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Abstract—A plethora of fuzzing Tactics, Techniques, and 
Procedures (TTPs) have been either proposed or described in 
the literature for the purpose of discerning software 
vulnerabilities with efficacy. The benefits of fuzzing have been 
well documented, such as when researchers found dozens of 
vulnerabilities in 4G LTE wireless networks, and fuzzing has 
become prevalent among the disparate actors within the 
wireless network ecosystem (to include 5G). However, fuzzing 
implementations are varied, and ironically, in some cases, 
implementations have utilized software bundles that have 
contained known “High Severity” Common Vulnerabilities 
and Exposures (CVE). On the surface, it seems that fuzzing the 
fuzzing module itself would constitute a simple solution to this 
issue. However, prototypical fuzzers have coverage issues (i.e., 
they only fuzz certain lines of code or sections of the software 
program). In addition, as numerous fuzzers utilize Docker 
containers, which are essentially inert when not in use, the 
complexity of the challenge is non-trivial. This paper 
introduces a fuzzing framework that capitalizes upon a 
sequence of bespoke grey-box concolic (i.e., hybridized 
symbolic and concrete execution) fuzzers (one set that fuzzes 
the next) to better address the coverage issue (as well as more 
likely to discern CVEs) and leverage their hybridized nature to 
overcome the disadvantages of black-box (higher 
computational performance, but lower coverage) and white-
box fuzzers (e.g., lower computational performance, but higher 
coverage). The introduced bespoke grey-box concolic fuzzer 
architecture has certain advantages over other Coverage-based 
Grey-box Fuzzers (CGF) via the numerical stability-centric 
approach by which it selects seeds, undertakes seed scheduling, 
and operationalizes the seed pool. 

Keywords-cyber security; fuzzing; wireless networks; 5G; 
autonomous vehicles; grey-box concolic fuzzer. 

I.  INTRODUCTION 
The growth within the 5G arena is well documented in 

the literature. According to TeleGeography, “nine 5G 
networks went live globally in Q1 2021, bringing the global 
total up to 172 networks” [1], and  according to the Global 
Mobile Suppliers Association (GSA), there are now “511 
commercially available 5G devices as of June 2021” [1]. To 
date, the rollout of 5G has occurred by way of three core 
service categories (a.k.a., “5G triangle”): Enhanced Mobile 
Broadband (eMBB), Ultra-Reliable Low-Latency 
Communications (URLLC), and massive Machine-Type 
Communications (mMTC). These service categories support 
a wide range of Quality of Service (QoS) needs. The QoS 

needs differ by application (e.g., fixed wireless access, 
connected machinery/equipment, video monitoring/ 
detection, as well as connected/autonomous vehicles) [2]. 
QoS needs are constantly evolving as existing applications 
become more sophisticated and emergent applications are 
designed for the envisioned capabilities of 5G, Beyond 5G 
(B5G), and the 6G ecosystem. 

A key aspect of the 5G/B5G/6G ecosystem is that 
hardware is principally supplanted with software so that 
future upgrades will be software-centric. However, this 
increased utilization of Software-Defined Networking (SDN) 
within the network core also expands the attack surface 
opportunities [3][4]. In fact, the literature shows that cyber 
security researchers have found a plethora of security 
vulnerabilities (e.g., improper handling of procedures, 
invalid integrity protection, and security procedure 
bypasses), via fuzz testing (a.k.a., fuzzing), within wireless 
networks [5].  

It should be of no surprise that governments and 
industries around the world are concerned about availability 
(a key aspect of the cyber notion pertaining to the 
Confidentiality, Integrity, and Availability Triad) being 
compromised, particularly as pertains to critical/strategic 
infrastructure and mission-critical applications [6]. Given the 
recent surge in issued directives, such as the “Improving the 
Nation’s Cybersecurity” (Executive Order 14028, which was 
issued on 12 May 2021 and proceeded to direct the National 
Institute of Standards and Technology or NIST to enhance 
software supply chain security guidelines), it seems ironic 
that there remains software supply chain vulnerabilities 
within certain mission-critical software fuzzing paradigms; 
after all, these are the very mechanisms that are supposed to 
discern cyber vulnerabilities and enhance the cyber posture. 
The main contribution of the paper is to introduce a bespoke 
fuzzing framework that addresses the issues of limited 
coverage and inadvertent inherent vulnerabilities within 
certain fuzzing paradigms. 

This paper is structured as follows. Section I introduces 
the problem space. Section II presents background 
information and discusses the operating environment and the 
state of the challenge. Section III delineates the referenced 
software supply chain challenge and presents some 
experimental findings derived from scrutinizing a particular 
architectural stack, which supports a mainstay of the 5G 
network core — the family of Fast Fourier Transform (FFT)-
related functions for signal processing. Section IV posits a 
potential mitigation pathway for the discussed cyber 
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exposure. Section V concludes with some observations, puts 
forth envisioned future work, and the acknowledgements 
close the paper. 

