
Performance Evaluation of Reconfigurable
Lightweight Block Ciphers

Mostafa Hashempour Koshki
Faculty of Electrical and Computer Engineering

University of Tabriz
Tabriz, Iran

email: m.hashempour71@gmail.com

Reza Abdolee
Department of Computer Science

California State University, Channel Islands (CSUCI)
Camarillo, CA 93012, USA

email: reza.abdolee@csuci.edu

Behzad Mozaffari Tazekand
Faculty of Electrical and Computer Engineering

University of Tabriz
Tabriz, Iran

email: mozaffary@tabrizu.ac.ir

Abstract—The growing number of connected devices and
massive data in the Internet of Things (IoT) cause information to
encounter different types of attacks. One solution to the security
problem of computationally intensive traditional cryptographic
algorithms for IoT environments is stronger lightweight cryp-
tography. This paper evaluates the security performance of re-
configurable lightweight block ciphers featuring round order and
internal parameter randomization. We evaluate these lightweight
block ciphers and compare their performance with that of
conventional lightweight block ciphers in terms of execution
time, energy consumption and throughput. The simulation results
of reconfigured-based lightweight block ciphers show significant
improvement in security performance with minor and negligible
changes in energy-throughput performances.

Index Terms—Security performance, Cybersecurity, Reconfig-
urable lightweight block ciphers, Round order randomization,
Internet of Things (IoT).

I. INTRODUCTION

Traditional cryptography algorithms have been designed for
a network of computers with high processing power [1]. These
algorithms are not suitable for communication devices with
low computational power or storage spaces [2]. Alternatively,
a new cryptography method called Lightweight Cryptography
as a subset of cryptography was introduced [3]. A strong
lightweight cryptography algorithm provides appropriate secu-
rity level for resource-constrained devices. There are several
categories in lightweight cryptography, including Lightweight
Block Cipher (LWBC), Lightweight Stream Cipher (LWSC),
and Lightweight Hash Function (LWHF) [4]. Block Ciphers
(BC) are used in resource-constrained end-devices because
they support keys and messages in varying sizes that can
be adaptively changed. Lightweight block ciphers are defined
based on the key size, block length, number of rounds, and
key schedule structure that are smaller and simpler than
conventional block ciphers.

Several types of LWBC have been proposed for IoT systems
[5]. Some of the proposed LWBCs for resource-constrained
devices have been derived from the optimization of con-

ventional block ciphers, such as Welch-Gong cryptography
(WG-8) [6] or Lighter algorithms from Advanced Encryption
Standard (AES), Rivest Cipher-5 (RC-5), eXtended Tiny En-
cryption Algorithm (XTEA), and Data Encryption Standard
(DES) [7]–[10]. In LWBC algorithms, smaller block/key sizes
are considered for faster processing and consuming less re-
sources. The PRESENT algorithm is provided with an 80-
bit key [11] and the TWINE algorithm is presented with
both 80-bit and 128-bit keys [12]. The number of rounds in
this type of cryptography should be limited to save time to
encrypt/decrypt the message. The Hummingbird [13] only has
4 rounds. A simple key schedule is used to produce subkeys
such as converting a 128-bit key to 32-bit subkeys in the TEA
block cipher by using a simple procedure [14]. Several LWBC
algorithms are introduced as Generalized lightweight Feistel
Network (GFN) categories for IoT systems such as PICCOLO,
TWINE, and CLEFIA, with a trade-off between security and
being lightweight [15] [16].

An attack on LWBC algorithms becomes more complicated
by adding reconfigurability features and randomizing key
parameters in their structures [17]. One way to do this is
to use a Random Number Generator (RNG) to improve the
security of the algorithm in exchange for small changes in the
computational complexity and the consumption of resources
and memory.

