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Abstract—Industrial Control System (ICS) components have 
been subject to heightened cyber risk as hardware/software 
supply chain vulnerabilities have been illuminated and 
cyberattacks have become increasingly sophisticated. At the 
center of this ICS cyber maelstrom is the Programmable Logic 
Controller (PLC), a key component of Industry 4.0, as it is a 
main controller for physical processes (e.g., the control of an 
actuator). Many PLCs were designed for another era; they are 
resource-constrained, non-optimized, and beset with a variety 
of legacy facets (e.g., compiler, programming language, etc). 
This described sub-optimal paradigm also exists within the 
rubric of standards that specify the time interval between 
signal ingestion and actuation (e.g., IEEE 1547 specifies 2 
seconds) for the operating environment. Hence, the 
designing/architecting/implementing of a light computational 
footprint continuous Monitoring/Detecting/Mitigating Module 
(MDMM) is non-trivial. This paper investigates a specific 
scenario of an ICS PLC operating within a 5G Ultra-Reliable 
Low-Latency Communications (URLLC) inter-PLC context 
and posits a viable MDMM construct that can operate within 
the paradigm. Central to its viability, the MDMM leverages 
apriori scan cycle traffic, utilizes Machine Learning (ML)-
facilitated PLC logic/code optimization, and endeavors to 
undertake mitigation via a bespoke Automated Reverse 
Engineering (ARE) mechanism. The introduced MDMM 
requires further quantitative benchmarking, but the initial 
experimental results show promise. 

Keywords-cybersecurity; industrial control system; 
programmable logic controller; Industry 4.0; Industrial Internet 
of Things; smart manufacturing; smart grid; 5G; machine 
learning; artificial intelligence; automated reverse engineering. 

I. INTRODUCTION 
The benefits of ARE for PLC binaries to reduce the 

investigation time needed by those in the specialized 
cybersecurity functional sub-field of Digital Forensics and 
Incident Response (DFIR) is well documented in the 
literature [1][2]. Time is of the essence for these DFIR 
teams, as their task is to quickly comprehend the involved 
attack vector objective(s) (e.g., PLC exploitation) and 
effectuate countermeasures post-exploitation analysis. The 
need to reduce the time needed for exploitation analysis was 
illuminated by, among other examples, the ICS Stuxnet case 
study (wherein the PLCs at the involved nuclear facility were 
targeted). The prolonged non-automated, manual labor-
intensive paradigm of that particular reverse engineering 
process greatly delayed the forensic investigation and 

articulated the need for an ARE mechanism as well as the 
need of a digital mirror for supporting such a mechanism. 

Yet, ARE, if not properly architected, can also constitute 
a vulnerability, if it is somehow exploited by attackers. Just 
as the advisories made available by the National 
Vulnerability Database (NVD) and Sentient Hyper 
Optimized Data Access Network (SHODAN) can be used by 
cyber defenders as early warning indicators, they can also be 
leveraged by cyber attackers for exploitation opportunities 
and as attack accelerants [3]. This phenomenon should be of 
no surprise, as historically, malicious entities have engaged 
in reverse engineering on two fronts: Hardware Reverse 
Engineering (HRE) and Software Reverse Engineering 
(SRE). HRE has long been used by attackers to discern the 
inner workings of Integrated Circuits (ICs) [4]; indeed, tools, 
such as HAL – The Hardware Analyzer, have facilitated 
HRE [5]. On the SRE side, tools include IDA Pro, Radare2, 
Ghidra (open-sourced by the National Security Agency or 
NSA), Hopper, and others. When the aforementioned 
HRE/SRE tools, among others, are utilized as attack 
accelerants, defending security teams have witnessed the 
might of reverse engineering attacks, and the detection of 
these types of attacks has posed an ongoing challenge. 

