed-4 and executed the SPVExec; the image was saved as “X-
Post-SPV,” with X representing the OS. Each malware sample was
then executed, and a snapshot and memory collection were taken.
The system was then reset with the “Post-SPV” images and infected
with the next malware sample. As each memory dump was analyzed
with Volatility with the above mentioned plugins, the persistence
elements of the SPV were found without the markers of the malware
surviving. This proves that the SPV Defense was able to prevent
the malware from taking effect and rendered it inert, on the same
level as other security tools. Comparisons of our process to standard
antivirus software indicated that our proposed approach achieves the
same level of accuracy as other COTs anti-viruses as shown in Figure
2.

D. Experiment II-B: Reversion Testing
For this experiment, an additional image was generated of

Testbed-2, Testbed-3, and Testbed-4, titled “X-SecurityReversion-
TestingPost.” The commercial antivirus software had the signature
libraries reverted back three iterations, allowing for newer malware to
be tested as though it were a zero-day exploit. The sample repository
listed above was run on both virtual machines. Compared to standard
antivirus detection rates, SPV Defense was able to maintain consistent
rates. However, during the zero-day detection experiment, it was able
to double the detection rates of standard antivirus software, as shown

59Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

Fig. 3. SPV Evaluation: Regression Testing

in Figure 3. This proves that SPV Defense is capable of performing
far better than commercial malware detection tools against unknown
threats due to its targeting only the persistence vectors.

1) Experiment III: Deceptive Capability: For this experiment,
the SPVExec was run against two unique phases. One phase de-
termined if malware identified SPVs as similar malware, avoiding
infections. The second is if legitimate programs, such as Antivirus,
saw the SPVs as a benign code structure. For defense through
deception testing, the system was reverted to a save of the SPV
defended state presented in Testbed-1. The Necurs malware sample
was run against the system. This particular sample was chosen
because it has a built-in function searching for already modified
keys signaling an infected system. A total of ten instances of the
malware were executed in attempts to infect the system; each time,
memory collections were completed. Upon analysis of the memory
samples via the Volatility analysis, no signs of the Necurs malware
were present. Benign testing was conducted against a pool of fifteen
antiviruses that ran against the SPV code base. All tests returned
negative, indicating that none of the antiviruses flagged the SPVs as
malicious.

2) Experiment IV: System Performance: In this experiment,
we evaluate the effectiveness of our approach on system resources,
particularly the impact of the SPV Defense process on memory and
CPU utilization.

(i) CPU Utilization: Utilization was recorded in two separate
instances to obtain a baseline for the pre- and postdeployment system.
Baseline scores for each of these system performances were recorded.
Next, multiple applications were opened to simulate a typical user’s
desktop, including two Microsoft Word documents, a single instance
of Google Chrome, and one instance of the Windows file structure.
The system was then left under these conditions for a period of 10
minutes. In the same way as most effective rootkits perform malicious
activities without overloading the system, SPVs run in the background
without exhausting CPU resources. The CPU usage overhead is on
par with that of average antivirus software or an IDS/IPS, which is
approximately 2 percent on average [29].

(ii) Memory Utilization The amount of memory utilized by the

SPVs, specifically as they spawn processes, is also crucial. Too
much memory utilization can cause an internal denial of service,
making the method unusable. Utilizing the same parameters as in
the CPU overhead test, the system was run with the same software
instances for the 10-minute implementation. The baselines were again
compared. This result also showed minimal impact on the system
resources.

3) Experiment V: White Listing Capability: All the ex-
periments conducted above were able to prove the ability of the
proposed method to block future malware infections. However, this
would be moot if normal programs were unable to make low-
level system modifications and maintain their persistence. For this
experiment, we attempted to install 10 “legitimate” programs on an
SPV Defended system and determined that all were still installed
after system restart. These programs were PyCharm, Visual Studio,
BitRise, Atom, BlueFish, CodePen, Crimson Editor, Eclipse, Komodo
Edit, and NetBeans. Each of these software programs was examined
by the same methodology as malware to determine the major system
changes made to ensure their own persistence. Individual snapshots
from the “X-Post-SPV” series had one of the above ten programs
installed. Memory collection was completed, and a snapshot was
taken, titled “XPost-SPVTool”, with X being the software installed.
Upon powering on, a second memory collection was completed.
Finally, the application was tested for functionality by launching the
program. In all instances, both the SPV Defense and the program
were operational and maintained persistence.

V. CONCLUSION AND FUTURE WORKS

In this paper, we present a new SPV Defense by Deception
strategy that leverages sterilized persistence vectors extracted from
a real malware corpus to block potential malware infections. Our
system utilizes code from malware samples, not as signatures but as
defensive strategies that stop new infections from attempting to write
into persistence regions. Compared to existing COTs and techniques
described in the literature for malware detection and prevention,
our approach is designed to be more robust and versatile, with the
ability to block malware both on bare hardware and in virtualized
environments. Additionally, our methodology does not require a
signature or agnostic of the target malware behavior. Through an
in-depth evaluation of 1000 malware samples with pre- and post
SPV infection, we demonstrate that our proposed SPV Defense by
Deception mechanism can be used to effectively defend systems
against malware infections with 1-3 percent CPU and memory
overhead while not limiting the ability to install legitimate programs
properly.

