
Attack Path Generation Based on Attack and Penetration Testing Knowledge

Florian Sommer

Institute of Energy Efficient Mobility

Karlsruhe University of Applied Sciences

Karlsruhe, Germany

e-mail: florian.sommer@h-ka.de

Reiner Kriesten

Institute of Energy Efficient Mobility

Karlsruhe University of Applied Sciences

Karlsruhe, Germany

e-mail: reiner.kriesten@h-ka.de

AbstractÐTo protect modern vehicles against security attacks,
new standards, such as ISO/SAE 21434, and regulations, such as
UN R155, require security testing activities during development.
For this purpose, penetration testing is often used, which is
a manually performed, experience-based, and explorative test
method. Due to the high complexity of modern vehicles, manual
penetration testing methods reach their limits. As a result,
potential vulnerabilities could be overlooked and thus remain
in the vehicle. In case of a security attack, this can endanger
passengers and road traffic participants. So far, penetration
testing has been considered as difficult to automate, since it
is an experience-based method. This paper presents a model-
based approach which aims close that gap. Our approach uses
knowledge of existing security attacks on vehicles to automate
the security testing process. We apply our attack database (361
attacks, consisting of 621 attack steps) to a formal security model
to automatically derive attack paths for testing. We also present a
proposal of how this method can be transferred to derive attack
paths based on knowledge and experience of penetration testers.

KeywordsÐsecurity testing; automation; tester experience.

I. INTRODUCTION

The increasing complexity of modern vehicles and the

growing number of automotive security attacks [1] in recent

years have led to automotive security becoming a high pri-

ority in industry and research. As a result of this trend, the

ISO/SAE 21434 [2] and UN R155 [3] were published. Both

documents require vehicle manufacturers to comply with a

specific security process during the development and life cycle

of vehicles. In addition to performing a Threat Analysis and

Risk Assessment (TARA) [2], as well as the derivation of

security requirements and measures, a focus is also on the

verification and validation of security. The latter usually takes

place within a security test process. For this purpose, ISO/SAE

21434 proposes in particular an execution of penetration tests.

Problem: Penetration testing is an experience-based and

explorative method, which is carried out late in development.

Thus, the vehicle and its components have already been

developed at that point. As a result, potential vulnerabilities

can only be identified at a late stage. This type of testing

is often carried out by third parties as manual black-box or

grey-box tests. Modern vehicles are highly complex systems

and there is usually a limited time frame available for testing.

Thus, Marksteiner et al. [4] see a risk that manual penetration

testing reaches its limits regarding comprehensive testing. This

implies that vulnerabilities could be overlooked or not captured

by testing and thus remain in the vehicle.

Solution: To face these challenges, we propose a model-

based approach using knowledge and experience from past

security attacks and penetration tests of vehicles. For this

purpose, attack paths are automatically generated and used

in security testing. This allows an early execution of testing

activities in vehicle development. Our approach can be used

in the context of penetration testing to systematically support

testers by providing attack paths based on successful real-

world attacks. This allows the security test process to be

partially automated by using knowledge and experience of

attacks and penetration tests. Our method can further be used

to estimate the effort of test activities.

Contribution: In this publication, we present a model-based

security testing method. For this purpose, a security model of a

vehicle E/E architecture is created based on our past work [5]

[6]. Our model can be examined for possible attack paths

based on real-world attacks by applying our automotive attack

database [7], which currently includes 361 attacks (consisting

of 621 attack steps). Further, this approach enables us to

find new attack paths by permutation of existing attack steps

from the database. We also present a proposal of how this

approach can be used to capture and reuse experience of

penetration testers to achieve partial automation of the security

test process.

This paper is structured as follows: In Section II, we

describe fundamentals of security testing and model-based

security testing. In Section III, the approach of this work

and the creation of a security model is presented. Section IV

shows how our attack database can be used to automatically

derive attack paths from the security model. Section V presents

a proposal how the experience of penetration testers can be

captured and reused for automatic attack path generation. A

discussion about the feasibility of this method and challenges

is given in Section VI. In Section VII, we draw a conclusion

and give an outlook on future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief overview of security

testing and model-based security testing and their application

in the automotive context.

