

An Automated Reverse Engineering Cyber Module for 5G/B5G/6G
ML-Facilitated Pre-“ret” Discernment Module for Industrial Process Programmable Logic Controllers

Steve Chan
Decision Engineering Analysis Laboratory, VT

San Diego, USA
e-mail: schan@dengineering.org

Abstract—Industrial Control System (ICS) components have
been subject to heightened cyber risk as hardware/software
supply chain vulnerabilities have been illuminated and
cyberattacks have become increasingly sophisticated. At the
center of this ICS cyber maelstrom is the Programmable Logic
Controller (PLC), a key component of Industry 4.0, as it is a
main controller for physical processes (e.g., the control of an
actuator). Many PLCs were designed for another era; they are
resource-constrained, non-optimized, and beset with a variety
of legacy facets (e.g., compiler, programming language, etc).
This described sub-optimal paradigm also exists within the
rubric of standards that specify the time interval between
signal ingestion and actuation (e.g., IEEE 1547 specifies 2
seconds) for the operating environment. Hence, the
designing/architecting/implementing of a light computational
footprint continuous Monitoring/Detecting/Mitigating Module
(MDMM) is non-trivial. This paper investigates a specific
scenario of an ICS PLC operating within a 5G Ultra-Reliable
Low-Latency Communications (URLLC) inter-PLC context
and posits a viable MDMM construct that can operate within
the paradigm. Central to its viability, the MDMM leverages
apriori scan cycle traffic, utilizes Machine Learning (ML)-
facilitated PLC logic/code optimization, and endeavors to
undertake mitigation via a bespoke Automated Reverse
Engineering (ARE) mechanism. The introduced MDMM
requires further quantitative benchmarking, but the initial
experimental results show promise.

Keywords-cybersecurity; industrial control system;
programmable logic controller; Industry 4.0; Industrial Internet
of Things; smart manufacturing; smart grid; 5G; machine
learning; artificial intelligence; automated reverse engineering.

I. INTRODUCTION
The benefits of ARE for PLC binaries to reduce the

investigation time needed by those in the specialized
cybersecurity functional sub-field of Digital Forensics and
Incident Response (DFIR) is well documented in the
literature [1][2]. Time is of the essence for these DFIR
teams, as their task is to quickly comprehend the involved
attack vector objective(s) (e.g., PLC exploitation) and
effectuate countermeasures post-exploitation analysis. The
need to reduce the time needed for exploitation analysis was
illuminated by, among other examples, the ICS Stuxnet case
study (wherein the PLCs at the involved nuclear facility were
targeted). The prolonged non-automated, manual labor-
intensive paradigm of that particular reverse engineering
process greatly delayed the forensic investigation and

articulated the need for an ARE mechanism as well as the
need of a digital mirror for supporting such a mechanism.

Yet, ARE, if not properly architected, can also constitute
a vulnerability, if it is somehow exploited by attackers. Just
as the advisories made available by the National
Vulnerability Database (NVD) and Sentient Hyper
Optimized Data Access Network (SHODAN) can be used by
cyber defenders as early warning indicators, they can also be
leveraged by cyber attackers for exploitation opportunities
and as attack accelerants [3]. This phenomenon should be of
no surprise, as historically, malicious entities have engaged
in reverse engineering on two fronts: Hardware Reverse
Engineering (HRE) and Software Reverse Engineering
(SRE). HRE has long been used by attackers to discern the
inner workings of Integrated Circuits (ICs) [4]; indeed, tools,
such as HAL – The Hardware Analyzer, have facilitated
HRE [5]. On the SRE side, tools include IDA Pro, Radare2,
Ghidra (open-sourced by the National Security Agency or
NSA), Hopper, and others. When the aforementioned
HRE/SRE tools, among others, are utilized as attack
accelerants, defending security teams have witnessed the
might of reverse engineering attacks, and the detection of
these types of attacks has posed an ongoing challenge.

Despite the dilemma and distinct possibility of being
utilized as an attack accelerant, the efficacy of ARE
constitutes a key capability for forensic investigations. As
can be seen by the SolarWinds incident (wherein malicious
code was injected into the company’s software, which in turn
was widely distributed and utilized by client companies for a
plethora of Information Technology (IT) management and
remote monitoring needs), vulnerable software was quickly
propagated throughout an ecosystem of mission-critical
organizations. The Time to Response (TTR) was recognized
as critical, but non-automated, manual labor-intensive
reverse engineering intrinsically has a low TTR. Given the
double-edged sword aspect of ARE, the notion of such a
mechanism for mission-critical Critical Infrastructure (CI)
controllers, such as ICS PLC binaries, has remained an open
issue/challenge.