While this is a strong defense against malware implementation, it is
currently limited to Windows OS. Additional work can be conducted
into the persistence vectors that are different and unique to other
OSes, which could prove beneficial, especially in the Unix-based
system, as this portion of the computing world is expanding greatly
due to the Internet of things, which bulk have some flavor of Unix
driving them.

REFERENCES

[1] I. Ahmed, A. Zoranic, S. Javaid, and G.G. Richard III. ”Modchecker:
Kernel module integrity checking in the cloud environment”. In2012 41st
International Conference on Parallel Processing Workshops 2012 Sep 10
pp. 306-313. IEEE.

[2] D. Byers and N. Shahmehri. ”A systematic evaluation of disk imaging
in EnCase® 6.8 and LinEn 6.1”. Digital Investigation. 2009 Sep 1;6(1-
2):61-70.

[3] Z. Gittins and M. Soltys. “Malware persistence mechanisms”. Procedia
Computer Science. 2020 Jan 1;Vol.176. pp. 88-97.

[4] M.U. Rana, M.A. Shaha, and O. Ellahi. ”Malware Persistence and Obfus-
cation: An Analysis on Concealed Strategies”. In2021 26th International
Conference on Automation and Computing (ICAC) 2021 Sep 2 pp. 1-6.
IEEE.

60Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

[5] B.V. Prasanthi. “Cyber forensic tools: a review”. International Journal
of Engineering Trends and Technology (IJETT). 2016;Vol.41(5). pp.266-
271.

[6] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang. “Mapping
kernel objects to enable systematic integrity checking”. InProceedings of
the 16th ACM conference on Computer and communications security
2009 Nov 9 pp. 555-565.

[7] E. Chan, S. Venkataraman, F. David, A Chaugule, and R. Campbell.
“Forenscope: A framework for live forensics”. InProceedings of the 26th
Annual Computer Security Applications Conference 2010 Dec 6 pp. 307-
316.

[8] B.N. Flatley. ”Rootkit Detection Using a Cross-View Clean Boot
Method”. AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH GRADUATE SCHOOL OF ENGINEERING AND MANAGE-
MENT; 2013 Mar 1.

[9] S.L. Garfinkel. “Automating disk forensic processing with SleuthKit,
XML and Python”. In2009 Fourth International IEEE Workshop on
Systematic Approaches to Digital Forensic Engineering 2009 May 21
pp. 73-84. IEEE.

[10] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu. “Face-change:
Application-driven dynamic kernel view switching in a virtual machine”.
In2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks 2014 Jun 23 pp. 491-502. IEEE.

[11] I.U. Haq, S. Chica, J. Caballero, and S. Jha. “Malware lineage in the
wild”. Computers Security. 2018 Sep 1; Vol.78. pp.347-63.

[12] O.S. Hofmann, A.M. Dunn, S. Kim, I. Roy, and E. Witchel. “Ensuring
operating system kernel integrity with OSck”. ACM SIGARCH Computer
Architecture News. 2011 Mar 5; Vol.39(1). pp. 279-290.

[13] R. Hund, T. Holz, and F.C. Freiling. “Return-oriented rootkits: Bypass-
ing kernel code integrity protection mechanisms”. InUSENIX security
symposium 2009 Aug 10 pp. 383-398.

[14] X. Jiang, X. Wang, and D. Xu. “Stealthy malware detection through
VMM-based ‘out-of-the-box’semantic view”. In14th ACM Conference
on Computer and Communications Security (CCS), Alexandria, VA
(November 2007) (Vol. 10, No. 1315245.1315262).

[15] A. Kapoor and R. Mathur. “Predicting the future of stealth attacks”.
InVirus Bulletin Conference 2011 Oct pp. 1-9.

[16] J.D. Kornblum and ManTech CF. “Exploiting the rootkit paradox with
windows memory analysis”. International Journal of Digital Evidence.
2006;Vol. 5(1). pp. 1-5.

[17] T.K. Lengyel, S. Maresca, B.D. Payne, G.D. Webster, S. Vogl, and
A. Kiayias. “Scalability, fidelity and stealth in the DRAKVUF dynamic
malware analysis system”. InProceedings of the 30th annual computer
security applications conference 2014 Dec 8 pp. 386-395.

[18] L. Litty, H.A. Lagar-Cavilla, and D. Lie. “Hypervisor Support for Iden-
tifying Covertly Executing Binaries”. InUSENIX Security Symposium
2008 Jul 28. Vol. 22, p. 70.

[19] R. Luh, S. Schrittwieser, and S. Marschalek. “TAON: An ontology-
based approach to mitigating targeted attacks”. InProceedings of the
18th International Conference on Information Integration and Web-based
Applications and Services 2016 Nov 28 pp. 303-312.