A. Security Testing

Security testing examines a system for security weak-

nesses [8]. This is generally done in two ways. The first

way concerns functional or positive security testing [9]. This

36Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

https://orcid.org/0000-0002-4009-7164

typically involves testing functional security mechanisms (for

example, encryption and authentication of messages) for cor-

rect functionality. This can be done as part of the traditional

testing process based on requirements of security mechanisms.

The second way concerns non-functional and negative security

testing [9]. This type of testing is also called security vul-

nerability testing and is often performed through penetration

tests. The tester takes the role of an attacker and attempts

to find vulnerabilities in a system by carrying out security

attacks [8]. Penetration testing represents an experience-based

and exploratory testing method. Tests are usually performed

as black-box (without system knowledge) or grey-box (partial

system knowledge) tests. Several penetration testing standards

exist to support testers in a structured way. Examples are Pene-

tration Testing Execution Standard (PTES) [10] and Open Web

Application Security Project (OWASP) [11] Testing Guide.

For the automotive sector, the Automotive Security Testing

Methodology (ASTM) [12] can be applied.

B. Security Testing in the Automotive Domain

In 2021, ISO/SAE 21434 [2] and UN R155 [3] were

published for the automotive sector. These documents demand

that security should be addressed throughout the develop-

ment and life cycle of a vehicle. With regard to security

testing, ISO/SAE 21434 in particular proposes an execution

of functional testing, vulnerability scanning, fuzz testing, and

penetration testing. The application of these testing techniques

to automotive systems has been a subject of several recent pub-

lications. Bayer et al. [13] analyze the mentioned test methods

and show potential use cases based on specific automotive

technologies, such as Controller Area Network (CAN) [14],

or protocols, such as Unified Diagnostic Services (UDS) [15].

Smith [16] provides a complete guide on penetration testing in

vehicles. Various attack techniques on bus and diagnostic pro-

tocols, wireless communication systems, Electronic Control

Units (ECUs), etc. are explained in detail. Further standards

and publications propose the consideration of threat modeling

for penetration testing. In this context, DÈurrwang et al. [17]

were able to uncover a critical vulnerability in an airbag ECU,

which could lead to an unauthorized airbag deployment.

C. Model-Based Security Testing in the Automotive Domain

Model-based testing enables early testing and automation of

the test process [18]. For this purpose, a System Under Test

(SUT) is defined, which is commonly represented as a formal

model (e.g., as a state machine). By applying test selection

criteria, such as coverage criteria, test cases are derived and

executed on the system. With appropriate tooling, many parts

of this process can be automated. Model-based security testing

combines this process with traditional security testing. The

models of the SUT are extended by security-specific aspects,

such as security properties, risk values, vulnerabilities, or secu-

rity mechanisms. Resulting models are used to derive security

test cases or attack paths. An example of a model-based

security test method in the automotive domain is presented

by Cheah et al. [19]. Here, attack trees, which emerge as

part of a threat modeling process, are formally described by

Communicating Sequential Processes (CSP) [20]. From the

resulting model, a refinement checking tool is used to derive

test cases to test a Bluetooth [21] device. Further, Oruganti

et al. [22] and Appel et al. [23] present approaches based

on Matlab/Simulink models for hardware-in-the-loop testing.

Volkersdorfer et al. [24] present a model-based security ap-

proach using attack and adversary models to simulate attacks

on a specific attack target. This approach is demonstrated using

two application scenarios: attacks on a user’s access data to a

web application and the manipulation of an automotive ECU.

The presented related work focuses on finding attacks or

test cases which reveal vulnerabilities in a system. This is

done in an exploratory, but also in a systematic, guided,

and model-based way. The authors use information about the

system and its functionality and analyze how these systems

can be attacked/tested. In comparison, our approach is based

on a formal vehicle network model, which is specified in

a generic way. This allows an application of a wide range

of different attacks. For this purpose, we combine collected

knowledge of attackers or security testers within a database

containing successful real-world attacks. These serve as a basis

for analyzing and generating attack paths as part of the security

testing process.