In this paper, we investigate the security performance of
PICCOLO, TWINE, and PRESENT lightweight block ciphers
via the round order randomization concept by using a pseudo-
random number generator. In the Reconfigurable Hardware
(RCH) method [18], only the order of the round keys in algo-
rithms was reconfigured. However, in our proposed method,
not only the order of the rounds is randomized, but also some
internal parameters are randomized in key scheduling and
data processing parts. For example, in PICCOLO algorithms,
besides the order of round keys, the constant values of each
round are also reconfigured separately. In fact, the initial table
of constant values is shuffled. Additionally, in the 128-bit

71Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

master key, which is initially divided into 8 subkeys (16-
bit), randomization has been implemented. In this way, these
subkeys are randomly selected to produce whitening keys and
round keys. Even the number of rounds is reconfigured and
randomly selected (11 to 41 for PICCOLO128 and 11 to 30
for PICCOLO80). In the key scheduling section of the TWINE
algorithm, besides the order of rounds, the constant values
of each round and the S-box are reconfigured separately and
are randomly assigned to each round. In the data processing
section, the table of π[j] (Block indexes) values is randomized.
In PRESENT algorithms, randomization of round orders and
internal values such as S-box layer and P-layer is performed. In
addition, the 64-bit algorithm key is randomly selected from
the 80 or 128-bit master keys. In this algorithm, like PIC-
COLO, the number of rounds is considered variable between
(20 to 35) for both key sizes of the PRESENT algorithm. We
finally evaluate these round order and internal parameters of
reconfigurable-based lightweight block ciphers and compare
their performance with that of conventional lightweight block
ciphers in terms of execution time, energy consumption, and
throughput.

The paper is organized as follows. In Section II, we
describe the proposed reconfigurable algorithms. Section III
presents the performance analysis of LWBCs using round
order and internal parameters randomization. Cryptanalysis of
the randomized LWBCs is presented in Section IV. Finally,
we conclude the paper in Section V.

II. RECONFIGURABLE LWBC ALGORITHMS

Using a RNG, the number of rounds of the algorithm, key
scheduling part, and order of production of the round keys
can be randomized. In this way, the key schedule becomes a
pseudo-random function. If the algorithm is run successively
for specific key and plaintext, different ciphers are produced.
Therefore, a chosen-plaintext attack on the algorithm becomes
impossible.

The steps of the randomization process are as follows. At
first, a suitable range for the algorithm is defined and then
by using an RNG, the number of rounds in the algorithm is
determined. The randomization is also implemented in the key
scheduling part with the same value generated by the RNG.

In this research, we introduce new reconfigurable-based
algorithms for PICCOLO, TWINE, and PRESENT algorithms.
They are, respectively, presented as Algorithms 1,2, and 3 in
this paper. Algorithm 1 features different number of rounds
and different order of round keys. In addition, it has a different
key-table due to the randomizing order of master keys for
the key scheduling part in each implementation. The RNG
generates 30 and 41 random numbers for PICCOLO80 and
PICCOLO128, respectively, that are indicated by Random
parameter in the algorithm. Therefore, the value of fullround
of the algorithm is the same as Random parameter (30 and
41 for PICCOLO80 and PICCOLO128, respectively). In PIC-
COLO, each round has a constant value (con) that is computed
by the number of each round. Roundkeys are reconfigured
based on k and con, which are reconfigured based on n and

Algorithm 1: Proposed Reconfigurable PICCOLO128
Data: The master key kj 0 ≤ j < n, n = 8,
fullround = 41

Reconf (kj , n) / Reconfigure k based on n
Reconf (coni, fullround) / Reconfigure con based on
fullround

Reconf (Roundkeys, kj .coni) / Reconfigure Roundkeys
based on con and n
i← 0
for 0 ≤ i < fullround / Store Random Index do