Despite the dilemma and distinct possibility of being 
utilized as an attack accelerant, the efficacy of ARE 
constitutes a key capability for forensic investigations. As 
can be seen by the SolarWinds incident (wherein malicious 
code was injected into the company’s software, which in turn 
was widely distributed and utilized by client companies for a 
plethora of Information Technology (IT) management and 
remote monitoring needs), vulnerable software was quickly 
propagated throughout an ecosystem of mission-critical 
organizations. The Time to Response (TTR) was recognized 
as critical, but non-automated, manual labor-intensive 
reverse engineering intrinsically has a low TTR. Given the 
double-edged sword aspect of ARE, the notion of such a 
mechanism for mission-critical Critical Infrastructure (CI) 
controllers, such as ICS PLC binaries, has remained an open 
issue/challenge. 

This paper endeavors to respond to that challenge by 
positing an ARE Cyber Module (ARECM), which is less 
prone to being utilized as an attack accelerant. Central to the 
requisite “less prone” protective element is an ML-facilitated 
Discernment Module (MLDM), which strives to detect that 
an attack is occurring/has occurred and timely employs 
(potentially), time-permitting and if still feasible, a bounded 
active defense mechanism to mitigate against the attack (the 

93Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems



 

 

mitigation element is beyond the scope of this paper). 
Central to this discernment element is yet another module, 
which also utilizes ML facilitation so as to perform PLC 
logic/code optimization (a.k.a., ML-facilitated Logic/Code 
Optimization Module or MLLCOM). The paper utilizes a 
variety of acronyms, and some of the key ones are provided 
for the reader’s convenience in Table 1 below. 

TABLE I.  KEY TERMS AND THEIR ACRONYMS 

Term Acronym 

Anomalous Sample Detection ASD 

Architecture Event Trace AET 

Automated Reverse Engineering ARE 

ARE Cyber Module ARECM 

Branch Trace Store BTS 

Instruction Translation Lookaside Buffer ITLB 

Last Branch Record LBR 

Machine Learning ML 

ML-facilitated “Pre-‘ret’” Discernment Module MLPRDM 

ML-facilitated Discernment Module MLDM 

ML-facilitated Logic/Code Optimization Module MLLCOM 

Monitoring/Detecting/Mitigating Module MDMM 

Performance Monitoring Unit PerMU 

PLC Program Execution Context PLCPEC 

Precise Event Base Sampling PEBS 

Prior to the Return  (Pre-Ret) 

Return-Oriented Programming ROP 

Return-to-Libc Ret2Libc 

Time to Response TTR 

Translation Lookaside Buffer TLB 

 
The key components — ARECM, MLDM, and MLLCOM 
— are delineated within the context of the MDMM 
Amalgam, as shown in Figure 1 below. The MDMM 
Amalgam is comprised of three sections: “Monitor,” 
“Detect,” and “Mitigate.” ARECM is situated in the second 
dotted box under the “Detect” section. MLDM is also 
situated in the second dotted box under the “Detect” section. 
MLLCOM is situated in the first dotted box under the 
“Detect” section. The MLLCOM helper is situated under the 
“Monitor” section.  

 
Figure 1.  Monitoring/Detecting/Mitigating Module (MDMM) Amalgam: 
Automated Reverse Engineering Cyber Module (ARECM) with an ML-

facilitated Discernment Module (MLDM) and ML-facilitated [PLC] 
Logic/Code Optimization Module (MLLCOM) 

This section introduces the problem space. Section II 
presents background information and discusses the operating 
environment and the state of the challenge. Section III 
delineates the referenced ARE challenge and presents some 
experimental findings derived from scrutinizing a particular 
ICS architectural stack module, which centers upon edge 
PLCs engaged in inter-PLC communications, via 5G 
URLLC links; it also posits a prospective pathway for 
effectuating a viable ARECM. Section IV concludes with 
some observations, puts forth envisioned future work, and 
the acknowledgements close the paper. 

II. BACKGROUND INFORMATION 
Fundamentally, ICS are systems that interconnect, 

monitor, and control physical processes within industrial 
settings [6]. A plethora of sectors (e.g., energy, 
manufacturing, etc.) rely upon ICS for their ongoing 
operations. Supervisory Control and Data Acquisition 
(SCADA) systems are an example of ICS, and these also 
constitute CI/Strategic Infrastructure (SI) (a.k.a., CI/SI). 
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These CI/SI have been heavily scrutinized for security 
vulnerabilities, and communications is, among others, an 
affected area. 