III. APPROACH AND MODELING PROCESS

Penetration testing is an experience-based testing method

which leverages an attacker’s perspective to compromise and

test systems. Therefore, knowledge about security attacks and

how they are executed is an important source of informa-

tion for a tester. In this section, a model-based approach is

presented using knowledge and experience of attackers and

penetration testers to automatically generate attack paths for

security testing. Our approach and its overall process is illus-

trated in Figure 1. First, a security model is generated based

on an Electrical/Electronic (E/E) architecture. Since we cover

security testing in our approach, we need to consider all enti-

ties of the E/E architecture which have an impact on the cyber

security of a vehicle. This especially involves ECUs, sensors,

actuators, software applications, communication systems, and

interfaces. These elements and their interactions are enhanced

with security-specific aspects to create a security model. By

applying our attack database [7], the model can be analyzed for

possible attack paths based on successful real-world attacks.

Furthermore, attack paths can be derived and adapted to the

vehicle under test. In the following sections, we explain that

process and further introduce details on how this approach can

be implemented based on experience of penetration testers.

In the first step, we build a model which represents both

the network architecture of a vehicle and security-specific

properties. Therefore, we build on our previous work [5], in

which we introduced our concept of Attacker Privileges. These

privileges represent abstract states an attacker can achieve in

a system by exploiting vulnerabilities. Thus, we are able to

introduce attack paths in our model.

37Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

Creating Formal Security Model

Extraction and Generation

of Attack Paths

1 2 3 4AP 1:

1 8 6 9AP n:

…

Security Testing

Attack Simulation / Analysis
Attack

Database

Figure 1. Model-based approach for security testing. A security model is
created which is used to derive attack paths for the SUT. These paths can

be used for attack simulation/analysis and security testing.

We distinguish five privileges as illustrated in Figure 2.

The Read/Write privilege describes an attackers ability to read

and write data or messages on a communication channel. By

acquiring the Execute privilege an attacker is able to trigger

implemented functions on a component (e.g., controlling an

actuator via diagnostic functions). The Read privilege enables

an attacker to extract data or information from a component

(e.g., extracting secret keys). The Write privilege describes an

ability to write or change data on a component (e.g., deleting

error logs). By acquiring the Full Control privilege an attacker

has total control over a component (e.g., by updating an ECU

with malicious software). All five privileges can be assigned

to elements of a vehicle network as shown in Figure 2. The

Read/Write privilege can only be assigned to communication

systems (e.g., CAN or Bluetooth). The other four privileges are

assigned to components (e.g., ECUs or sensors). If an attacker

reaches the Read/Write privilege (PL1, Figure 2 left), any other

privilege (PL2 - PL5) on a component can be acquired from

there if corresponding vulnerabilities are exploited. On the

component, the attacker is able to switch between privileges

PL2 - PL5 when exploiting vulnerabilities. We also assume

that it is possible for an attacker to access communication

interfaces of a component once PL4 or PL5 has been reached.

This would allow access to further connected communication

systems (PL1, Figure 2 right). Applying the Attacker Privi-

leges to an entire E/E architecture of a vehicle thus allows

to compose chains of privileges an attacker can reach. Since

the successful exploitation of a vulnerability is necessary to

achieve a privilege, attack paths within a vehicle network can

be modeled. In [5], we used this approach to create a formal

transition system based on a vehicle network. This model

was used to automatically generate attack trees by applying

model checking techniques in the context of threat modeling.

The resulting attack tree contained a critical real-world airbag

vulnerability. Thus, we could show that our Attacker Privileges

are able to represent critical attack paths in vehicle networks.

In this paper, we apply this approach in the context of a

model-based security test method we introduced in [6]. For

this purpose, we assume a simple E/E architecture example.

PL2: Execute

PL3: Read

PL4: Write

PL5: Full Control

PL1: Read/Write

PL1: Read/Write

Component

Communication System 1

Communication System 2

Figure 2. Distribution of Attacker Privileges to elements of a vehicular
network [5].

