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Abstract— Rigorous assessment of disaster risk requires an 

exceedance probability function relating the probability that 

‘S’, a random variable representing the severity of the disaster, 

exceeds some threshold ‘s’ above which destruction is 

expected. Calculating a valid exceedance probability function 

for disasters is not straightforward. The Power Law has served 

as a panacea for this difficulty, often erroneously. Here, an 

alternative approach is demonstrated using empirical data for 

interstate war, the coronavirus pandemic, and identity theft. 

The method relates the frequency distribution of severity S 

(deaths or failures per state) to the product of frequency 

distributions for vulnerability V (deaths or failures per case or 

combatant), exposure E (cases or combatants per capita), and 

population P (population per state). The probability density 

function for S, from which the exceedance probability function 

is derived, may then be computed using obtainable 

distributions for V, E, and P if data for S is not directly 

available. The method is used to estimate the risk of a global 

cyber disaster. Results suggest that the probability density 

functions for this situation follow log-gamma distributions. 

The fits can be used in stochastic decision formulae enabling 

authorities to optimally choose among alternative cyber 

preparedness or resilience measures to minimize overall risk. 

Keywords- catastrophe theory; military; power law; risk 

analysis. 

I.  INTRODUCTION 

“What is cyber risk?” – “What are the costs and 
detrimental effects caused by cyber risk?” – “Where do we 
find data on cyber risk?” – “How can we model cyber risks?” 
These first four of ten key questions posed by The Geneva 
Association [1] suggest that as recently as 2016 very few of 
the technical fundamentals of cyber risk are understood. Fast 
forward five years; a global biological virus – not a digital 
virus – will help to answer these critical questions. 

Malicious, replicating digital software is called a 
“computer virus” because it is characterized by rapid 
proliferation and high unpredictability, just like a biological 
virus. One phenomenon has real-life implications for the 
other. These implications ought to be studied and applied for 
common benefit, such as in decision formulae used to 
minimize risk.  Informed by empirical data, these equations 
can help optimally choose long-term investments to mitigate 
cyber threats, be integrated into operational software to 

defend against cyber-attacks in real-time or be used by 
actuarial scientists to determine insurance premiums when 
cyber-defenses fail, among other applications.  

Network epidemiology holds that the spread of disease 
can be modelled with network theory [2]. Social and 
commuter networks, modelled as nodes and segments in a 
matrix, approximate disease transmission. Similarly, in the 
case of a computer virus it is the internet cables, servers, and 
client computers that form the network. If the impacts of a 
virus across a network are great, sudden, and unforeseen, a 
disaster ensues. Catastrophe theory was developed to address 
the stochastic nature of these events so that logical 
investments into preparedness and resilience measures could 
be made.   

In this study, we extend previous catastrophe theory that 
has been applied to interstate war [3] to the coronavirus 
pandemic to develop a method for characterizing the 
magnitude and uncertainty of the severity of a worst-case 
computer virus that spreads to Internet-connected computers. 
The results are expected to help inform the development and 
implementation of cyber preparedness and resilience 
measures.  

Section II provides additional background on exceedance 
probabilities and why use of the Power Law is not valid. 
Section III describes a method to estimate the exceedance 
probability for a global computer virus. Section IV reports 
the results. Section V is a summary of conclusions.  

II. BACKGROUND 

Probability distributions of severity embody the highly 
unpredictable nature of catastrophic phenomena. A 
Probability Density Function (PDF) quantifies the relative 
likelihood that the value of a random variable ‘S’ 
representing severity is equal to some severity ‘s’. The 
complement (i.e., subtracted from one) of the integral of the 
PDF from zero to s is the exceedance probability function, 
P(S>s). The exceedance function relates the probability that 
S exceeds a threshold s above which destruction is expected 
[4]. For example, to construct a building to survive 
earthquakes, the architect is concerned with the probability 
that the earthquake will be less than some specified Richter 
value, such as “9”. Above this severity, destruction of the 
building cannot be reasonably avoided. We would write this 
exceedance probability as P(S>9).  
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War is a man-made disaster that may be characterized by 
an exceedance probability. Beginning in 1960 with Lewis 
Fry Richardson’s famous “The Statistics of Deadly Quarrels” 
[5] the Power Law has been widely used to model the 
exceedance probability of war. A phenomenon may be 
probabilistically distributed according to the Power Law if 
the logarithm of the exceedance probability plotted against 
the logarithm of severity s appears as a straight line with 
slope –q. This is written as P(S>s) = s-q and is quantified by 
grouping data according to consecutive ranges of severity 
and examining the frequency that wars fall into these groups. 
It turns out that the Power Law may be applied to many 
phenomena [6]. An example of the Power Law applied to 
cyber-crime data [7] is illustrated in Fig. 1. It is the straight 
line with an approximate slope of -0.7 (Note that variable b 
in the figure is negated in the Power Law formula). 