Random← RNG(seed)
while i < n do

rndi← Random mod n
knew[i]← k[rndi] / Reconfigure k based on n

end
r ← Random mod fullround
newcon(2i, 2i+ 1)← con(2r, 2r + 1)
if i=n+1 / Reconfigure number of rounds then

rndround← r
if rndround < 10 then

rndround← rndround+ 13
if rndround mod 2 = 0 then

rndround← rndround+ 1
end

end
end

end
Roundkeys← keyschedule[coni, knew]
Gr = Enc.Roundkeysr

fullround, respectively. In addition, the whole algorithm is
randomized based on the number of rounds when the value of i
is equal to n+1. The number of rounds, order of round-keys,
and key-table of the key scheduling part were reconfigured
as shown in Algorithm 1. In this way, a temporary array is
produced to store the random number 0 through fullround
where fullround is the maximum value of PICCOLO rounds
number. If reconfigurable hardware is used to control random
values, randomization has minimal effect on the performance
of algorithms. The memory requirements will be reduced when
the hardware RNG creates random values. By using rndi,
the order of key masters will be randomized and stored in
a new table which is indicated by knew. The generated nth

random number is used to set the number of rounds in module
fullround. Finally, we encrypt in r rounds and with a new
table of master keys for the key scheduling section.

In the randomization of TWINE, both data processing and
key scheduling sections have been reconfigured by randomized
order of S-box as their internal elements. The order of a
permutation of block indexes, which are indicated by π[j] and
π−1[j] for encryption and decryption in the data processing
part, are randomized. In the key scheduling part, the order
of constant value and order of round keys, along with S-box,
are reconfigured. Because of the randomization of π[j], the
order of π−1[j] has changed. The RNG generates 36 random
numbers for both key sizes of algorithms. The order of S-box,
π[j] and coni were computed based on the number of rounds
in the randomization of the TWINE algorithm. The original
key is divided into 5 and 8 16-bit keys for TWINE80 and

72Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

Algorithm 2: Proposed Reconfigurable TWINE128
Data: The master key kj 0 ≤ j < n, n = 8,
NbRound = 36

Reconf (kj , n) / Reconfigure k based on n
Reconf (coni, NbRound) / Reconfigure con based on
NbRound

Reconf ((π[j] & π−1[j], 16)) / Reconfigure π[j] and
π−1[j] based on 16

Reconf (S(x), 16) / Reconfigure S based on 16
Reconf (Roundkeys, kj .coni.S(x))
i← 0
for 0 ≤ i < NbRound / Store Random Index do

Random← RNG(seed)
while i < n do

rndi← Random mod n
knew[i]← k[rndi] / Reconfigure k based on n

end
r ← Random mod NbRound
newcon(i)← con(r)
while i < 16 / Reconfigure number of rounds do

rndi← Random mod 16
Snew[i]← S[rndi]
π[i]← π[rndi]
π−1[π[i]]← i

end
end
Roundkeys← keyschedule[newconi, knew, Si]
Enc← Encryption[Si, π[i]]
Dec← Decryption[Si, π

−1[i]]
Gr = Enc.Roundkeysr
G−1

r = Dec.Roundkeysr

TWINE128, respectively. As seen, an RNG is seeded with a
primary value in the randomizing path. A temporary array is
generated to store the random number 0 through NbRound
which is 36 in both the TWINE80 and TWINE128 algorithms.
By randomizing the con, k, and S, the order of round keys
has changed. The entire encryption and decryption process has
been reconfigured by randomizing the Si, π[j], and π−1[j].

Finally, for the PRESENT, some parameters have been
considered for reconfiguring the algorithm. Like PICCOLO
algorithm, PRESENT is reconfigured by randomizing the num-
ber of rounds (between 20 and 32). The S-box and P-layer have
also been randomized to reconfigure both the key scheduling
and data processing parts of the PRESENT algorithm. Another
change is in the selection of a 64-bit algorithm key from
an 80-bit or 128-bit master-key. In the original cipher, the
most significant 64 bits of the master-key are selected as the
algorithm key, while in the proposed method, the mentioned
key is obtained randomly from the 80-bit or 128-bit key.
The order of the round keys is also randomized. The RNG
generates 64 random numbers for the PRESENT algorithm
with both of the key sizes (80 and 128). Since S-box, P-
layer, and master key are reconfigured, the order of round
keys is reconfigured based on them and NbRound. The
computations of the parameters which are involved in the
algorithm randomization are indicated in Algorithm 3.