This paper endeavors to respond to that challenge by
positing an ARE Cyber Module (ARECM), which is less
prone to being utilized as an attack accelerant. Central to the
requisite “less prone” protective element is an ML-facilitated
Discernment Module (MLDM), which strives to detect that
an attack is occurring/has occurred and timely employs
(potentially), time-permitting and if still feasible, a bounded
active defense mechanism to mitigate against the attack (the

93Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

mitigation element is beyond the scope of this paper).
Central to this discernment element is yet another module,
which also utilizes ML facilitation so as to perform PLC
logic/code optimization (a.k.a., ML-facilitated Logic/Code
Optimization Module or MLLCOM). The paper utilizes a
variety of acronyms, and some of the key ones are provided
for the reader’s convenience in Table 1 below.

TABLE I. KEY TERMS AND THEIR ACRONYMS

Term Acronym

Anomalous Sample Detection ASD

Architecture Event Trace AET

Automated Reverse Engineering ARE

ARE Cyber Module ARECM

Branch Trace Store BTS

Instruction Translation Lookaside Buffer ITLB

Last Branch Record LBR

Machine Learning ML

ML-facilitated “Pre-‘ret’” Discernment Module MLPRDM

ML-facilitated Discernment Module MLDM

ML-facilitated Logic/Code Optimization Module MLLCOM

Monitoring/Detecting/Mitigating Module MDMM

Performance Monitoring Unit PerMU

PLC Program Execution Context PLCPEC

Precise Event Base Sampling PEBS

Prior to the Return (Pre-Ret)

Return-Oriented Programming ROP

Return-to-Libc Ret2Libc

Time to Response TTR

Translation Lookaside Buffer TLB

The key components — ARECM, MLDM, and MLLCOM
— are delineated within the context of the MDMM
Amalgam, as shown in Figure 1 below. The MDMM
Amalgam is comprised of three sections: “Monitor,”
“Detect,” and “Mitigate.” ARECM is situated in the second
dotted box under the “Detect” section. MLDM is also
situated in the second dotted box under the “Detect” section.
MLLCOM is situated in the first dotted box under the
“Detect” section. The MLLCOM helper is situated under the
“Monitor” section.

Figure 1. Monitoring/Detecting/Mitigating Module (MDMM) Amalgam:
Automated Reverse Engineering Cyber Module (ARECM) with an ML-

facilitated Discernment Module (MLDM) and ML-facilitated [PLC]
Logic/Code Optimization Module (MLLCOM)

This section introduces the problem space. Section II
presents background information and discusses the operating
environment and the state of the challenge. Section III
delineates the referenced ARE challenge and presents some
experimental findings derived from scrutinizing a particular
ICS architectural stack module, which centers upon edge
PLCs engaged in inter-PLC communications, via 5G
URLLC links; it also posits a prospective pathway for
effectuating a viable ARECM. Section IV concludes with
some observations, puts forth envisioned future work, and
the acknowledgements close the paper.

II. BACKGROUND INFORMATION
Fundamentally, ICS are systems that interconnect,

monitor, and control physical processes within industrial
settings [6]. A plethora of sectors (e.g., energy,
manufacturing, etc.) rely upon ICS for their ongoing
operations. Supervisory Control and Data Acquisition
(SCADA) systems are an example of ICS, and these also
constitute CI/Strategic Infrastructure (SI) (a.k.a., CI/SI).

94Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

These CI/SI have been heavily scrutinized for security
vulnerabilities, and communications is, among others, an
affected area.

A. Operating Environment
With regards to the current operating environment,

communications/connectivity has become a backbone of the
Industrial Internet of Things (IIoT), wherein devices are
interconnected so as to collect, exchange, analyze, and
actuate upon data. A commonly used term that captures this
paradigm is Machine to Machine (M2M) communications,
and in the 5G, Beyond 5G (B5G), and 6G communications
context, the envisioned service paradigm is that of massive
Machine-Type Communications (mMTC) and URLLC.

As IIoT has advanced, such as within the energy and
manufacturing sectors, the attack surface area for
communications/connectivity has increased. This has been
demonstrated by the SHODAN Internet of Things (IoT)
search engine, which returns publicly accessible information
regarding IoT devices (e.g., sensitive information related to
internet-connected ICS devices) [3]. Many of the SHODAN-
illuminated devices do not yet have the firmware updates to
mitigate against the Common Vulnerabilities and Exposures
(CVE) delineated by the NVD and/or U.S. Computer
Emergency Response Team (CERT)- Cybersecurity and
Infrastructure Security Agency (CISA) portals, and this
incongruity remains an ongoing issue.

The digital transformation advances being effectuated by
IIoT are encompassed within what is referred to as Industry
4.0. By way of example, “Smart Grid,” a subset of Industry
4.0, is defined by the National Institute of Standards and
Technology (NIST) as “modernizing the electric power grid
so that it incorporates information technology to deliver
electricity efficiently, reliably, sustainably, and securely… a
modernized grid enables all participants to benefit from the
new introduction of new technologies, from distributed
resources to advanced communications and controls.”
“Smart Manufacturing,” another subset of Industry 4.0, is
defined by NIST as being “fully-integrated, collaborative
manufacturing systems that respond in real time to meet
changing demands and conditions in the factory, in the
supply network, and in customer needs;” roughly speaking,
this translates to the fact that, “in the factories of the future,
smart communications will become increasingly critical in
all aspects of the operation,” and a smart factory involves
physical production processes being combined with digital
technology (i.e., control) [7].