A. Operating Environment 
With regards to the current operating environment, 

communications/connectivity has become a backbone of the 
Industrial Internet of Things (IIoT), wherein devices are 
interconnected so as to collect, exchange, analyze, and 
actuate upon data. A commonly used term that captures this 
paradigm is Machine to Machine (M2M) communications, 
and in the 5G, Beyond 5G (B5G), and 6G communications 
context, the envisioned service paradigm is that of massive 
Machine-Type Communications (mMTC) and URLLC.  

As IIoT has advanced, such as within the energy and 
manufacturing sectors, the attack surface area for 
communications/connectivity has increased. This has been 
demonstrated by the SHODAN Internet of Things (IoT) 
search engine, which returns publicly accessible information 
regarding IoT devices (e.g., sensitive information related to 
internet-connected ICS devices) [3]. Many of the SHODAN-
illuminated devices do not yet have the firmware updates to 
mitigate against the Common Vulnerabilities and Exposures 
(CVE) delineated by the NVD and/or U.S. Computer 
Emergency Response Team (CERT)- Cybersecurity and 
Infrastructure Security Agency (CISA) portals, and this 
incongruity remains an ongoing issue.  

The digital transformation advances being effectuated by 
IIoT are encompassed within what is referred to as Industry 
4.0. By way of example, “Smart Grid,” a subset of Industry 
4.0, is defined by the National Institute of Standards and 
Technology (NIST) as “modernizing the electric power grid 
so that it incorporates information technology to deliver 
electricity efficiently, reliably, sustainably, and securely… a 
modernized grid enables all participants to benefit from the 
new introduction of new technologies, from distributed 
resources to advanced communications and controls.” 
“Smart Manufacturing,” another subset of Industry 4.0, is 
defined by NIST as being “fully-integrated, collaborative 
manufacturing systems that respond in real time to meet 
changing demands and conditions in the factory, in the 
supply network, and in customer needs;” roughly speaking, 
this translates to the fact that, “in the factories of the future, 
smart communications will become increasingly critical in 
all aspects of the operation,” and a smart factory involves 
physical production processes being combined with digital 
technology (i.e., control) [7]. 

For both of these industrial subsets of Industry 4.0, 
communications is paramount, and a key counterpoised 
element is the PLC. Among other tasks, the PLC acquires 
data from sensory machines/devices, applies certain 
logic/mathematical functions, and outputs computationally-
derived values (to establish thresholds, etc). Within both the 
Smart Grid and Smart Manufacturing sectors, while SCADA 
systems supervise, the PLCs perform the actual operations; 
they are typically installed on the machines/devices they 
control. In the spirit of the communications/connectivity 
envisioned under Industry 4.0/mMTC/M2M, etc, 
increasingly, PLCs are engaging in inter-PLC 

communications. Accordingly, interoperability specifications 
are addressed by reference architectures, such as the 
Industrial Internet Reference Architecture (IIRA) of the 
Industrial Internet Consortium (IIC), Reference Architectural 
Model of Industry 4.0 (RAMI 4.0), and others; IIRA adheres 
to International Organization for Standardization 
(ISO)/International Electrotechnical Commission 
(IEC)/Institute of Electrical and Electronics Engineers 
(IEEE) 42010:2011 “Systems and Software Engineering – 
Architecture Description,” and RAMI 4.0 showcases various 
standards, such as IEC 62264 (a standard built upon the 
American National Standards Institute or ANSI/International 
Society of Automation or ISA-95 to facilitate information 
flow across Enterprise Resource Planning or ERP, 
Manufacturing Execution System or MES, and SCADA 
systems). 

As the PLC is a principal controller for Industry 4.0, it 
has become a key target for cyber attackers. The ICS section 
of the CERT-CISA portal, as of 25 July 2021, lists 1730 
advisories (69 pages of 25 advisories per page plus 5 
advisories on page 70) [8]. While prior thinking held that the 
PLC was not subject to attack, as it was, theoretically, fully 
isolated from the publicly-facing external network, case 
studies, such as Stuxnet, have demonstrated the potential 
speciousness of this notion [9]. Common communications 
congestion attack vectors, in the form of Denial-of-Service 
(DoS) and Distributed Denial of Service (DDoS), are well-
known. More recent studies have shown that degradation of 
ICS can readily be effectuated by communications 
degradation in the form of delay and/or loss of data packets. 
Among other methods, PLC output can be mutated and re-
written to the PLC (this delay/loss of data has been achieved 
within the communications channel of ICS, such as from 
Phasor Measurement Units or PMUs to Phasor Data 
Concentrators  or PDCs [10]). 