Fig. 1 is an example of how the Power Law is often 
misapplied. For identification (ID) theft in the U.S., Circle A 
shows that the Power Law misrepresents data from 1 to 
10,000 or about half of the entire range of the graph. Circle B 
shows that the data does not match the Power Law fit for 
greater than 107. Critically, the Power Law fails as a 
probability when q<1 unless the use is properly qualified. A 
proper qualification will recognize that “data held to be 
power-law distributed represent samples from some 
underlying population. As these samples often cover a 
narrower scale range than that of the population as a whole 
they are truncated” [8]. A q value less than one indicates that 
the exceedance probability decreases slower than the 
increase in severity. In such “long-tail” cases, the severity 
increases arbitrarily, causing the mean to become 
mathematically divergent. The slope associated with the 
Power Law fit to identification theft data in Fig. 1 is less than 
one, meaning that it is invalid as a probability distribution for 
the range indicated and, therefore, cannot be used in 

mathematical decision criteria (e.g., a likelihood ratio test) 
that may be used to compute minimum risk.  

Curvature in log-log data, such as that observed at both 
ends of the data in Fig. 1, suggest the applicability of 
logarithmic distributions other than the Power Law, like the 
log-normal distribution [9]. A Log-Normal (LN) distribution 
is a normal distribution applied to the logarithm of the 
statistic. Curvature in the integral of LN data is evident in 
many plots meant to demonstrate the applicability of the 
Power Law. The LN is a symmetric distribution, but often 
data will appear non-symmetric. A non-symmetric 
distribution skewed toward higher statistics is the log-gamma 
(LG). Conspicuously absent from disaster modelling 
literature is application of the LG to severity, except for one 
[10] linking LG and LN distributions of combat deaths to 
economic theory [11]. When plotted in a log-log graph, the 
middle section of the integral of the LN and LG PDFs will 
always appear somewhat straight, explaining why the Power 
Law is so often misapplied. Application of the Power Law in 
these cases is not only mathematically invalid, but it fails to 
reveal the true nature of the underlying phenomena.   

Finding a valid exceedance probability is not 
straightforward. The Power Law erroneously serves as a 
panacea for this difficulty. The deficiencies noted in Fig. 1 
illustrate how the Power Law is misapplied to cyber-risk. A 
better quantitative method is needed to estimate exceedance 
probabilities. An approach based on the spread of known 
computer viruses would be the best way to proceed. 
However, the data needed for such an approach is not 
available and/or public. Another method is needed.  

III. METHOD 

A novel alternative to the Power Law is demonstrated 
here with empirical interstate war and coronavirus pandemic 
fatality data that relates frequency distribution for severity S 
(deaths per state) to frequency distributions for vulnerability 
V (deaths per case or combatant), exposure E (cases or 
combatants per capita), and population P (population per 
state) by (1). Because all three of these variables are found to 
conform to parametric distributions associated with random 
variables, each may be viewed as a random variable.   

S = VEP         (1) 

In war, deaths are “transmitted” from one combatant to 
another by contact following geographic movement, much 
like how an airborne biological virus is transmitted. 
Similarities between interstate war and a global pandemic, 
including the finding that war is a network phenomenon 
[12], lead us to posit that the statistics of interstate war are 
representative of these and similarly networked phenomena. 
War data used in this study are from the Correlates Of War 
(COW) Project. Combat death statistics were obtained from 
the COW War Data, 1816 - 2007 (v4.0) [13]. Population and 
military personnel (i.e., combatant) statistics were obtained 
from the COW National Material Capabilities (NMC) (v5.0) 
dataset [14]. The two datasets were combined manually for 
this study. The data involves 93 wars. However, proper 

 

 

Figure 1. Normalized ID theft data and Power Law fit reported by [7]. 
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𝑓 𝑥;𝛼,𝛽 =
1

𝛽𝛼Γ(α)
𝑥𝛼−1𝑒−𝑥/𝛽  

application of game theory [15] requires that these wars be 
differentiated by participating nations, of which there are 
337. Due to missing military personnel data for some of 
these wars, the number of states is reduced to 250. Other 
defects further reduce the set to 236 states. Moreover, it is 
reported that 25 of these warring states lost more combatants 
than reported in the NMC database. In these cases, we limit 
the number of combat dead to be 100% of the combatants. 