For both of these industrial subsets of Industry 4.0,
communications is paramount, and a key counterpoised
element is the PLC. Among other tasks, the PLC acquires
data from sensory machines/devices, applies certain
logic/mathematical functions, and outputs computationally-
derived values (to establish thresholds, etc). Within both the
Smart Grid and Smart Manufacturing sectors, while SCADA
systems supervise, the PLCs perform the actual operations;
they are typically installed on the machines/devices they
control. In the spirit of the communications/connectivity
envisioned under Industry 4.0/mMTC/M2M, etc,
increasingly, PLCs are engaging in inter-PLC

communications. Accordingly, interoperability specifications
are addressed by reference architectures, such as the
Industrial Internet Reference Architecture (IIRA) of the
Industrial Internet Consortium (IIC), Reference Architectural
Model of Industry 4.0 (RAMI 4.0), and others; IIRA adheres
to International Organization for Standardization
(ISO)/International Electrotechnical Commission
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE) 42010:2011 “Systems and Software Engineering –
Architecture Description,” and RAMI 4.0 showcases various
standards, such as IEC 62264 (a standard built upon the
American National Standards Institute or ANSI/International
Society of Automation or ISA-95 to facilitate information
flow across Enterprise Resource Planning or ERP,
Manufacturing Execution System or MES, and SCADA
systems).

As the PLC is a principal controller for Industry 4.0, it
has become a key target for cyber attackers. The ICS section
of the CERT-CISA portal, as of 25 July 2021, lists 1730
advisories (69 pages of 25 advisories per page plus 5
advisories on page 70) [8]. While prior thinking held that the
PLC was not subject to attack, as it was, theoretically, fully
isolated from the publicly-facing external network, case
studies, such as Stuxnet, have demonstrated the potential
speciousness of this notion [9]. Common communications
congestion attack vectors, in the form of Denial-of-Service
(DoS) and Distributed Denial of Service (DDoS), are well-
known. More recent studies have shown that degradation of
ICS can readily be effectuated by communications
degradation in the form of delay and/or loss of data packets.
Among other methods, PLC output can be mutated and re-
written to the PLC (this delay/loss of data has been achieved
within the communications channel of ICS, such as from
Phasor Measurement Units or PMUs to Phasor Data
Concentrators or PDCs [10]).

To conduct PLC exploitation (e.g., malware) analysis, it
is necessary to examine the PLC binary. By way of
background, hopefully, the involved PLC subscribes to the
standards, as delineated by IEC 61131-3, which pertain to
PLC architectures, programming languages, data types,
variable attributes, etc. If so, the PLC logic/code is usually
developed via an IEC 61131-3-compliant Integrated
Development Environment (IDE) and then compiled into a
PLC binary via some compiler. The resultant PLC binary
logic/code then, in effect, controls the involved PLC. The
reverse engineering of this PLC binary is not
straightforward, as the Tactics, Techniques, and Procedures
(TTPs), via available tools/frameworks, do not directly
translate between the Operational Technology (OT) arena
(wherein the PLC resides) and IT arena [11]. For example, in
the OT arena, there are a plethora of proprietary compilers
used in generating PLC binaries, and axiomatically, these
PLC binaries may not be readily accessible to commonly
used IT tools (e.g., Interactive Disassembler or IDA, IDA
Pro). If the PLC binary is indeed IEC 61131-3 compliant via
one of the major platforms for ICS (e.g., CODESYS), then
the reverse engineering process is more straightforward;
however, in many situations, this is not the case.

95Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

To address this complexity, the notion of ARE has long
been discussed [12]. Indeed, the notion of reverse
engineering has become a cornerstone of software supply
chain verification/integrity, particularly given the recent
surge in issued directives, such as the “Improving the
Nation’s Cybersecurity” (Executive Order 14028, which was
issued on 12 May 2021 and proceeded to direct NIST to
enhance software supply chain security guidelines). The
ability to uncover software supply chain vulnerabilities is
essential for enhancing cyber resiliency, and ARE has been
shown to effectively contribute by not only discerning
vulnerabilities, but also facilitating the re-engineering of
legacy software to supplant deprecated components and/or
streamline for better performance. In fact, reverse
engineering (and its examination and review of the
design/components/build) is often used to redesign (as well
as aid in source code recovery and binary code reuse [13]),
enhance the involved system/product, and facilitate
innovation; it is also often coupled with forward engineering,
which aims to innovate and develop a new system/product.
The amalgam of reverse/forward engineering is more
advantageous than just forward engineering, which (in
isolation) can lead to recalls/callbacks if actuated without the
benefit of a Janusian perspective (i.e., leveraging lessons
learned, project retrospectives, after action reviews, etc).
Hence, the state of the challenge now resides in successfully
counterpoising between the two (reverse/forward
engineering).