In our implementation, we use the STM32F401RE, which is
an STM32 (ARM Cortex M4) microcontroller. Its ARMv7E-

Algorithm 3: Proposed Reconfigurable PRESENT128
Data: The master key K128, Round Key rk Bits of

algorithm’s key ki 0 ≤ i < ksize, ksize = 64, Maximum
of NbRound is 32

Reconf (ki, ksize) / Reconfigure k based on ksize
Reconf (rk,NbRound, ki, Sbox, P layer) / Reconfigure
rk based on NbRound, ki, Sbox, and Player

Reconf (Sbox, 16) / Reconfigure Sbox based on 16
Reconf (Player, 64) / Reconfigure Player based on 64
i← 0
for 0 ≤ i < 64 / Store Random Index do

Random← RNG(seed)
if i=0 / Reconfigure number of rounds then

NbRound← Random mod 12 + 20
end
r ← Random mod 64
Player[i]← Player[r]
while i < NbRound do

r ← Random mod NbRound
rk[i]← rk[r]

end
while i < 16 do

r ← Random mod 16
Sbox[i]← Sbox[r]

end
end
rk ← keyschedule[ki, NbRound, Sbox, P layer]
Gr = Enc.rk

M architecture with 3 stage pipelining results in ideal average
Clocks Per Instruction (CPI) of 1.67 [19]. The performance
metrics parameters such as energy consumption, execution
time, memory efficiency, and throughput of the proposed algo-
rithms were analyzed for PICCOLO, TWINE, and PRESENT
with a pseudo-random number generator. For randomized PIC-
COLO, the number of rounds, order of subkeys, and constant
value of each round are reconfigured. The possible number
of rounds is 17 and 28 for PICCOLO80 and PICCOLO128,
respectively. In other words, the total possible combination for
PICCOLO80 and PICCOLO128, respectively, is 17×r!×con!
and 28×r!×con! where r! is the permutations of the subkeys
and con! is the permutations of each round’s constant values.
The order of internal keys, S-boxes, diffusion of round indexes,
and constant value of rounds are randomized in TWINE
algorithms implementation. The permutation of the internal
keys with n! (n=5 for TWINE80 and n=8 for TWINE128),
con! with NbRound!, S and π[j] with 16! has made the
entire possible combination of both TWINE algorithms, so
the permutation of algorithms is n! × NbRound! × 16!. The
proposed PRESENT algorithms have the same permutation for
both key sizes. The number of rounds, algorithm key, order of
round keys, S-box, and P-layer have 12, 64!, 32!, 16!, and 64!
possibilities. Therefore, the total permutation of the PRESENT
algorithms is 12× 64!× 32!× 16!× 64!.

III. PERFORMANCE ANALYSIS

In our analysis, we investigate execution time, memory con-
sumption, energy consumption, and throughput for PICCOLO,
TWINE, and PRESENT.

73Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

(a)

(b)

(c)

Fig. 1. Comparison of the execution time of original ciphers, the RCH simula-
tions and the round order and internal parameters of algorithms randomization
based ciphers in terms of the 80-bit and 128-bit keys for (a) PICCOLO, (b)
TWINE and (c) PRESENT.

In Figure 1, a comparison is made between the execution
time of the original ciphers, the Reconfigurable Hardware
(RCH) [18], and the proposed block ciphers. We consider 80-
bit and 128-bit keys for PICCOLO, TWINE, and PRESENT
algorithms for these different cases. As seen for PICCOLO
with an 80-bit key, the differences in execution time between

(a)

(b)

(c)

Fig. 2. Comparison of the energy consumption of original ciphers with
the RCH method and the round order and internal parameters of algorithms
randomization based ciphers in terms of the 80-bit and 128-bit keys for (a)
PICCOLO, (b) TWINE and (c) PRESENT.

the original cipher and RCH for plaintext of 512, 1024, 2048,
and 3072 are 3.11%, 3.69%, 3.89%, and 4.02% while those
differences between our proposed ciphers and the original
cipher are 8.87%,9.64%, 10.06%, and 10.51%.