In this example, an On-Board Diagnostics (OBD) interface

is connected to a Central Gateway (CGW) via a CAN bus

(CAN 1). The CGW is also connected to another CAN bus

(CAN 2). Applying the Attacker Privileges to that network

results in a security model shown in Figure 3. The illustrated

security model corresponds to the graphical representation

of an Extended Finite State Machine (EFSM) [25] we use

for formalization. For the two CAN buses and the OBD

interface, one state was defined to each which assigns the

Read/Write privilege. For the CGW, four states were defined

which correspond to the remaining four privileges. Security

mechanisms are not considered here for reasons of simplicity.

To create transitions, it was assumed that an attacker or tester

has access to the OBD interface and wants to gain access to the

internal vehicle network via the CGW. To model transitions

between the states, we apply our privilege model as illustrated

in Figure 2. This results in a transition from State 1 to State

2 and from State 2 to State 3 - State 6 respectively. It can be

switched arbitrarily between the states of the CGW using a

corresponding transition. The only exception here is State 6,

since we assume that the Full Control privilege includes the

other three privileges. Finally, a transition leads from State

5 and State 6 to State 7 as explained in Figure 2. A formal

description of the EFSM presented in Figure 3 is not further

discussed here. Only the syntax and semantics of transitions is

revisited in the next section to explain our concept for attack

path generation based on attacker behavior and penetration

tester experience.

State 2: CAN 1

Read/Write

-

State 6: CGW

Full Control

-

State 5: CGW

Write

-

State 4: CGW

Read

-

State 3: CGW

Execute

-

State 7: CAN 2

Read/Write

-

t5

t4

t3

t2

t16

t15

t6t7

t10t11 t14

t13

t8t9

t12

State 1: OBD

Read/Write

-

t1

Figure 3. Security model based on an E/E architecture consisting of an
OBD interface, a Central Gateway (CGW), and two CAN buses.

38Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

IV. ATTACK PATH GENERATION USING AN ATTACK

DATABASE

In this section, we explain how attacker behavior based on

our attack database [1] can be used to derive attack paths from

the security model presented in Section III. First, we explain

the transitions within our model. In general, transitions within

an EFSM have the following structure:

Source
Event [Guard] / Action
−−−−−−−−−−−−−−−→ Target

A transition enables the change from a source state to a

target state. The transition is triggered when an Event occurs

(e.g., reception of a message or an input). In addition, a Guard

condition must be met (e.g., message has a matching identifier)

for a state change to occur. If an event occurs and the guard

condition is met, the state will change and an output Action

(e.g., sending an acknowledgement) will be triggered. We use

these semantics to model an occurrence of attacks (exploitation

of a vulnerability) in our security model. This results in the

following structure as an example application to the transition

t2 from Figure 3:

State 2

Exploit [V ulnerability] /
{Privilege, V iolated Security Property}
−−−−−−−−−−−−−−−−−−−−−−−−−−→ State 3

To get from State 2 (CAN 1 with Read/Write privilege)

to State 3 (CGW with Execute privilege), an attacker must

employ an Exploit based on a Vulnerability leading to this

state. The question now is, which exploits and which vul-

nerabilities can be used and how are they described. This is

where our attack database [7] is applied, which currently (as

of June 2022) contains 361 publicly known security attacks

on vehicles. Overall, these attacks consist of 621 individ-

ual attack steps. To provide a uniform description of these

attacks and steps, we published an attack taxonomy in [1]

and classified our database accordingly. This taxonomy has

different categories for describing an attack step, such as used

tools, interfaces, brief description of the attack, requirements

and restrictions, etc. For the transitions of the security model

presented in this paper, the taxonomy categories shown in

Figure 4 are particularly relevant. For each database attack

step, there is a category Component and Interface, which

specify affected components (e.g., ECU, Sensor, or Actuator)

or interfaces (e.g., OBD or CAN interface). Furthermore,

the Violated Security Property and the achieved Attacker

Privilege are given for each step. To describe the Vulnerability,

we use the Common Weakness Enumeration (CWE™) [26]

provided by The MITRE Corporation. CWE is a systematic

and hierarchically classified listing of software and hardware

weaknesses, which are also used, for example, in the National

Vulnerability Database (NVD) [27]. To describe exploits of a

transition, we use the STRIDE classification [28]. STRIDE

divides an attack into the categories Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service, and

Elevation of Privilege.