B. State of the Challenge
The open challenge of ARE centers upon the point that

while it can indeed accelerate the forensic work of a cyber
defender, it also represents a potential exploitation
point/accelerant for a cyber attacker. Architecting an ARE
cyber module (in a reverse/forward engineering fashion),
which favors the defender, has been an elusive, non-trivial
feat. However, the literature does present several
contributions to this area, and specifically, this paper posits a
ML-facilitated “Pre-‘ret’” Discernment Module
(MLPRDM), which shows some promise; in particular, the
MLPRDM focuses upon recognizing the set of legitimate
instruction calls prior to the return or “ret” (or “Pre-‘ret’”)
instruction contained within the subroutines of the PLC
Program. Legitimate instruction calls proceed accordingly
while MLPRDM-recognized illegitimate instruction calls
may experience intervention (time-permitting and if
practical). The MLPRDM gleans patterns from the work of
the MLLCOM and is the key engine for the MLDM. The
MLPRDM is delineated within the context of the MDMM
Amalgam, as shown in Figure 2 below. The MLPRDM is
situated in the “Detect” section and straddles the PLCPEC
dotted box (which is located within the ASD dotted box) and
the ARECM dotted box.

Figure 2. MLPRDM depicted within the context of the MDMM Amalgam

To clarify the value-added proposition of the MLPRDM,
some background information is required. Broadly speaking,
there are three methods for PLC exploitation: Firmware
Modification Attacks (FMA), Control-flow Attacks (CFA),
and Configuration Manipulation Attacks (CMA); these
attack vector categories had been delineated at the BlackHat
European Conference in 2016, and combinatorial attacks
involving an amalgam, from among these categories (i.e.,
FMA, CFA, and CMA), are particularly potent; others
classify PLC exploitation by security defects: firmware
security defects, program security defects, and operation
security defects [14]. Operation security defects can be
further sub-divided into: (1) attack on protocol defects (e.g.,
since most communications protocols are not encrypted,
packets can be captured and/or the data store of the registers
can be read, and replay attacks [legitimate data is repeated
and/or delayed], etc. can then be effectuated), (2) tampering
attack at the Input/Output (I/O) interface (e.g., since
modifying the I/O pin configuration does not necessarily
issue an alarm, a tampering attack can be covertly
effectuated), (3a) injection attack to affect the program flow
control instructions or operational control flow (e.g., as
operational control flow is dictated by PLC code blocks,
intermediate code instrumentation and/or malicious code
execution can exploit this facet), and (3b) return-oriented
attack to affect the operational control flow (e.g., by
leveraging exploits, wherein legitimate instructions are
overwritten, malicious instructions can be indirectly
executed [14]. The latter sub-divisions (3a, 3b) are the focus
of MLPRDM.

C. Formal Verification of PLC Logic/Code
There are numerous pathways to undertake verification

of PLC Programs. One pathway involves formal verification
of PLC Programs; this is typically achieved by translating

96Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

the PLC Program into a formal model, which in turn can
serve as input into a model checker (e.g., SMV Symbolic
Model Checker, NuSMV [a re-implementation and extension
of SMV], UPPAAL [a portmanteau of Uppsala University
and Aalborg University], etc.) [15][16]. Yet, the macro
vantage point might not necessarily discern the more micro
matters. For example, various software security studies have
declared that simple micro-errors (intentional and/or
unintentional) can readily disrupt the availability and
integrity of a target PLC [17]. To aggravate this matter, in
many cases where errors do exist, the code will still compile
and run on the PLC; hence, no warning is necessarily issued.
Suffice it to say, mitigation of these PLC errors or code
defects (e.g., buffer overflows/ overruns, stack overruns, etc)
is difficult, as these defects are difficult to discern, and fuzz
testing (a.k.a., fuzzing) has met with limited success;
furthermore, as the PLC often has numerous constituent
programming languages, the requirements for the fuzzing
schema tend to be quite elaborate so as to undertake the
challenge of the associated semantic complexity, and the
efficacy of even state-of-the-art fuzzers has been sub-optimal
[18][19].

D. General Detection within the PLC Program
The notion of installing a general detection module

aboard the PLC has, to date, met with limited appeal; due to
the already limited computational resources onboard the
PLC, installing an additional program (with its additional
computational load requirements) aboard the already
resource-constrained PLC, so as to examine the PLC
Program, has met with various heuristical challenges. For
example, for real-time operations, the task of detection has a
lower priority than that of a control task, particularly given
the mission-critical nature of a PLC [20]. This de-
prioritization sets the stage for detection misses, so the
potential efficacy is already in question.