[20] D. Patten. The evolution to fileless malware. Retrieved from. 2017.
[21] Malshare. www.malshare.com. (2019, October).
[22] N.L. Petroni Jr and M. Hicks. “Automated detection of persistent kernel

control-flow attacks”. InProceedings of the 14th ACM conference on
Computer and communications security 2007 Oct 28 pp. 103-115.

[23] F. Raynal, Y. Berthier, P. Biondi, and D. Kaminsky. “Honeypot foren-
sics”. InProceedings from the Fifth Annual IEEE SMC Information
Assurance Workshop, 2004. 2004 Jun 10 pp. 22-29. IEEE.

[24] R. Riley, X. Jiang, and D. Xu. “Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing”. InInternational Workshop
on Recent Advances in Intrusion Detection 2008 Sep 15 pp. 1-20.
Springer, Berlin, Heidelberg.

[25] J. Rutkowska. ”System virginity verifier: Defining the roadmap for
malware detection on windows systems”. InHack in the box security
conference 2005 Sep 28.

[26] M. Schmidt, L. Baumgartner, P. Graubner, D. Bock, and B. Freisleben.
“Malware detection and kernel rootkit prevention in cloud computing
environments”. In2011 19th International Euromicro Conference on Par-
allel, Distributed and Network-Based Processing 2011 Feb 9 pp. 603-610.
IEEE.

[27] A. Seshadri, M. Luk, N. Qu, and A. Perrig. “SecVisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes”. InPro-

ceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles 2007 Oct 14 pp. 335-350.

[28] M.I. Sharif, W. Lee, W. Cui, and A. Lanzi. “Secure in-vm monitoring us-
ing hardware virtualization”. InProceedings of the 16th ACM conference
on Computer and communications security 2009 Nov 9 pp. 477-487.

[29] O. Sukwong, H. Kim, and J. Hoe. “Commercial antivirus software
effectiveness: an empirical study”. Computer. 2011 Mar 1; Vol. 44(03).
pp. 63-70.

[30] S. Vömel and H. Lenz. “Visualizing indicators of Rootkit infections
in memory forensics”. In2013 Seventh International Conference on IT
Security Incident Management and IT Forensics 2013 Mar 12 pp. 122-
139. IEEE.

[31] J. Wang, A. Stavrou, and A. Ghosh. “Hypercheck: A hardware-assisted
integrity monitor”. InInternational Workshop on Recent Advances in In-
trusion Detection 2010 Sep 15 pp. 158-177. Springer, Berlin, Heidelberg.

[32] Z. Wang, X. Jiang, W Cui, and X. Wang. “Countering persistent kernel
rootkits through systematic hook discovery”. InInternational Workshop on
Recent Advances in Intrusion Detection 2008 Sep 15 pp. 21-38. Springer,
Berlin, Heidelberg.

[33] M. Xu, X. Jiang, R. Sandhu, and X. Zhang. “Towards a VMM-based us-
age control framework for OS kernel integrity protection”. InProceedings
of the 12th ACM symposium on Access control models and technologies
2007 Jun 20 pp. 71-80.

[34] Z. Xu, J. Zhang, G. Gu, and Z. Lin. Autovac: Automatically extracting
system resource constraints and generating vaccines for malware im-
munization. In2013 IEEE 33rd International Conference on Distributed
Computing Systems 2013 Jul 8 pp. 112-123. IEEE.

[35] J. Rutkowska. “System virginity verifier: Defining the roadmap for
malware detection on windows systems”. InHack in the box security
conference 2005 Sep 28.

[36] H. Yin, Z. Liang, and D. Song. “HookFinder: Identifying and under-
standing malware hooking behaviors”.

[37] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. “Panorama:
capturing system-wide information flow for malware detection and anal-
ysis”. InProceedings of the 14th ACM conference on Computer and
communications security 2007 Oct 28 pp. 116-127.

[38] H.A. Lagar-Cavilla and L. Litty. “Patagonix: Dynamically Neutralizing
Malware with a Hypervisor”.

[39] Y. Oyama, T.T. Giang, Y. Chubachi, T. Shinagawa, and K. Kato.
“Detecting malware signatures in a thin hypervisor”. InProceedings of
the 27th Annual ACM Symposium on Applied Computing 2012 Mar 26
pp. 1807-1814.

[40] O. Vermaas, J. Simons, and R. Meijer. “Open computer forensic ar-
chitecture a way to process terabytes of forensic disk images”. InOpen
Source Software for Digital Forensics 2010 pp. 45-67. Springer, Boston,
MA.

[41] A. Mohanta and A. Saldanha. “Memory Forensics with Volatility”. In-
Malware Analysis and Detection Engineering 2020 pp. 433-476. Apress,
Berkeley, CA.

[42] R. Tahir. “A study on malware and malware detection techniques”.
International Journal of Education and Management Engineering. 2018
Mar 1; Vol. 8(2). pp. 20.

[43] N. Idika and A.P. Mathur. “A survey of malware detection techniques”.
Purdue University. 2007 Feb 2;Vol. 48(2). pp. 32-46.

[44] H. El Merabet and A. Hajraoui. “A survey of malware detection
techniques based on machine learning”. International Journal of Advanced
Computer Science and Applications. 2019; Vol. 10(1).

61Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