State 3: CGW

Execute

-

State 2: CAN 1

Read/Write

-

Exploit [Vulnerability]/{Privilege, Sec. Property}

Attack

Database

Attack

Class:

STRIDE,

CAPEC

Violated

Security

Property:

Confidentiality,

Integrity,

…
Vulnerability:

CWE

Attacker

Privileges:

Read/Write,

…

Component,

Interface

ECU,

Sensor,

CAN,

…

Component,

Interface

ECU,

Sensor,

CAN,

…

Figure 4. General application of the attack database to transitions of the
security model.

In addition, we use the Common Attack Pattern Enumer-

ation and Classification (CAPEC™) [29], which like the

CWE is provided by MITRE. CAPEC provides a hierar-

chical description scheme for attack patterns (attack tech-

niques/methods). These have a direct link to the CWE ele-

ments, which could be exploited by a respective attack pattern.

The application of CAPEC is diverse. Currently, CAPEC

suggests 26 different use cases. One of which is using attack

patterns as a metric to comply with standards. Thus, CAPEC

can be used to comply with automotive threats of the UN

R155. All elements of a transition can be described by data

of our attack database. This allows an application of all

database attack steps to the security model. Thus, the model

can be analyzed for the presence of real-world attack paths.

In principle, this can be done in two ways. On the one hand,

it can be checked whether an attack path is found exactly as

described in the database. For example, if an attack consists of

four attack steps, it can be analyzed whether these four explicit

steps and their order can be mapped to the model. On the other

hand, it is also possible to search for attack paths in the model

which are composed of attack steps of several different attacks.

This makes it possible to find new attack paths in our model

based on the permutation of existing attack steps.

Since our security model is based on a formal EFSM, the

entire process from model creation to analysis and generation

of attack paths can be completely automated through a soft-

ware tool. For this purpose, the E/E architecture of a vehicle,

implemented security mechanisms, and the Attacker Privileges

have to be provided. We plan on creating such a tool in future

work. This would allow an attack or vulnerability analysis to

take place at model level in an automated way (for example,

by employing search algorithms). Furthermore, concrete attack

paths to the vehicle under test can be derived, which can be

used for security or penetration testing.

V. ATTACK PATH GENERATION BASED ON PENETRATION

TESTER EXPERIENCE

In the previous section, we demonstrated how existing

attacks from our attack database can be used to analyze a

security model for existing attack paths. In this section, we

39Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

present a proposal on how that process can be used to derive

attack paths based on experience of penetration testers. Since

penetration testing is experience-based and explorative, it is

hard to be automated. The main problem is how to handle

and capture the experience of a tester. A tester usually gains

experience by performing several penetration tests on different

systems. This builds up knowledge about which systems are

more likely to have vulnerabilities, or which attack techniques

are more likely to succeed. For example, the ECUs of a

particular vendor might be more vulnerable against buffer

overflow attacks. Thus, in this case the tester would first try to

execute buffer overflow attacks to other ECUs of that vendor

in further tests of other vehicles. This accumulated knowledge

is used again in subsequent tests, i.e., a tester first tries to find

known vulnerabilities in the system based on his experience. In

order to capture that experience, the attack database from the

previous section should first be examined again. This database

is a collection of successful security attacks on vehicles.

These were almost exclusively carried out from an attacker’s

perspective with little knowledge of the vehicle systems, even

in cases where attacks were carried out by security researchers.

The attack database can thus be seen as a collection of

attacker experience, behavior, and knowledge. If there is a

database containing successful penetration tests instead of or in

addition to the attack database, the experience and knowledge

of penetration testers can be captured in the same way. Such a

database could be maintained by testers, for example, within a

penetration testing vendor, in order to use it in the same way

as the attack database (see Section IV). Creating that database

can be done iteratively over several penetration tests. Our

idea is inspired by the capture-replay principle from testing

Graphical User Interface (GUI) applications as described by

Liu et al. [30]. Here, inputs made manually by a user in a GUI

application are logged and transferred to test scripts. These

can then be reused for new and automated test executions.