E. Anomalous Sample Detection within the PLC Program
The challenge then becomes one of designing a

specialized detection module, which has both minimal
impact on the computational load of the already resource-
constrained PLC as well as a minimal footprint given the
higher priority control tasks at hand. It turns out that this
approach vector is somewhat feasible in the form of
Anomalous Sample Detection (ASD), which demonstrates
some promise with regards to code-injection and Return-
Oriented Attacks (ROAs).

As a generalization, a code-injection attack (a.k.a.,
Remote Code Execution or RCE) refers to the exploitation
of code defect or bug (e.g., buffer overflow/overrun,
dangling pointer, etc) that processes the externally injected
malicious code and alters the course of instruction execution
(i.e., operational control flow). In the case of a buffer
overflow/overrun, the legitimate return address is
overwritten, and the operational control flow is diverted to
the location specified by the new return address. In contrast,
a ROA does not inject malicious code; rather, it attains
control of the call stack and leverages the internally resident

pre-existing code. ROAs are further sub-divided into
Return-to-Libc (Ret2Libc) attacks (which causes the PLC
Program to jump to some code block, such as that for
various functions — system(), execve(), etc. — within the
standard library, say, for the C programming language or
libc, which is already loaded into memory) and Return-
Oriented Programming (ROP) attacks (which manipulate
the call stack to indirectly execute specific instructions or
groups of instructions immediately prior to the “ret”
instruction contained within the subroutines of the PLC
Program). This is shown in Figure 3 below.

Figure 3. PLC Program Execution Context (PLCPEC) in the context of

Anomalous Sample Detection (ASD)

Regardless of the attack vector (e.g., code-injection
attack, ROA), the anomalous aspect can be discerned when
comparing the examined scrutinization samples (a.k.a.,
performance samples) against apriori baselined samples.
For example, a Translation Lookaside Buffer (TLB) or
Instruction Translation Lookaside Buffer (ITLB) “miss”
could indicate a code injection attack (wherein the
operational control flow is transferred to the injected

97Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

malicious code, and hence, the “miss” for legitimate code).
As another example, an examination of the legitimate callers
of the various library routines (a code block — subroutine,
procedure, function, etc — used for recurring tasks) should
be instructive as to whether an illegitimate caller executed a
ROA. As anomalies can indeed be discerned, regardless of
the attack vector utilized (e.g., code-injection attack, ROA,
etc), via these scrutinization samples, the described
approach is loosely considered to be operation security
defect agnostic (bounded within the scope of either code
injection attacks or ROAs). This ASD approach correlates
events with the ongoing PLC Program Execution Context
(PLCPEC). This PLCPEC is in the form of baselined
instruction addresses and callers of library routines, such as
shown in Figure 3 above. It can be ascertained, via
examining Figures 2 and 3, that the ASD approach is
predicated upon the MLPRDM (shown in Figure 2), and this
particular module is further explained in the
experimentation section.

III. EXPERIMENTATION FINDINGS
The experimentation involved a particular ICS

architectural stack module, which centers upon [edge] PLCs
focused upon inter-PLC communications, via 5G URLLC
links, within an ICS context. As should be axiomatic, a key
aspect of the 5G/B5G/6G ecosystem is that hardware is
principally supplanted with software so that future upgrades
will be software-centric. However, this increased utilization
of Software-Defined Networking (SDN) within the network
core also expands the attack surface opportunities [21]. For
this particular case, the 5G-related PLCs were the targets.
Given the comparable nature of the involved PLCs, only one
PLC was examined.

In accordance with the acknowledged deterministic
behavior of the underlying engineering software for the PLC
Program (e.g., the same set of request messages are
utilized), a specific heuristic was utilized; given the scan
cycle traffic of prior sessions, a pattern among the request
messages could be ascertained; this particular heuristic is
supported within the literature [22]. Accordingly, to
operationalize the posited ASD approach, several facets
were baselined apriori by pre-processing the PLC binary
and recording the following: (1) legitimate callers of the
library, (2) legitimate callers for each library routine, and (3)
legitimate callers for various consecutive call patterns for
the library routines. Furthermore, the instructions occurring
prior to any “ret” instruction were recorded, and a relative
weighting was assigned to each instruction depending upon
their distance to their associated “ret.”

These operationalization actions spawned other
complexities. For example, while using dedicated processor
commands, such as Branch Trace Store (BTS) can be quite
effective for recording (e.g., memorializing the last executed
branches), the computational overhead can also be quite
high; there are also comparable processor commands (e.g.,
Last Branch Record or LBR, Architecture Event Trace or
AET, etc.). For these cases, a substantive portion of the

overhead can be attributed to the large number of
performance samples (derived from the Performance
Monitoring Unit or PerMU of the involved processor), which
include various control transfer events (e.g., calls [to
subroutines], returns or “rets” [wherein control flow
continues with the instruction following the call],
exceptions/interrupts [wherein unexpected events disrupt
instruction execution/control flow]) and their associated
control transfer information (e.g., source address, target
address, and various other properties, etc.) [23].