To conduct PLC exploitation (e.g., malware) analysis, it 
is necessary to examine the PLC binary. By way of 
background, hopefully, the involved PLC subscribes to the 
standards, as delineated by IEC 61131-3, which pertain to 
PLC architectures, programming languages, data types, 
variable attributes, etc. If so, the PLC logic/code is usually 
developed via an IEC 61131-3-compliant Integrated 
Development Environment  (IDE) and then compiled into a 
PLC binary via some compiler. The resultant PLC binary 
logic/code then, in effect, controls the involved PLC. The 
reverse engineering of this PLC binary is not 
straightforward, as the Tactics, Techniques, and Procedures 
(TTPs), via available tools/frameworks, do not directly 
translate between the Operational Technology (OT) arena 
(wherein the PLC resides) and IT arena [11]. For example, in 
the OT arena, there are a plethora of proprietary compilers 
used in generating PLC binaries, and axiomatically, these 
PLC binaries may not be readily accessible to commonly 
used IT tools (e.g., Interactive Disassembler or IDA, IDA 
Pro). If the PLC binary is indeed IEC 61131-3 compliant via 
one of the major platforms for ICS (e.g., CODESYS), then 
the reverse engineering process is more straightforward; 
however, in many situations, this is not the case. 
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To address this complexity, the notion of ARE has long 
been discussed [12]. Indeed, the notion of reverse 
engineering has become a cornerstone of software supply 
chain verification/integrity, particularly given the recent 
surge in issued directives, such as the “Improving the 
Nation’s Cybersecurity” (Executive Order 14028, which was 
issued on 12 May 2021 and proceeded to direct NIST to 
enhance software supply chain security guidelines). The 
ability to uncover software supply chain vulnerabilities is 
essential for enhancing cyber resiliency, and ARE has been 
shown to effectively contribute by not only discerning 
vulnerabilities, but also facilitating the re-engineering of 
legacy software to supplant deprecated components and/or 
streamline for better performance. In fact, reverse 
engineering (and its examination and review of the 
design/components/build) is often used to redesign (as well 
as aid in source code recovery and binary code reuse [13]), 
enhance the involved system/product, and facilitate 
innovation; it is also often coupled with forward engineering, 
which aims to innovate and develop a new system/product. 
The amalgam of reverse/forward engineering is more 
advantageous than just forward engineering, which (in 
isolation) can lead to recalls/callbacks if actuated without the 
benefit of a Janusian perspective (i.e., leveraging lessons 
learned, project retrospectives, after action reviews, etc). 
Hence, the state of the challenge now resides in successfully 
counterpoising between the two (reverse/forward 
engineering). 

B. State of the Challenge 
The open challenge of ARE centers upon the point that 

while it can indeed accelerate the forensic work of a cyber 
defender, it also represents a potential exploitation 
point/accelerant for a cyber attacker. Architecting an ARE 
cyber module (in a reverse/forward engineering fashion), 
which favors the defender, has been an elusive, non-trivial 
feat. However, the literature does present several 
contributions to this area, and specifically, this paper posits a 
ML-facilitated “Pre-‘ret’” Discernment Module 
(MLPRDM), which shows some promise; in particular, the 
MLPRDM focuses upon recognizing the set of legitimate 
instruction calls prior to the return or “ret” (or “Pre-‘ret’”) 
instruction contained within the subroutines of the PLC 
Program. Legitimate instruction calls proceed accordingly 
while MLPRDM-recognized illegitimate instruction calls 
may experience intervention (time-permitting and if 
practical). The MLPRDM gleans patterns from the work of 
the MLLCOM and is the key engine for the MLDM. The 
MLPRDM is delineated within the context of the MDMM 
Amalgam, as shown in Figure 2 below. The MLPRDM is 
situated in the “Detect” section and straddles the PLCPEC 
dotted box (which is located within the ASD dotted box) and 
the ARECM dotted box. 