In Figure 5, this process is illustrated for our automotive use

case. The security model (see Section IV) of the vehicle under

test could be made available to penetration testers within a

software tool. The tester uses his experience to exploratively

find vulnerabilities in the SUT through appropriate testing,

attacks, etc.

Penetration

Tester

Database

(Attack/Tester

Knowledge)

Successful

attack steps

Vehicle

1…n
(SUT)

Testing

Penetration

Tester

Database

(Attack/Tester

Knowledge)

Attack/Tester

Knowledge

Vehicle

n+1

(SUT)

Testing

Figure 5. Collecting successful penetration testing attack steps in order to
reuse that knowledge in new penetration tests.

Successful attack steps are then logged/recorded by the

tester in the model, i.e., exploited paths are selected in

the model and respective information (e.g., a specific attack

technique used and vulnerability exploited) is specified for

each attack step. Successful attack paths are then transferred

to a database. If this process is carried out over several tests

or different testers, an experience-based penetration testing

knowledge database can be created. This can be used within

model-based testing methodologies (as in the previous section)

and associated tools, or within an expert system to support

penetration testers in future testing. We also see a benefit

of this approach for novices just entering the security testing

domain, as they can benefit from an accumulated knowledge

of experienced testers.

VI. DISCUSSION

In this section, the presented approach is discussed to

address use cases, current challenges, and limitations. In order

to derive attack paths from a security model, only a vehicle’s

E/E architecture and an attack/tester database are required.

For this reason, our method can be used at an early stage

in the development process. This enables an application even

previous to penetration testing, e.g., at the integration and

system test stage. In this way, potential vulnerabilities can

be found and eliminated at an early stage. It is also possible

to link that process to TARA, which is carried out as part

of vehicle development. In principle, there is a high degree

of similarity between a TARA and the approach shown here,

as both processes aim to identify threats/vulnerabilities and

attack paths. An applicability of the Attacker Privilege model

explained in Figure 2 in the context of TARA has already

been shown in [5]. However, our model-based security testing

approach targets the testing process. We consider aspects, such

as security mechanisms, as well as concrete exploits for po-

tential vulnerabilities and detailed technological characteristics

of vehicle systems. At the time of performing a TARA, such

details are usually not yet available. One challenge of our

approach is the transferability of attacks stored in our database

to new vehicle systems or network architectures. In particular,

if the network of a vehicle under test differs significantly

from the network of an already attacked vehicle, there can

be a risk that an attack path is not transferable. This problem

can be circumvented by combining/permutating attack steps

from different database attacks. Whether resulting attack paths

actually reveal vulnerabilities in a vehicle, however, can only

be determined by the tester. Furthermore, we want to highlight

that it would make sense to carry out further testing activities.

In general, our approach can be seen as a black-box test

method. Even if we have detailed information about elements

of the vehicle E/E architecture, our security model does not

cover all aspects, such as software code. In case an attack

path generated from our model reveals a vulnerability, we

only know that there is a vulnerability. This does not mean

that the root cause of that vulnerability is also known. Thus,

additional grey-box or white-box-based test methods should be

applied in this case to find the root cause. As a final aspect, we

40Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

discuss how our approach can be evaluated. In [5], we were

already able to show that critical attack paths can be found by

applying the Attacker Privilege model to vehicle architectures.

In addition, we were able to determine in initial investigations

that security models based on E/E architectures of attacked

vehicles from our database (for example, from publications,

such as Miller and Valasek [31]) contain new attack paths,

which were also exploited in reality. These investigations

should be extended to a detailed case study in future work.

VII. CONCLUSION

In this paper, an approach to enable automation of the

security testing process was shown. In particular, we presented

a formal security model, which can be analyzed for possible

attack paths based on existing attacks from our attack database.

We further demonstrated how paths for security testing can be

derived. In addition, a proposal was presented on how knowl-

edge and experience of penetration testers can be captured

and reused to derive test paths. The approach is designed to

deal with an increasing complexity of modern vehicles by

automating sub-processes of the security testing process, in

particular test planning and test case generation (attack paths).