The standard recordings of PerMUs can include
TLB/ITLB misses, cache misses [wherein the processor must
retrieve the data from main memory], branch prediction
misses or branch mispredictions [a misprediction in the next
instruction to process], etc. Typically, the computational
overhead associated with tabulating these events is
compounded by the ensuing interrupts (spawned when the
pre-defined memory is saturated). However, Precise Event
Base Sampling (PEBS) or comparable approaches can
process these recordings of events into pre-defined memory
sectors, such as when the event occurrences exceed a
particular threshold, rather than spawn an interrupt. Hence,
the “tighter” the threshold, the more quickly and more likely
it is for, let us say, TLB/ITLB synthetic misses (i.e.,
indicative of a code-injection attack) to be detected.
However, to decrease the likelihood of false positives, it is
necessary to decrease the likelihood of naturalistic misses,
and this is achieved via the PLC logic/code [performance]
optimization performed by the MLLCOM (e.g., an
enhancement of code layout, such as by re-positioning code
blocks within a procedure to decrease branch misses). After
all, if the control flow frequently traverses several distinct
and disparate pathways throughout the code region, it is
more likely to experience misses.

Experimentation has shown that the use of certain
algorithmic approaches (e.g., Code Tiling-like), particularly
for code layout optimization, achieves better performance
(e.g., call frequency grouping) within the allotted time span
than other algorithms (e.g., Pettis-Hansen); the algorithms
are known to have O(n*(n+n2))=O(n3) as the worst-case
asymptotic complexity, but the difference in approach — the
utilization of various approximations — underpin the
performance differences [24]. Moreover, with the MLLCOM
engaging in code layout optimization and gleaning the
apriori consecutive call patterns, it is able to facilitate a
reduction in the number of false positives by better
distinguishing between legitimate and illegitimate control
flow behavior. Preliminary experimentation with MLLCOM
has also noted that its profiling (via its MLLCOM helper) at
the Monitor level and trace processing at the Detect level
well serves to facilitate better optimizing basic blocks within
a procedure (i.e., procedure splitting) via the notion of hot
blocks (executed frequently) and cold blocks (i.e., executed
infrequently). This helps to decrease branch misses.

Overall, these types of optimizations, among others, are
central to the discernment equation. Due to “real-time
execution deadlines” and Quality of Service (QoS)
stipulations, “compilers for PLC binaries typically only
undertake very conservative optimizations, if any” [13]. Yet,

98Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

there are several opportunities to optimize PLC binaries. As
previously discussed, the paradigm of sub-optimal
instruction locality can adversely impact the PLC Program
performance, via, by way of example, TLB/ITLB misses,
which can induce memory stalls (cycles for which the
processor is stalled while awaiting memory access) [24].
However, a paradigm of optimized instruction locality (e.g.,
pre-positioning callers in close proximity to their callees) can
dramatically improve performance [24][25].

From an architectural perspective, the overall MDMM
amalgam is able to monitor/detect units of work that are in
conformance with the PLC scan cycle. By way of
background, non-PLC languages (and their associated
binaries) typically adhere to sequential units of work as part
of their execution model. In contrast, PLC binaries adhere to
an execution model that conforms to the continuously
executing scan cycle. Due to the continuous nature of the
execution scan cycle, dynamic analyses of the PLC binary is
non-trivial. The MDMM architecture lends to overcoming
this challenge, via the positioning of its various constituent
modules. In particular, the ARECM is nicely
operationalized within the ASD of the MDMM by way of
the interplay between the MLDM and MLLCOM, via the
MLPRDM, such as previously shown in Figure 2 and
summarized in Figure 4 below. With the enhanced context
from the MLLCOM (given the optimization work) and the
insights from the MLDM (e.g., comparison of the current
scan cycle traffic with apriori scan cycle traffic) serving as
accelerants for the ARECM, the MDMM architecture and
underpinning MLPRDM provide enhanced discernment.

Figure 4. Automated Reverse Engineering Cyber Module (ARECM) in

the context of the Monitoring/Detecting/Mitigating Module (MDMM)
Amalgam’s Anomalous Sample Detection (ASD)

As previously shown in Figures 2, 3, and 4, the
methodological approach centers upon the fact that the
MLPRDM discerns the set of legitimate instruction calls
prior to the return or “ret” (or “Pre-‘ret’”) instruction
contained within the subroutines of the PLC Program.
Legitimate instruction calls are permitted to proceed while
MLPRDM-recognized illegitimate instruction calls may
experience intervention (time-permitting and if practical).

The MLPRDM discerns patterns from the work of the
MLLCOM and is, in effect, the key engine for the MDMM,
which directly addresses the ARE open issue/challenge.