 

 
Figure 2.  MLPRDM depicted within the context of the MDMM Amalgam 

To clarify the value-added proposition of the MLPRDM, 
some background information is required. Broadly speaking, 
there are three methods for PLC exploitation: Firmware 
Modification Attacks (FMA), Control-flow Attacks (CFA), 
and Configuration Manipulation Attacks (CMA); these 
attack vector categories had been delineated at the BlackHat 
European Conference in 2016, and combinatorial attacks 
involving an amalgam, from among these categories (i.e., 
FMA, CFA, and CMA), are particularly potent; others 
classify PLC exploitation by security defects: firmware 
security defects, program security defects, and operation 
security defects [14]. Operation security defects can be 
further sub-divided into: (1) attack on protocol defects (e.g., 
since most communications protocols are not encrypted, 
packets can be captured and/or the data store of the registers 
can be read, and replay attacks [legitimate data is repeated 
and/or delayed], etc. can then be effectuated), (2) tampering 
attack at the Input/Output (I/O) interface (e.g., since 
modifying the I/O pin configuration does not necessarily 
issue an alarm, a tampering attack can be covertly 
effectuated), (3a) injection attack to affect the program flow 
control instructions or operational control flow (e.g., as 
operational control flow is dictated by PLC code blocks, 
intermediate code instrumentation and/or malicious code 
execution can exploit this facet), and (3b) return-oriented 
attack to affect the operational control flow (e.g., by 
leveraging exploits, wherein legitimate instructions are 
overwritten, malicious instructions can be indirectly 
executed [14]. The latter sub-divisions (3a, 3b) are the focus 
of MLPRDM.  

C. Formal Verification of PLC Logic/Code 
There are numerous pathways to undertake verification 

of PLC Programs. One pathway involves formal verification 
of PLC Programs; this is typically achieved by translating 
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the PLC Program into a formal model, which in turn can 
serve as input into a model checker (e.g., SMV Symbolic 
Model Checker, NuSMV [a re-implementation and extension 
of SMV], UPPAAL [a portmanteau of Uppsala University 
and Aalborg University], etc.) [15][16]. Yet, the macro 
vantage point might not necessarily discern the more micro 
matters. For example, various software security studies have 
declared that simple micro-errors (intentional and/or 
unintentional) can readily disrupt the availability and 
integrity of a target PLC [17]. To aggravate this matter, in 
many cases where errors do exist, the code will still compile 
and run on the PLC; hence, no warning is necessarily issued. 
Suffice it to say, mitigation of these PLC errors or code 
defects (e.g., buffer overflows/ overruns, stack overruns, etc) 
is difficult, as these defects are difficult to discern, and fuzz 
testing (a.k.a., fuzzing) has met with limited success; 
furthermore, as the PLC often has numerous constituent 
programming languages, the requirements for the fuzzing 
schema tend to be quite elaborate so as to undertake the 
challenge of the associated semantic complexity, and the 
efficacy of even state-of-the-art fuzzers has been sub-optimal 
[18][19]. 

D. General Detection within the PLC Program 
The notion of installing a general detection module 

aboard the PLC has, to date, met with limited appeal; due to 
the already limited computational resources onboard the 
PLC, installing an additional program (with its additional 
computational load requirements) aboard the already 
resource-constrained PLC, so as to examine the PLC 
Program, has met with various heuristical challenges. For 
example, for real-time operations, the task of detection has a 
lower priority than that of a control task, particularly given 
the mission-critical nature of a PLC [20]. This de-
prioritization sets the stage for detection misses, so the 
potential efficacy is already in question. 

E. Anomalous Sample Detection within the PLC Program 
The challenge then becomes one of designing a 

specialized detection module, which has both minimal 
impact on the computational load of the already resource-
constrained PLC as well as a minimal footprint given the 
higher priority control tasks at hand. It turns out that this 
approach vector is somewhat feasible in the form of 
Anomalous Sample Detection (ASD), which demonstrates 
some promise with regards to code-injection and Return-
Oriented Attacks (ROAs). 