This enables early system analysis (e.g., as model-in-the-loop

tests) and early testing. Further, estimations of security test

effort can be made. For a practical implementation of the

presented method, future work is to develop a software tool.

This enables the creation of a security model, an analysis

of that model, and the derivation of security testing paths.

The tool can also be used to support penetration testers, as

it provides knowledge about attacks or knowledge of testers

in a comprehensive way. In addition, our approach should be

evaluated in the context of a case study. Initial investigations

have shown that existing attack paths from our database can

also be found in other E/E architectures. A larger case study

should therefore be carried out to examine this in detail.

ACKNOWLEDGMENT

This work was developed in the project SecForCARs-

SAVE (reference number: 16KIS0796) which is funded by the

German Ministry of Education and Research (BMBF).

REFERENCES

[1] F. Sommer, J. DÈurrwang, and R. Kriesten, ªSurvey and classification of
automotive security attacks,º Information, vol. 10, no. 4, p. 148, 2019.

[2] ISO/SAE 21434:2021, ªRoad vehicles Ð cybersecurity engineering,º
2021.

[3] UNECE, ªUn regulation no. 155 - uniform provisions concerning
the approval of vehicles with regards to cyber security and cyber
security management system: E/ece/trans/505/rev.3/add. 154,º 03/2021.
[Online]. Available: https://unece.org/sites/default/files/2021-03/R155e.
pdf (Accessed 2022.07.12).

[4] S. Marksteiner and Z. Ma, ªApproaching the automation of cyber
security testing of connected vehicles,º in Proceedings of the Third

Central European Cybersecurity Conference, 2019, pp. 1±3.

[5] J. DÈurrwang, F. Sommer, and R. Kriesten, ªAutomationin automotive
security by using attacker privileges,º in Proceedings of the 19th escar

Europe 2021, pp. 137±152.

[6] F. Sommer, R. Kriesten, and F. Kargl, ªModel-based security testing of
vehicle networks,º in 2021 International Conference on Computational

Science and Computational Intelligence (CSCI), 2021, pp. 685±691.

[7] F. Sommer and J. DÈurrwang, ªIeem-hska/aad: Automotive attack
database (aad),º 2019. [Online]. Available: https://github.com/
IEEM-HsKA/AAD (Accessed 2022.07.12).

[8] M. Felderer, P. Zech, R. Breu, M. BÈuchler, and A. Pretschner, ªModel-
based security testing: a taxonomy and systematic classification,º Soft-

ware Testing, Verification and Reliability, vol. 26, no. 2, pp. 119±148,
2016.

[9] L. Wang, E. Wong, and D. Xu, ªA threat model driven approach for
security testing,º in Proceedings of the Third International Workshop

on Software Engineering for Secure Systems, 2007, p. 10.
[10] C. Nickerson et al., ªThe penetration testing execution standard,º

2014. [Online]. Available: http://www.pentest-standard.org/index.php/
Main Page (Accessed 2022.06.27).

[11] M. Meucci et al., ªOwasp testing guide, v3,º 2008. [Online].
Available: https://owasp.org/www-project-web-security-testing-guide/
assets/archive/OWASP Testing Guide v3.pdf (Accessed 24.08.2022).

[12] M. Ring, ªSystematische security-tests von kraftfahrzeugen (systematic
security tests of vehicles),º Dissertation, UniversitÈat Ulm, Ulm, 2019.

[13] S. Bayer, K. Hirata, and D. K. Oka, ªTowards a systematic pentesting
framework for in-vehicular can,º 14th ESCAR Europe, 2016.

[14] ISO 11898-1:2015, ªRoad vehicles ± controller area network (can) ±
part 1: Data link layer and physical signalling,º 1993.

[15] ISO 14229:2006, ªRoad vehicles Ð unified diagnostic services (uds) Ð
specification and requirements,º 2006.