The magnitude and variability of S for interstate war, 
measured in terms of combat dead, is represented by the red 
lines in Fig. 2(a). The solid red line with square markers 
indicates combat deaths taken directly from the COW War 
Data set. The thick semi-transparent red line with no markers 
indicates combat dead computed using (1). The solid green 
line with circle markers is the distribution of state 
populations taken from the NMC dataset, which represents P 
in the equation. The solid blue line with solid diamond 
markers indicates the distribution of combatants per capita, 
also taken from the NMC dataset, which represents exposure 
E. The distribution of vulnerability V, or deaths per 
combatant, taken from the interstate war dataset, is indicated 
by the solid orange line marked by triangles. In all graphs, 
solid lines with solid markers indicate empirical data, 
whereas dotted lines with no markers indicate parametric fits 
to data.  

Curves in Fig. 2 appearing to the right of zero on the 
logarithmic axis are greater than one, while those to the left 
of zero are numbers between zero and one. The calculated 
deaths per nation S, a number greater than one, is the product 
of a random number P and likewise greater than one, with 
two random variables E and V that are both fractions. For 
this reason, the red curves are situated between the green 
curve and zero on the x-axis. The fact that the thick semi-
transparent red curve overlaps the solid line with square 
markers is a good indication that estimation of deaths using 
S=VEP accurately reflects what is reported in empirical data. 
Small mismatches are mainly attributed to inaccurate army 
sizes reported in the COW NMC dataset.  

Parametric fits are important because they help to 
determine if the data are mathematically well-behaved, 
discern what processes underly the phenomena, and 
applicable to risk-minimizing formulae. The distribution of 
state populations P follows a negatively Skewed LN (SLN) 
distribution. The E and V curves follow an LG distribution, 
described by (2). The distribution of combat deaths S follows 
an LG distribution. 

                (2) 

 

(b)

(a)

 

Figure 2. PDFs for (a) interstate war (top) and (b) the COVID-19 pandemic (bottom). Solid lines with solid markers indicate empirical data, dotted lines 

with no markers indicate parametric fits to data, and the thick semi-transparent line indicates the curve computed using the relation S = VEP. 
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Fig. 2(b) reports the S, V, E, and P curves associated with 
the coronavirus pandemic derived from Our World In Data 
(OWID) statistics [16]. Of the 217 nations reporting data, 
only 199 are used because zero values reported by 18 nations 
cannot be included in a logarithmic graph. The coronavirus 
graph is presented just below and in alignment with the 
interstate war graph using the same scales to help the reader 
compare and contrast the two sets of curves. The meaning of 
the solid and dashed lines is the same as for Fig. 2(a). It turns 
out that the same parametric functions fit the coronavirus 
data, except with different parameters. 

Similarities and differences between phenomena are 
more evident when their data are separated into constituent 
random variables in this way. The similarities between the 
cases of interstate war and COVID-19 appear to be mostly a 
result of similar population data. The only difference 
between the population distribution for these cases is that the 
interstate war data spans 191 years from 1816 to 2007, 
whereas the COVID-19 pandemic population data is taken 
only from 2020.  The most striking difference between the 
two are their vulnerability curves. For interstate war, there is 
a 40% chance that a nation loses all its combatants in a war. 
Compare this to the COVID-19 pandemic, where there is a 
zero probability that all exposed to the virus will die, but an 
80% chance that 10% of those exposed will die. At first 
glance, these curves appear to be associated with two 
different parametric distributions because the V distribution 
for interstate war looks like an exponential. This difference is 
resolved by the fact that an exponential distribution is a 
gamma distribution for certain combinations of parameters. 
In other words, they both can be considered gamma 
distributions applied to the logarithm of the statistic.   