As a generalization, a code-injection attack (a.k.a., 
Remote Code Execution or RCE) refers to the exploitation 
of code defect or bug (e.g., buffer overflow/overrun, 
dangling pointer, etc) that processes the externally injected 
malicious code and alters the course of instruction execution 
(i.e., operational control flow). In the case of a buffer 
overflow/overrun, the legitimate return address is 
overwritten, and the operational control flow is diverted to 
the location specified by the new return address. In contrast, 
a ROA does not inject malicious code; rather, it attains 
control of the call stack and leverages the internally resident 

pre-existing code. ROAs are further sub-divided into 
Return-to-Libc (Ret2Libc) attacks (which causes the PLC 
Program to jump to some code block, such as that for 
various functions — system(), execve(), etc. — within the 
standard library, say, for the C programming language or 
libc, which is already loaded into memory) and Return-
Oriented Programming (ROP) attacks (which manipulate 
the call stack to indirectly execute specific instructions or 
groups of instructions immediately prior to the “ret” 
instruction contained within the subroutines of the PLC 
Program). This is shown in Figure 3 below. 
 

 
Figure 3.  PLC Program Execution Context (PLCPEC) in the context of 

Anomalous Sample Detection (ASD) 

Regardless of the attack vector (e.g., code-injection 
attack, ROA), the anomalous aspect can be discerned when 
comparing the examined scrutinization samples (a.k.a., 
performance samples) against apriori baselined samples. 
For example, a Translation Lookaside Buffer (TLB) or 
Instruction Translation Lookaside Buffer (ITLB) “miss” 
could indicate a code injection attack (wherein the 
operational control flow is transferred to the injected 

97Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems



 

 

malicious code, and hence, the “miss” for legitimate code). 
As another example, an examination of the legitimate callers 
of the various library routines (a code block — subroutine, 
procedure, function, etc — used for recurring tasks) should 
be instructive as to whether an illegitimate caller executed a 
ROA. As anomalies can indeed be discerned, regardless of 
the attack vector utilized (e.g., code-injection attack, ROA, 
etc), via these scrutinization samples, the described 
approach is loosely considered to be operation security 
defect agnostic (bounded within the scope of either code 
injection attacks or ROAs). This ASD approach correlates 
events with the ongoing PLC Program Execution Context 
(PLCPEC). This PLCPEC is in the form of baselined 
instruction addresses and callers of library routines, such as 
shown in Figure 3 above. It can be ascertained, via 
examining Figures 2 and 3, that the ASD approach is 
predicated upon the MLPRDM (shown in Figure 2), and this 
particular module is further explained in the 
experimentation section. 

III. EXPERIMENTATION FINDINGS 
The experimentation involved a particular ICS 

architectural stack module, which centers upon [edge] PLCs 
focused upon inter-PLC communications, via 5G URLLC 
links, within an ICS context. As should be axiomatic, a key 
aspect of the 5G/B5G/6G ecosystem is that hardware is 
principally supplanted with software so that future upgrades 
will be software-centric. However, this increased utilization 
of Software-Defined Networking (SDN) within the network 
core also expands the attack surface opportunities [21]. For 
this particular case, the 5G-related PLCs were the targets. 
Given the comparable nature of the involved PLCs, only one 
PLC was examined. 

In accordance with the acknowledged deterministic 
behavior of the underlying engineering software for the PLC 
Program (e.g., the same set of request messages are 
utilized), a specific heuristic was utilized; given the scan 
cycle traffic of prior sessions, a pattern among the request 
messages could be ascertained; this particular heuristic is 
supported within the literature [22]. Accordingly, to 
operationalize the posited ASD approach, several facets 
were baselined apriori by pre-processing the PLC binary 
and recording the following: (1) legitimate callers of the 
library, (2) legitimate callers for each library routine, and (3) 
legitimate callers for various consecutive call patterns for 
the library routines. Furthermore, the instructions occurring 
prior to any “ret” instruction were recorded, and a relative 
weighting was assigned to each instruction depending upon 
their distance to their associated “ret.” 