[16] C. Smith, The Car Hacker’s Handbook: A Guide for the Penetration

Tester. San Francisco: No Starch Press, 2016.
[17] J. DÈurrwang, J. Braun, M. Rumez, R. Kriesten, and A. Pretschner,

ªEnhancement of automotive penetration testing with threat analyses
results,º SAE International Journal of Transportation Cybersecurity and

Privacy, vol. 1, no. 11-01-02-0005, pp. 91±112, 2018.
[18] M. Utting, A. Pretschner, and B. Legeard, ªA taxonomy of model-

based testing approaches,º Software Testing, Verification and Reliability,
vol. 22, no. 5, pp. 297±312, 2012.

[19] M. Cheah, S. A. Shaikh, O. Haas, and A. Ruddle, ªTowards a systematic
security evaluation of the automotive bluetooth interface,º Vehicular

Communications, vol. 9, pp. 8±18, 2017.
[20] C. A. R. Hoare, ªCommunicating sequential processes,º Communica-

tions of the ACM, vol. 21, no. 8, pp. 666±677, 1978.
[21] Bluetooth Special Interest Group, ªBluetooth core specification v5.0,º

2016. [Online]. Available: https://www.bluetooth.com/specifications/
bluetooth-core-specification (Accessed 2022.07.12).

[22] P. S. Oruganti, M. Appel, and Q. Ahmed, ªHardware-in-loop based
automotive embedded systems cybersecurity evaluation testbed,º in
Proceedings of the ACM Workshop on Automotive Cybersecurity, 2019,
pp. 41±44.

[23] M. Appel, P. S. Oruganti, Q. Ahmed, J. Wilkerson, and R. Sekar, ªA
safety and security testbed for assured autonomy in vehicles,º SAE

International, p. 8, April 14, 2020.
[24] T. Volkersdorfer and H.-J. Hof, ªA concept of an attack model for

a model-based security testing framework: Introducing a holistic per-
spective of cyberattacks in software engineering,º in SECURWARE

2020 : The Fourteenth International Conference on Emerging Security

Information, Systems and Technologies, pp. 96±101.
[25] V. S. Alagar and K. Periyasamy, Specification of software systems,

2nd ed. Springer Science & Business Media, 2011.
[26] The MITRE Corporation, ªCommon weakness enumeration (cwe),º

2022. [Online]. Available: https://cwe.mitre.org/ (Accessed 2022.07.12).
[27] H. Booth, D. Rike, and G. Witte, ªThe national vulnerability database

(nvd): Overview,º Gaithersburg, 2013. [Online]. Available: https://www.
nist.gov/publications/national-vulnerability-database-nvd-overview (Ac-
cessed 2022.07.12).

[28] L. Kohnfelder and P. Garg, ªThe stride threat model,º 2009.
[Online]. Available: https://docs.microsoft.com/en-us/previous-versions/
commerce-server/ee823878(v=cs.20) (Accessed 2022.07.12).

[29] The MITRE Corporation, ªCommon attack pattern enumeration and
classification (capec),º 2022. [Online]. Available: https://capec.mitre.
org/index.html (Accessed 2022.07.12).

[30] C. H. Liu et al., ªCapture-replay testing for android applications,º in
2014 International Symposium on Computer, Consumer and Control,
2014, pp. 1129±1132.

[31] C. Miller and C. Valasek, ªAdventures in automotive networks and
control units,º Def Con, vol. 21, pp. 260±264, 2013.

41Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

https://unece.org/sites/default/files/2021-03/R155e.pdf
https://unece.org/sites/default/files/2021-03/R155e.pdf
https://github.com/IEEM-HsKA/AAD
https://github.com/IEEM-HsKA/AAD
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v3.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v3.pdf
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://cwe.mitre.org/
https://www.nist.gov/publications/national-vulnerability-database-nvd-overview
https://www.nist.gov/publications/national-vulnerability-database-nvd-overview
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://capec.mitre.org/index.html
https://capec.mitre.org/index.html

	Introduction
	Background and Related Work
	Security Testing
	Security Testing in the Automotive Domain
	Model-Based Security Testing in the Automotive Domain

	Approach and Modeling Process
	Attack Path Generation using an Attack Database
	Attack Path Generation based on Penetration Tester Experience
	Discussion
	Conclusion
	References