IV. CONCLUSION
While ICS were originally designed to operate in isolated

environments, the convergence of OT and IT have increased
the attack surface area within this ecosystem, particularly for
key devices, such as PLCs. Several attack vectors, within the
rubric of Denial of Engineering Operations (DEO), have
emerged to target, among other devices, PLCs [26].
Unfortunately, the cyber defense and resiliency capabilities
in the OT sector greatly differ from that of the IT sector,
such that the TTPs, which can be brought to bear in support
of PLCs, have been limited thus far. Furthermore, the PLCs
operating within the OT environment have had a high
availability onus (of controlling real-world physical
processes), but are often limited by their resource-
constrained, legacy (and possibly proprietary) environs.

It has been shown that PLCs have been vulnerable to
DEO attacks, wherein the legitimate instruction in a control
logic is replaced with noise data (e.g., a sequence of 0xFF
bytes) to cause the PLC to malfunction, and/or the PLC may
have had legitimate instructions relaced with malicious
instructions. In either case, the operational control flow has
been compromised. Two synergistic pathways for mitigation
are evident. First, detection is ideal; to the degree that this
can be achieved with enough time to take mitigation action,
then it would be ideal to effectuate an active defense (e.g.,
ironically, a man-in-the-middle counter-attack) by
intercepting the malicious traffic and supplanting the
malicious code prior to that code being executed by the PLC
Program. Whether or not this detection/active defense can be
achieved, a forensic analysis to comprehend the extent of the
control flow manipulation is required. Consequently, second,
ARE is required; to the degree that it can occur in real-time
for a robust diagnosis of the attack, such that active
countermeasures can be readily deployed, then the intent for
which MLPRDM was designed would be operationalized.

Key to its success, the MLPDRM goals of profiling and
trace processing are critical; its actions will, among other
effects, minimize the number of naturally occurring ITLB
misses so that synthetically occurring ITLB misses will be
more illuminated. The posited MLPRDM, set amidst the
MDMM architecture, requires further quantitative
benchmarking, but the initial architectural techniques (for a
lower overhead, minimally intrusive approach vector, and
more accurate monitoring/detection paradigm) and
preliminary experimental results show promise. The
significance of this potential is that the approach addresses
the Industry 4.0 cyber-physical security open issue/challenge
surrounding ARE for PLCs; in essence, the posited ARE
cyber module, which leverages the various described ML
facilities to aid in the ARE task, is less prone to be utilized as
an attack accelerant. The author hopes to focus on
substantive quantitative benchmarking as part of future work,
as the preliminary results are quite promising.

99Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

ACKNOWLEDGMENT
This research is supported by the Decision Engineering

Analysis Laboratory (DEAL), an Underwatch initiative.
This is part of a VT white paper series on 5G-enabled
defense applications, via proxy use cases, to help inform
Project Enabler.

REFERENCES
[1] R. Awad, S. Beztchi, J. Smith, B. Lyles, and S. Prowell,

“Tools, Techniques, and Methodologies: A Survey of Digital
Forensics for SCADA Systems,” Annual Computer Security
Applications Conference, 2018, pp. 1-8.

[2] T. Wu and J. Nurse, “Exploring the Use of PLC Debugging
Tools For Digital Forensic Investigations on SCADA
Systems,” The Journal of Digital Forensics, Security and
Law, vol. 10, 2015, pp. 79-96,
https://doi.org/10.15394/jdfsl.2015.1213

[3] S. Chan, “Prototype Orchestration Framework as a High
Exposure Dimension Cyber Defense Accelerant Amidst Ever-
Increasing Cycles of Adaptation by Attackers: A Modified
Deep Belief Network Accelerated by a Stacked Generative
Adversarial Network for Enhanced Event Correlation,” The
Third Conference on Cyber-Technologies and Cyber-Systems
(CYBER 2018) IARIA, 2018, pp. 28-38, ISSN: 2519-8599,
ISBN: 978-1-61208-683-5.

[4] S. Becker, C. Wiesen, and N. Albartus, “An Exploratory
Study of Hardware Reverse Engineering – Technical and
Cognitive Processes,” Proceedings of the Sixteenth
Symposium on Usable Privacy and Security, 2020, pp. 1-17.

[5] M. Fybrbiak et al., “HAL – The Missing Piece of the Puzzle
for Hardware Reverse Engineering, Trojan Detection and
Insertion,” IEEE Transactions on Dependable and Secure
Computing, 2018, pp. 498-510.