These operationalization actions spawned other 
complexities. For example, while using dedicated processor 
commands, such as Branch Trace Store (BTS) can be quite 
effective for recording (e.g., memorializing the last executed 
branches), the computational overhead can also be quite 
high; there are also comparable processor commands (e.g., 
Last Branch Record or LBR, Architecture Event Trace or 
AET, etc.). For these cases, a substantive portion of the 

overhead can be attributed to the large number of 
performance samples (derived from the Performance 
Monitoring Unit or PerMU of the involved processor), which 
include various control transfer events (e.g., calls [to 
subroutines], returns or “rets” [wherein control flow 
continues with the instruction following the call], 
exceptions/interrupts [wherein unexpected events disrupt 
instruction execution/control flow]) and their associated 
control transfer information (e.g., source address, target 
address, and various other properties, etc.) [23]. 

The standard recordings of PerMUs can include 
TLB/ITLB misses, cache misses [wherein the processor must 
retrieve the data from main memory], branch prediction 
misses or branch mispredictions [a misprediction in the next 
instruction to process], etc. Typically, the computational 
overhead associated with tabulating these events is 
compounded by the ensuing interrupts (spawned when the 
pre-defined memory is saturated). However, Precise Event 
Base Sampling (PEBS) or comparable approaches can 
process these recordings of events into pre-defined memory 
sectors, such as when the event occurrences exceed a 
particular threshold, rather than spawn an interrupt. Hence, 
the “tighter” the threshold, the more quickly and more likely 
it is for, let us say, TLB/ITLB synthetic misses (i.e., 
indicative of a code-injection attack) to be detected. 
However, to decrease the likelihood of false positives, it is 
necessary to decrease the likelihood of naturalistic misses, 
and this is achieved via the PLC logic/code [performance] 
optimization performed by the MLLCOM (e.g., an 
enhancement of code layout, such as by re-positioning code 
blocks within a procedure to decrease branch misses). After 
all, if the control flow frequently traverses several distinct 
and disparate pathways throughout the code region, it is 
more likely to experience misses.  

Experimentation has shown that the use of certain 
algorithmic approaches (e.g., Code Tiling-like), particularly 
for code layout optimization, achieves better performance 
(e.g., call frequency grouping) within the allotted time span 
than other algorithms (e.g., Pettis-Hansen);  the algorithms 
are known to have O(n*(n+n2))=O(n3) as the worst-case 
asymptotic complexity, but the difference in approach — the 
utilization of various approximations — underpin the 
performance differences [24]. Moreover, with the MLLCOM 
engaging in code layout optimization and gleaning the 
apriori consecutive call patterns, it is able to facilitate a 
reduction in the number of false positives by better 
distinguishing between legitimate and illegitimate control 
flow behavior. Preliminary experimentation with MLLCOM 
has also noted that its profiling (via its MLLCOM helper) at 
the Monitor level and trace processing at the Detect level 
well serves to facilitate better optimizing basic blocks within 
a procedure (i.e., procedure splitting) via the notion of hot 
blocks (executed frequently) and cold blocks (i.e., executed 
infrequently). This helps to decrease branch misses. 

Overall, these types of optimizations, among others, are 
central to the discernment equation. Due to “real-time 
execution deadlines” and Quality of Service (QoS) 
stipulations, “compilers for PLC binaries typically only 
undertake very conservative optimizations, if any” [13]. Yet, 
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there are several opportunities to optimize PLC binaries. As 
previously discussed, the paradigm of sub-optimal 
instruction locality can adversely impact the PLC Program 
performance, via, by way of example, TLB/ITLB misses, 
which can induce memory stalls (cycles for which the 
processor is stalled while awaiting memory access) [24]. 
However, a paradigm of optimized instruction locality  (e.g., 
pre-positioning callers in close proximity to their callees) can 
dramatically improve performance [24][25].  