Comparison of S, V, E, and P data for interstate war and 
the COVID-19 pandemic appear to make clear that two very 
different phenomena have real-life implications for the other, 
possibly due to common or similar underlying phenomena 
(e.g., both involve networks), and that the same might be true 
for cyber phenomena. One may choose different populations 
to study, or the populations themselves may change. 
However, for a given threat (e.g., war, coronavirus, etc.), we 
suspect that distributions for E and V may be common to or 
similar for these different populations. Thus, we can use this 
knowledge to estimate underlying distributions for E and/or 
V and use them in (1) to determine S for a given population 
under consideration. In contrast to the threat, vulnerability, 
and consequence model used by the Federal Emergency 
Management Agency (FEMA) where Risk=TVC [17], ours is 
based on a population because the threat and severity both 
derive from the population itself and exposure expresses the 
population’s ability to convey the threat. 

IV. RESULTS 

We apply the method to the case of a hypothetical 
computer virus that spreads like COVID-19 and inflicts a 
combat-like mortality rate on Internet-connected computers. 
For this case, the population distribution is taken to be the 
number of people per nation with access to the Internet. For 
all nations, OWID [16] reports the fraction of people with 
Internet connections, which is multiplied by the population 

of the respective state. For E and V distributions, we intend 
to use those associated with the coronavirus pandemic and 
interstate war, respectively. Before doing so, however, we 
would like some evidence that these distributions are 
appropriate for modelling a computer virus. Unfortunately, 
there is no quantitative data available that directly serves this 
purpose.   

The Privacy Rights Clearinghouse (PRC) is one of the 
few organizations to publish an online database quantifying 
different types of cyber-crime [18]. However, this database 
does not provide any statistics about the number of attacks or 
infiltrations per capita or the number of records per attack or 
infiltration. That is, the database does not help quantify E or 
V. Only the distribution of S can be discerned from the PRC 
data. Our approach in this case is to “reverse-engineer” the 
vulnerability distribution using (1) by first positing that the 
exposure distribution is the same as for the coronavirus. We 
then adjust the vulnerability distribution until the relation 
S=VEP produces an S distribution that matches the 
distribution of the PRC data. State populations in the U.S. 
were taken from Wikipedia [19]. The result of this process 
applied to “datalossdb” records in the PRC ID theft database 
is reported in Fig. 3. As before, S=VEP is represented by the 
thick semi-transparent red line and the empirical data for S is 
represented by the solid red line with square markers. The 
resulting V distribution is more consistent with the 
vulnerability associated with interstate war than to 
vulnerability associated with the coronavirus, a finding that 
gives us some confidence that the respective E and V 
distributions for the Coronavirus and interstate war can be 
applied to our hypothetical computer virus.  

Fig. 4 reports the exceedance probability for S computed 
using P and E distributions from the coronavirus pandemic 
and a reverse-engineered V distribution. Only a thick semi-
transparent red line is reported (i.e., no solid line with square 
markers) because the severity distribution is based on 
S=VEP and there is no S data with which to compare 
directly. However, we can compare the S=VEP curve to the 
exceedance probability for the PRC ID theft data, which is 
indicated by the solid black line with solid square markers. 
The main difference between the curves is that they diverge 
beginning at a value of 5 (i.e., 100,000) on the x-axis. The 
Power Law approximation associated with the PRC is 
reproduced in Fig. 4 as the black dotted line. Our best fit of a 
power law to the PRC data is with a slope of -0.65, which 
rounds to -0.7, the value reported by Maillart and Sornette 
[7]. As with the Power Law fit in Fig. 1, the fit in Fig. 4 
diverges from the data for s values less than 4.5 and greater 
than 7.5. 

Parametric fits to each of the four PDFs (i.e., S, V, E, and 
P) for each of the four phenomena (i.e., interstate war, the 
COVID-19 pandemic, U.S. ID theft, and hypothetical global 
computer virus) are recorded in Table 1. For the hypothetical 
virus, a non-skewed LN distribution (α=0) fits the population 
of internet-connected devices, which is slightly different than 
the other populations fit by a SLN distribution. The curve for 
the computed severity of the hypothetical computer virus 
appears to follow an LG distribution, which is the same as 
for interstate war and the coronavirus pandemic. 
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 Parametric distributions that mimic empirical data are 
valuable to decision formulae. What is particularly important 
in the case of logarithmic severity distributions, like those in 
this study, is that the parametric fits adequately model the 
high-severity portion of the data. Consider the data and fits 
to the data in Fig. 4. The data represented by the solid black 
line is turning downward, gaining a more negative slope 
whereas the black dotted line (i.e., the Power Law fit) is a 
straight line with negative slope 0.7. The Power Law 
approximation cannot be used in probabilistic decision 
formulae because it is divergent for slopes equal to or greater 
than negative one. Conversely, the LG fit represented by the 
dotted red line, which faithfully mimics the solid red data 
line, is valid for use in such formulae because it becomes 
increasingly negative. As can be seen in these exceedance 
probabilities, there is a portion in the middle that is 
approximately straight, which creates the temptation to 
report the distribution as a Power Law. This tendency is 
particularly prevalent for war statistics [20].  