Furthermore, for 128-bit of PICCOLO the increases in time
for 512, 1024, 2048, 3072 bit plaintexts are 4.51% 4.63%,

74Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

4.51%, and 4.70%, respectively, whereas the increases in time
for our method against the original cipher are 10.98%, 11.82%,
12.35%, and 12.48%. The results of the same comparison be-
tween the original ciphers and the RCH method for TWINE80
with plaintext 512, 1024, 2048 and 3072 are 26.35%, 26.39%,
26.38%, and 26.38% while the results for our methods are
27.05%, 27.10% ,27.10%, and 27.11% for the same plaintext.
For TWINE128 the rates of change from original cipher in
RCH mode for 512, 1024, 2048, and 3072 plaintexts are
24.81%, 24.82%, 24.83%, and 24.83%, in the meantime, those
measurements for our method are 25.53%, 25.55%, 25.56%,
and 25.57%. The similar results were obtained for PRESENT
algorithms. The differences in execution time for PRESENT80
and PRESENT128 are shown in Figure 1(c). It should be noted
that the differences between the proposed block ciphers and
the RCH method are similar to previous results between the
original ciphers and the RCH results.

One of the several approaches to compute energy consump-
tion is using the CPU’s operating voltage and the average
current dragged by each cycle, which can be as [20]:

E = I ×N × τ × V (1)

where, I , N , τ , and V are the average current, the number of
clock cycles, the clock period, and the voltage, respectively.
Figure 2 compares the energy consumption of PICCOLO,
TWINE, and PRESENT block ciphers. The supply voltage
and average current of Cortex-M4 microcontrollers are 3.6
V and 0.0155 A, respectively. Its operating frequency is 84
MHz. Since the voltage, average current, and clock period
are constant, the number of clock cycles for each encryption
round should be calculated and compared, which are provided
by Data Watchpoint and Trace (DWT) [15]. As can be
seen, the differences of average clock cycles of PICCOLO80
and PICCOLO128 between the original cipher and the RCH
method are 3.86% and 4.61%, respectively. On the other hand,
the increases of PICCOLO’s average clock cipher compared
with our round order and internal values randomization-based
ciphers are only 5.27% and 5.92%, respectively. In the same
way, the increases in average clock cycles for RCH are 26.38%
and 24.82% for TWINE80 and TWINE128, respectively. In
PRESENT80 and PRESENT128, the change rates of average
clock cycles for reconfigurable hardware (RCH) are 3.33% and
2.57%. In the meantime, those increment rates for our method
are 4.54% and 3.35%. The same increases are shown in our
results when compared with previous results. The amount of
processed data in a period of time can be measured by through-
put, which determines that lightweight block cipher has the
best performance in an IoT environment [15]. First, we divide
the number of cycles by the block size of each algorithm. The
total encryption cycles per bit for each algorithm is obtained
as [15]:

Encryption(cycles/bit) =
Numberofcycles

Blocksize
(2)

Since MCU operates under 84MHz, it can execute 84,000,000
cycles in each second. Therefore, the throughput of each block

Fig. 3. Throughput comparison of original ciphers, the RCH simulations and
the round order and internal parameters of algorithms randomization based
ciphers in terms of the 80-bit and 128-bit keys for PICCOLO, TWINE, and
PRESENT.

cipher can be expressed as follows [15]:

Throughput =
CPUspeed

Enc(cycles/bit)
(3)

In Figure 3, a comparison is made between the throughput
of original ciphers, the RCH simulations, and the round order
and internal parameters of algorithms randomization-based
ciphers in terms of the 80-bit and 128-bit keys for PICCOLO,
TWINE, and PRESENT. As can be seen, all throughput values
are close together for each cipher.