From an architectural perspective, the overall MDMM 
amalgam is able to monitor/detect units of work that are in 
conformance with the PLC scan cycle. By way of 
background, non-PLC languages (and their associated 
binaries) typically adhere to sequential units of work as part 
of their execution model. In contrast, PLC binaries adhere to 
an execution model that conforms to the continuously 
executing scan cycle. Due to the continuous nature of the 
execution scan cycle, dynamic analyses of the PLC binary is 
non-trivial. The MDMM architecture lends to overcoming 
this challenge, via the positioning of its various constituent 
modules. In particular, the ARECM is nicely 
operationalized within the ASD of the MDMM by way of 
the interplay between the MLDM and MLLCOM, via the 
MLPRDM, such as previously shown in Figure 2 and 
summarized in Figure 4 below. With the enhanced context 
from the MLLCOM (given the optimization work) and the 
insights from the MLDM (e.g., comparison of the current 
scan cycle traffic with apriori scan cycle traffic) serving as 
accelerants for the ARECM, the MDMM architecture and 
underpinning MLPRDM provide enhanced discernment.  

 

 
Figure 4.  Automated Reverse Engineering Cyber Module (ARECM) in 

the context of the Monitoring/Detecting/Mitigating Module (MDMM) 
Amalgam’s Anomalous Sample Detection (ASD) 

As previously shown in Figures 2, 3, and 4, the 
methodological approach centers upon the fact that the 
MLPRDM discerns the set of legitimate instruction calls 
prior to the return or “ret” (or “Pre-‘ret’”) instruction 
contained within the subroutines of the PLC Program. 
Legitimate instruction calls are permitted to proceed while 
MLPRDM-recognized illegitimate instruction calls may 
experience intervention (time-permitting and if practical). 

The MLPRDM discerns patterns from the work of the 
MLLCOM and is, in effect, the key engine for the MDMM, 
which directly addresses the ARE open issue/challenge.  

IV. CONCLUSION 
While ICS were originally designed to operate in isolated 

environments, the convergence of OT and IT have increased 
the attack surface area within this ecosystem, particularly for 
key devices, such as PLCs. Several attack vectors, within the 
rubric of Denial of Engineering Operations (DEO), have 
emerged to target, among other devices, PLCs [26]. 
Unfortunately, the cyber defense and resiliency capabilities 
in the OT sector greatly differ from that of the IT sector, 
such that the TTPs, which can be brought to bear in support 
of PLCs, have been limited thus far. Furthermore, the PLCs 
operating within the OT environment have had a high 
availability onus (of controlling real-world physical 
processes), but are often limited by their resource-
constrained, legacy (and possibly proprietary) environs.  

It has been shown that PLCs have been vulnerable to 
DEO attacks, wherein the legitimate instruction in a control 
logic is replaced with noise data (e.g., a sequence of 0xFF 
bytes) to cause the PLC to malfunction, and/or the PLC may 
have had legitimate instructions relaced with malicious 
instructions. In either case, the operational control flow has 
been compromised. Two synergistic pathways for mitigation 
are evident. First, detection is ideal; to the degree that this 
can be achieved with enough time to take mitigation action, 
then it would be ideal to effectuate an active defense (e.g., 
ironically, a man-in-the-middle counter-attack) by 
intercepting the malicious traffic and supplanting the 
malicious code prior to that code being executed by the PLC 
Program. Whether or not this detection/active defense can be 
achieved, a forensic analysis to comprehend the extent of the 
control flow manipulation is required. Consequently, second, 
ARE is required; to the degree that it can occur in real-time 
for a robust diagnosis of the attack, such that active 
countermeasures can be readily deployed, then the intent for 
which MLPRDM was designed would be operationalized.  

Key to its success, the MLPDRM goals of profiling and 
trace processing are critical; its actions will, among other 
effects, minimize the number of naturally occurring ITLB 
misses so that synthetically occurring ITLB misses will be 
more illuminated. The posited MLPRDM, set amidst the 
MDMM architecture, requires further quantitative 
benchmarking, but the initial architectural techniques (for a 
lower overhead, minimally intrusive approach vector, and 
more accurate monitoring/detection paradigm) and 
preliminary experimental results show promise. The 
significance of this potential is that the approach addresses 
the Industry 4.0 cyber-physical security open issue/challenge 
surrounding ARE for PLCs; in essence, the posited ARE 
cyber module, which leverages the various described ML 
facilities to aid in the ARE task, is less prone to be utilized as 
an attack accelerant. The author hopes to focus on 
substantive quantitative benchmarking as part of future work, 
as the preliminary results are quite promising. 
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