[6] “Industrial Control Systems Security,” Accessed on: Aug 27,
2021. [Online]. Available:
https://wp.nyu.edu/momalab/industrial-control-systems-
security/

[7] S. Bagchi, “Smart Communication: Factory of the Future –
Critical Connections,” Accessed on: Aug 27, 2021. [Online].
Available: https://www.automation.com/en-us/articles/2015-
2/smart-communication-factory-of-the-future-critical

[8] “ICS-CERT Advisories,” Accessed on: Aug 27, 2021.
[Online]. Available: “https://us-
cert.cisa.gov/ics/advisories?items_per_page=25&page=0

[9] S. Gallagher, “Vulnerable industrial controls directly
connected to Internet? Why not?,” Accessed on: Jul 23, 2021.
[Online]. Available: https://arstechnica.com/information-
technology/2018/01/the-internet-of-omg-vulnerable-factory-
and-power-grid-controls-on-internet/

[10] Y. Wang et al., “Access Control Attacks on PLC
Vulnerabilities,” Journal of Computer and Commpunications,
Vol. 6, pp. 311-325, 2018, doi: 10.4236/jcc.2018.611028.

[11] “2020 Gartner OT Security Best Practices,” Accessed on: Jul
23, 2021. [Online]. Available:
https://www.armis.com/analyst-reports/2020-gartner-ot-
security-best-practices/

[12] S. Zonouz, J. Rrushi, and S. McLaughlin, "Detecting
Industrial Control Malware Using Automated PLC Code
Analytics," IEEE Security & Privacy, vol. 12, pp. 40-47,
2014, doi: 10.1109/MSP.2014.113.

[13] A. Keliris and M. Maniatakos, “ICSREF: A Framework for
Automated Reverse Engineering of Industrial Control

Systems Binaries,” 2018, pp. 1-15, doi:
10.14722/ndss.2019.23271.

[14] H. Wu, Y. Geng, K Liu, and Wenwen Liu, “Research on
Programmable Logic Controller Security,” IOP Conf Series:
Materials Science and Engineering, vol. 569, pp. 1-13, 2019,
doi: 10.1088/1757-899X/569/4/042031.

[15] J. Bengtsson, K. Larsen, F. Larson, P. Pettersson, and W. Yi,
“UP-PAAL – a Tool Suite for Automatic Verification of
Real-Time Systems,” Proc Workshop Hybrid Systems III:
Verification and Control, vol. 1066, 1996, pp. 232-243.

[16] V. Gourcuff, O. Smet, and J. Faure, “Efficient Representation
for Formal Verification of PLC Programs,” 2006 8th
International Workshop on Discrete Event Systems, 2006, pp.
182-187, doi: 10.1109/WODES.2006.1678428.

[17] S. Valentine and C. Farkas, “Software security: Application-
level vulnerabilities in SCADA systems,” 2011 IEEE
International Conference on Information Reuse & Integration,
2011, pp. 498-499, doi: 10.1109/IRI.2011.6009603.

[18] C. Lemieux and K. Sen, “Fairfuzz: A Targeted Mutation
Strategy for Increasing Greybox Fuzz Testing Coverage,” 33rd
ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 475-485.

[19] L. Simon and A. Verma, “Improving Fuzzing through
Controlled Compilation,” 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), 2020, pp. 34-52, doi:
10.1109/EuroSP48549.2020.00011.

[20] S. Kottler, M. Khayamy, S. Hasan, and O. Elkeelany,
“Formal Verification of Ladder Logic Programs using
NuSMV,” IEEE Southeastcon, 2017, pp. 1–5, doi:
10.1109/SECON.2017.7925390.

[21] K. Fysarakis et al., “A Reactive Security Framework for
operational wind parks using Service Function
Chaining,”2017 IEEE Symposium on Computers and
Communications (ISCC), 2017, pp. 663-668, doi:
10.1109/ISCC.2017.8024604.

[22] S. Qasim, J. Lopez, and I. Ahmed, “Automated
Reconstruction of Control Logic for Programmable Logic
Controller Forensics,” Springer International Publishing,
2018, pp. 1-21.

[23] L. Yuan, W. Xing, H. Chen, B. Zang, “Security Breaches as
PMU Deviation: Detecting and Identifying Securing Attacks
Using Performance Counters,” The 2nd ACM SIGOPS Asia-
Pacific Workshop on Systems (APSys), 2011, pp. 1-6, doi:
10.1145/2103799.2103807.

[24] X. Huang, B. Lewis, K. McKinley, “Dynamic Code
Management: Improving Whole Program Code Locality in
Managed Runtimes,” Proc. of the Intl. Conf. on Virtual
Execution Environments (VEE), 2006, pp. 1-11, doi:
10.1145/1134760.1134779.

[25] J. Chen and B. Leupen, “Improving instruction locality with
just-in-time code layout,” Proceedings of the USENIX
Windows NT Workshop, 1997, pp. 25-32.

[26] S. Senthivel, S. Dhungana, H. Yoo, I. Ahmed, and V.
Roussev, “Denial of Engineering Operations Attacks in
Industrial Control Systems,” Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy,
2018, pp. 319-329, https://doi.org/10.1145/3176258.3176319.

100Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