IV. CRYPTANALYSIS OF THE PROPOSED
RECONFIGURABLE LWBCS

Most security analysis has been considered for proposed
randomization algorithms against critical attacks such as the
differential attack, boomerang attack, and Meet In The Middle
attack (MITM). The differential attack is a chosen-plaintext
attack that analyzes how the difference of input evolves
through the several rounds of the cipher. To be exact, the
probability of observing the difference of output (δout) that
gives an input difference (δin) is as follows [21]:

Pr[f(x⊕ δin)⊕ f(x) = δout] (4)

In the following, a block cipher (E) reduced to t rounds will be
denoted by Et, as shown in Figure 4(a). As a result, Pr[δ0 →
δt] represents the probability of a differential δ0 → δt:

Pr[δ0 → δt] = PrX,K [Et
K(X)⊕ Et

K(X ⊕ δ0)] (5)

where PrX,K is the probability computed on all possible input
plaintext (X) and all possible keys (K). This probability can
be calculated as:

PrX,K [Et
K(X)⊕ Et

K(X ⊕ δ0)] = PrX,K [C ⊕ (C ⊕ δt)]
= PrX,K [δt]

(6)

For the proposed reconfigurable block ciphers, the second time
it will be a different block cipher with a different key after the

75Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

(a)

(b)

Fig. 4. A differential on t rounds of (a) cipher E and (b) our round order and
internal parameters randomization based ciphers.

block cipher is run for r rounds. In this way, the probability
of all possible input plaintexts X and key K is as follows:

PrX,K [Et
K(X)⊕ E′K′ t(X ⊕ δ0)] = PrX,K [C ⊕ (C ′ ⊕ δt)]

6= PrX,K [δt]
(7)

The difference between outputs and inputs for block ci-
phers is depicted in Figure 4(b). The boomerang attack is a
chosen-plaintext and cipher text attack which maximizes the
probability of breakage by combining sets of four messages
of M0, M1, M2 and M3. This attack uses differentials like
a differential attack for examined algorithms [22] [23]. We
implement this method for one of the messages, the result is
the same for the other ones. Since the equation of probability
is not equal to the difference of messages (α), our method has
high safety against this attack as follows:

E−1(E(M0)⊕ δ)⊕ E′
−1

(E′(M0 ⊕ α)⊕ δ)

⇒ [M0 ⊕ E−1(δ)]⊕ [M0 ⊕ α⊕ E′
−1

(δ)]

⇒ E−1(δ)⊕ E′
−1

(δ)⊕ α 6= α

(8)

The newest method of attack for this category is the three-
subset Meet In The Middle (MITM) attack, which has good
results on lightweight block ciphers [24] [25]. In PICCOLO
algorithms, the number of rounds is considered variable.
Therefore PICCOLO80 and PICCOLO128 have 10 and 16
possible number of rounds. The MITM attacks have two
sides. The right side starts encryption operation partially from
the beginning and the left side performs decryption partly
from the ending. For PICCOLO algorithms, the right and left

sides equations are performed for each guess of the subkeys,
respectively, as follows:

v = λ1,i(p) = k1,i ⊕ CON1,i (9)

u = λ−1i+1,r(c) = ki+1,r ⊕ CONi+1,r (10)

where λi,j describes the operation of an r-round block cipher
encryption (from round i to round j) with a fixed key and
λi,j−1 describes the decryption in the same circumstances.
The key schedule and constant value of rounds are indicated
by ki,j and CONi,j . The computational complexity which is
indicated by ςcomp origind will be reduced with respect to the
MITM attack. In our algorithms, due to the randomization
of key scheduling part and constant value of rounds, the
computational complexity is increased. For 80-bit and 128-bit
keys, the complexity is computed as follows:

ςcompP80 = 10 × 5! × 30! × ςcomporiginal (11)