Results should not be overinterpreted. The method is not 
useful for investigating microscopic causes of cyber-risk, 
although it can be used to posit or confirm the macroscopic 
result of microscopic causes vis-à-vis parametric 
distributions. However, the method is a better bookkeeping 
and estimation tool for uncertainty in the constituents of risk 
when the threat is created and propagated by the population. 
FEMA’s model is applicable to threats that are independent 
of the population (e.g., earthquakes). 

V. CONCLUSION 

Risk is the product of probability and severity. 
Exceedance probability is the mathematical object 
connecting both. The magnitude and variability of the 
severity S of a computer virus can be computed in terms of 
frequency distributions representing the subject population, 
P, that part of the population exposed to the risk, E, and the 
vulnerability of the exposed, V. Currently there is not enough 
cyber risk data to calculate S directly, so the advantage of 
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Figure 4. Exceedance probability functions, P(S>s), for U.S. ID theft (solid black with square markers) and a highly “contagious” global computer virus 

(thick semi-transparent red) developed using the S=VEP relation, with power law fit to U.S. ID theft data (dotted black) and log-gamma fit to S=VEP curve 

for the global computer virus (dotted red).  

 

Figure 3. PDFs for ID theft in the U.S. The severity distribution is based on Privacy Rights Clearinghouse data [18]. The population distribution, which 
is Internet access per nation, is based on OWID [16]. Curve formats have the same meaning as for curves in Fig. 2.  
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this method is that the PDF of S, from which the exceedance 
probability function is derived, may be computed indirectly 
using more readily obtainable or representative probability 
densities for V, E, and P. The Power Law is divergent when 
applied to the cyber-risk so it should be avoided for these 
purposes in favor of methods such as the one proposed here. 
The method was applied to a hypothetical computer virus 
given the propensity to spread like COVID-19, predicated on 
the hypothesis that the frequency distributions associated 
with interstate war, COVID-19, and computer viruses 
manifest similar network behavior. Results are consistent 
with this hypothesis.  

The PDF associated with the logarithm of severity for a 
worldwide computer virus is fit by a gamma distribution. 
This parametric distribution can be used in operational 
computer software designed to detect and react to cyber 
threats in real-time, in stochastic decision formulae enabling 
authorities to optimally choose among alternative cyber 
preparedness or resilience measures, or in actuarial equations 
to determine insurance premiums for cyber risks.  

Using data from Tab. 1, we compute the logarithmic 
variance of the computer virus to be 1.44 (=α×β2) and the 
logarithmic standard deviation to be 1.2, which is equal to a 
factor of 16 (=101.2). For x-axis values greater than 6 in Fig. 
4, the exceedance probability varies by an order of 
magnitude in one standard deviation, meaning that the risk of 
a global cyber disaster is associated with very high 
uncertainty. This finding is likely to hold for a real-live 
computer pandemic because it is rooted in empirical U.S. 
cyber-crime data that has been corrected in terms of its 
population, exposure, and vulnerability distributions.  

DISCLAIMER 

The opinions, conclusions, and recommendations 
expressed or implied are the authors’ and do not necessarily 
reflect the views of the Department of Defense or any other 
agency of the U.S. Federal Government, or any other 
organization. 

REFERENCES 

[1] M. Eling and W. Schnell, “Ten Key Questions on Cyber Risk 
and and Cyber Risk Insurance,” The Geneva Association, 
Zurich, Switzerland, 2016. 

[2] L. Danon et al., “Networks and the Epidemiology of 
Infectious Disease,” Hindawi Publishing Corporation, 
Interdisciplinary Perspectives on Infectious Diseases, Volume 
2011. 

[3] V. H. Standley, F. G. Nuño, and J. W. Sharpe, “Modeling 
Interstate War Combat Deaths,” International Journal of 
Modeling and Optimization, vol. 10, no. 1, pp. 1-8, 2020.  