ςcompP128 = 16 × 8! × 41! × ςcomporiginal (12)

For TWINE algorithms, the right and left sides of the MITM
attack are performed for each guess of subkeys as follows:

v = λ1,i(p) = k1,i ⊕ S1,j ⊕ CON1,i ⊕ π1,j (13)

u = λ−1i+1,r(c) = ki+1,r ⊕ Si+1,r ⊕CONi+1,r ⊕ π−1i+1,r (14)

where ki,j , Si,j , CONi,j , πi,j and π−1i,j are key schedule, S-
box, constant value of rounds, and diffusion of block indexes
for encryption and decryption, respectively. In proposed algo-
rithms for TWINE, because of randomizing the key scheduling
part, S-box, constant value of rounds and diffusion of block
indexes for encryption or decryption, the computational com-
plexity is increased. For the proposed TWINE with 80 and
128 bits keys this can be calculated as:

ςcompT80 = 5! × 16! × 36! × 16! × ςcomporiginal (15)

ςcompT128 = 8! × 16! × 36! × 16! × ςcomporiginal (16)

The mentioned MITM equations for PRESENT algorithms are
as follows:

v = λ1,i(p) = k1,i ⊕ Sbox1,j ⊕ Player1,i (17)

u = λ−1i+1,r(c) = ki+1,r ⊕ Sboxj+1,r ⊕ Playeri+1,r (18)

where ki,j , Si,j , and P − layeri,j are key scheduling part,
S-box layer, and the P-layer. In the proposed randomization
algorithms for PRESENT, the increase in complexity for both
key sizes is the same and it is computed as follows:

ςcompPRESENT = 12× 64!× 32!× 16!× 64!× ςcomporiginal

(19)

76Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

V. CONCLUSION

In this paper, the security performance of lightweight block
ciphers including the PICCOLO, TWINE, and PRESENT,
using randomization round order and internal parameters of
algorithms are presented for IoT environments. Our results
indicate that the proposed reconfigurable-based block ciphers
exhibit significant improvements in security performance with
minor and negligible changes in energy-throughput perfor-
mances. In other words, the round order and internal parame-
ters randomizations have minimal effect on the complexity of
the lightweight block ciphers, but they significantly decrease
an attacker’s ability to guess keys.

REFERENCES

[1] M. Maroufi, R. Abdolee, and B. M. Tazekand, “On the convergence
of blockchain and internet of things (IoT) technologies,” Journal of
Strategic Innovation and Sustainability (JSIS), vol. 14, pp. 1–11, 2019.

[2] M. N. Bhuiyan, M. M. Rahman, M. M. Billah, and D. Saha, “Internet
of things (IoT): A review of its enabling technologies in healthcare
applications, standards protocols, security and market opportunities,”
IEEE Internet of Things Journal, 2021.

[3] J. Yogi, U. S. Chauhan, A. Raj, M. Gupta, and S. S. Sudan, “Modeling
simulation and performance analysis of lightweight cryptography for
IoT-security,” in 2018 3rd International Conference and Workshops on
Recent Advances and Innovations in Engineering (ICRAIE). IEEE,
2018, pp. 1–5.

[4] K. McKay, L. Bassham, M. Sönmez Turan, and N. Mouha, “Report on
lightweight cryptography,” National Institute of Standards and Technol-
ogy, Tech. Rep., 2016.

[5] U. du Luxembour. Lightweight block ciphers. [Online]. Available:
https://www.cryptolux.org/index.php/Lightweight-Block-Ciphers

[6] X. Fan, K. Mandal, and G. Gong, “WG-8: A lightweight stream cipher
for resource-constrained smart devices,” in International Conference
on Heterogeneous Networking for Quality, Reliability, Security and
Robustness. Springer, 2013, pp. 617–632.

[7] K. Iokibe, K. Maeshima, H. Kagotani, Y. Nogami, Y. Toyota, and
T. Watanabe, “Analysis on equivalent current source of AES-128 circuit
for HD power model verification,” in 2014 International Symposium on
Electromagnetic Compatibility, Tokyo. IEEE, 2014, pp. 302–305.

[8] R. L. Rivest, “The RC5 encryption algorithm,” in International Work-
shop on Fast Software Encryption. Springer, 1994, pp. 86–96.

[9] J. Yu, G. Khan, and F. Yuan, “XTEA encryption based novel RFID
security protocol,” in 2011 24th Canadian Conference on Electrical and
Computer Engineering (CCECE). IEEE, 2011, pp. 000 058–000 062.

[10] G. Leander, C. Paar, A. Poschmann, and K. Schramm, “New lightweight
DES variants,” in International Workshop on Fast Software Encryption.
Springer, 2007, pp. 196–210.

[11] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight
block cipher,” in International workshop on cryptographic hardware and
embedded systems. Springer, 2007, pp. 450–466.

[12] J. Hosseinzadeh and M. Hosseinzadeh, “A comprehensive survey on
evaluation of lightweight symmetric ciphers: hardware and software im-
plementation,” Advances in Computer Science: an International Journal,
vol. 5, no. 4, pp. 31–41, 2016.

[13] B. J. Mohd, T. Hayajneh, and A. V. Vasilakos, “A survey on lightweight
block ciphers for low-resource devices: Comparative study and open
issues,” Journal of Network and Computer Applications, vol. 58, pp.
73–93, 2015.

[14] D. J. Wheeler and R. M. Needham, “TEA, a tiny encryption algorithm,”
in International workshop on fast software encryption. Springer, 1994,
pp. 363–366.

[15] L. Ertaul and S. K. Rajegowda, “Performance analysis of CLEFIA,
PICCOLO, TWINE lightweight block ciphers in IoT environment,” in
Proceedings of the International Conference on Security and Man-
agement (SAM). The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2017, pp. 25–31.

[16] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and
T. Shirai, “PICCOLO: An ultra-lightweight blockcipher,” in Interna-
tional workshop on cryptographic hardware and embedded systems.
Springer, 2011, pp. 342–357.

[17] R. Abdolee and V. Vakilian, “Reconfigurable security hardware and
methods for internet of things (IoT) systems,” Oct. 29 2020, US Patent
App. 16/859,478.

[18] S. A. Kahan, R. Abdolee, E. Argueta, and V. Vakilian, “Security
performance improvement of lightweight block ciphers via round order
randomization,” in International Conference on Communication and
Signal Proccessing (ICCSP), Tehran. IEEE, 2018, pp. 1–99.

[19] Systemy RT I embedded. [Online]. Available:
http://www.ue.pwr.wroc.pl/systemy-rt/RTE6.pdf

[20] D. Salama, H. A. Kader, and M. Hadhoud, “Studying the effects of
most common encryption algorithms,” International Arab Journal of e-
Technology, vol. 2, no. 1, pp. 1–10, 2011.

[21] E. Biham and A. Shamir, Differential cryptanalysis of the data encryp-
tion standard. Springer Science & Business Media, 2012.

[22] D. Wagner, “The Boomerang attack,” in International Workshop on Fast
Software Encryption. Springer, 1999, pp. 156–170.

[23] J. Kelsey, T. Kohno, and B. Schneier, “Amplified Boomerang attacks
against reduced-round MARS and Serpent,” in International Workshop
on Fast Software Encryption. Springer, 2000, pp. 75–93.

[24] K. Aoki and Y. Sasaki, “Meet-In-The-Middle preimage attacks against
reduced SHA-0 and SHA-1,” in Annual International Cryptology Con-
ference. Springer, 2009, pp. 70–89.

[25] A. Bogdanov and C. Rechberger, “A 3-subset Meet-In-The-Middle
attack: cryptanalysis of the lightweight block cipher KTANTAN,” in
International Workshop on Selected Areas in Cryptography. Springer,
2010, pp. 229–240.

77Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