[4] T. G. Lewis, Critical Infrastructure Protection in Homeland 
Security - Defending a Networked Nation, Hobeken, New 
Jersey: John Wiley & Sons, 2015.  

[5] L. F. Richardson, The Statistics of Deadly Quarrells, Chicago: 
Quadrangle Books, 1960.  

[6] L. Cederman, “Modeling the Size of Wars: From Billiard 
Balls to Sandpiles,” The American Political Science Review, 
vol. 97.1 , no. April 2015, pp. 135-50, 2003.  

[7] T. Maillart and D. Sornette, “Heavy-Tailed Distribution of 
Cyber-Risks,” Physics of Condensed Matter, vol. 75, no. 3, 
pp. 1-16, 2008.  

[8] G. Pickering, J. M. Bull, and D. J. Sanderson, “Sampling 
power-law distributions,” Tectonophysics, vol. 248, pp. 1-20, 
1995.  

[9] L. Benguigui and M. Marinov, “A classification of natural 
and social distributions Part one: the descriptions,” 2015. 
[Online]. Available: https://arxiv.org/abs/1607.00856 
[retrieved: August, 2021] 

[10] V. H. Standley, J. W. Sharpe, and F. G. Nuño, “Fusing attack 
detection and severity probabilities: a method for computing 
minimum-risk war decisions,” Computing, 102, pp. 1385–
1408 2020.  

[11] J. von Neumann and O. Morgenstern, Theory of Games and 
Economic Behavior, 3rd ed., Princeton N.J.: Princeton 
University Press, 1953.  

[12] M. O. Jackson and S. Nei, “Networks of Military Alliances, 
Wars, and International Trade,” PNAS, vol. 112, no. 50, pp. 
15277-15284, 2015.  

[13] M. R. Sarkees and F. Wayman, Resort to War: 1816 - 2007, 
Washington DC: CQ Press, 2010.  

[14] D. J. Singer, S. Bremer and J. Stuckey, “Capability 
Distribution, Uncertainty, and Major Power War, 1820 - 
1965,” in Peace, War, and Numbers, Beverly Hills, Sage, 
1972, pp. 19-48. 

[15] T. C. Schelling, The Strategy of Conflict, 1st ed., Cambridge: 
Harvard College, 1960.  

[16] C. Appel et al. “Data on COVID-19 (coronavirus) by Our 
World in Data,” The Oxford Martin Programme on Global 
Development, [Online]. Available: https://github.com 
/owid/covid-19-data/blob/master/ public/data/README.md. 
[retrieved: August, 2021] 

[17] Analysis, Committee to Review the Department of Homeland 
Security's Approach to Risk, “Review of the Department of 
Homeland Security's Approach to Risk Analysis,” The 
National Academies Press, Washington D.C., 2010. 

[18] P. R. Clearinghouse, “Data Breaches,” Privacy Rights 
Organization, 13 January 2020. [Online]. Available: 
https://privacyrights.org/data-breaches. [retrieved: August 
2021]. 

[19] “List of states and territories of the United States by 
population,” Wikipedia, 5 November 2020.  
https://en.wikipedia.org/wiki/List_of_states_and_territories_o
f_the_United_States_by_population.  

[20] R. González-Val, “War Size Distribution: Empirical 
Regularities Behind the Conflicts,” Defence and Peace 
Economics, vol. 27, issue 6, pp. 838-853, 2014.

 

TABLE 1. PARAMETRIC FITS TO PROBABILITY DENSITY FUNCTIONS. 

 
Interstate 

War 

Coronavirus 

Pandemic 

Records  

Theft  

Computer 

Virus 

 P 
SLN 

ξ=8, ω=1.2, 

α=-3 

SLN 
ξ=8.4, ω=1.5, 

α=-3 

SLN 
ξ=7.8, ω=1.2, 

α=-2 

SLN 
ξ=7, ω =0.9, 

α=0 

E 
LG 

α=17,  

β=0.13 

LG 
α=14,  

β=0.20 

LG 
α=14,  

β=0.20 

LG 
α=14,  

β=0.20 

V 

LG 

α=1.0,  
β=2.0 

LG 

α=5.5,  
β=0.35 

LG 

α=1.0,  
β=0.50 

LG 

α=1.0,  
β=0.50 

S 

LG 

α=9.8,  
β=0.34 

LG 

α=4.0,  
β=0.6 

LG 

μ=3.5,  
σ=1.3 

LG 

α=4.0,  
β=0.6 
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