II. BACKGROUND INFORMATION   
Within the 5G/B5G/6G ecosystems,  maximizing 

spectrum efficiency by optimal allocation of 
frequency/time/power resources is vital, and the 
orchestration of the involved waveforms is complex. 
Exemplar waveforms include Generalized Frequency 
Division Multiplexing (GFDM), Filter Bank Multicarrier 
(FBMC), Orthogonal Frequency Division Multiplexing 
(OFDM), Universal Filtered Multi-Carrier Modulation 
(UFMC), etc. In turn, there are variants of these waveform 
types. For example, FBMC has two principal variants: 
Quadrature Amplitude Modulation (QAM) and real-valued 
Offset QAM (OQAM) (a.k.a. FBMC/OQAM). OFDM, 
which conjoins the advantages of QAM and Frequency 
Division Multiplexing (FDM), has an even greater number of 
variants. UFCM (a generalization of FBMC and OFDM) has 
greater variants still. 

The library of FFT-related functions for signal processing 
is of critical import, and as just one example, the library is 
used for spectrum enhancement of the previously referenced 
Orthogonal Frequency Division Multiplexing (OFDM)-
based waveforms within Fifth Generation New Radio (5G 
NR) development [7]; 5G NR  is, in essence, a new Radio 
Access Technology (RAT) for cellular networks. The 
involved functions include not only FFT, but also Inverse 
FFT (IFFT), Real-Valued FFT (RFFT), Inverse RFFT 
(IRFFT), Short-Time Fourier Transform (STFT), and Inverse 
STFT (ISTFT), among others. In particular, STFT is a key 
requisite functionality within the 5G/B5G/6G ecosystem. 

Prior research has indicated that the selection and 
utilization of, by way of example, specific STFT 
implementations from the available machine learning 
libraries/toolkits is critical; it is vital for the 5G/BFG/6G 
researcher/programmer to understand and contend with the 
implementation intricacies of the numerical algorithms being 
utilized for the involved functions. For example, signature 
consistency and dependency intricacies have been shown to 
result in errors and/or incorrect results, and these issues can 
cause a non-graceful degradation of the involved system [8]. 
Clearly, this would be unacceptable, particularly for those 
applications (e.g., autonomous vehicles), which have mission 
critical requirements that necessitate a certain QoS (and even 
Quality of Experience or QoE for some cases). In particular, 
those applications with mission critical requirements would 
be extremely sensitive to the issues of data rate (the data 
packet transfer rate per unit time), latency (the delay before 
the mandated transfer of data packets begins), and jitter (the 
variation in the time between data packets arriving). 

Network Slicing (NS) is often utilized to satisfy varied 
NS QoS requirements (e.g., data rate, latency, jitter). 
Typically, a Service Function Chain (SFC) handles specific 
traffic within each NS. As each NS has its own cyber 
characteristics, each SFC will encounter varied cyber 
requirements. Consequently, the involved fuzzing modules 
will have varied implementations; each implementation will 

have its own set of potential cyber vulnerabilities. This 
challenge is more fully described in subsections A through D 
below. 

 

A. Network Slice (NS) 
To support a wide range of applications with varying 

QoS requirements (and particularly for mission critical QoS 
requirements), 5G/B5G/6G networks endeavor to provide 
high data rates with low end-to-end (E2E) latency and 
minimal jitter. To achieve this, among a myriad of 
approaches, NS is often utilized. In essence, each NS QoS 
requirement is met for the particular involved application 
while the overall involved 5G/B5G/6G network resources 
are still, ideally, optimally distributed for all involved NS 
[9]. 

B. Service Function Chain (SFC) 
Operationally, NS leverages both Software Defined 

Networking (SDN) and Network Function Virtualization 
(NFV). In essence, NFV is the de-coupling of Network 
Functions (NFs) from a myriad of hardware appliances and 
the running of NFs as software in Virtual Machines (VMs). 
The various NFs (e.g., traffic control), which consist of the 
involved core network and Radio Access Network (RAN) 
component, are referred to as Virtual Network Functions 
(VNFs). Each SFC handles specific traffic within the NS, 
over varied technological and administrative ecosystems, and 
is an ecosystem in it of itself [10],[11]. 

C. Cyber Implications of  using SFCs 
The varied ecosystems can equate to physically 

dispersed, low-cost, short-range, small-cell antennas (e.g., 
low-power femtocells, picocells,  and microcells). 
Functionally, each of these small-cell antennas leverages the 
5G/B5G/6G dynamic spectrum sharing capability, wherein 
multiple streams of information share the available 
bandwidth, via a NS. In turn, each NS has its own varying 
degree of cyber risk [12][13]. To continually evaluate the 
ongoing risks, oftentimes a fuzzing module (which 
intentionally injects malformed inputs into the involved 
software, so as to ascertain failure/vulnerability points) is 
utilized. 

D. Potential Cyber Vulnerabilities within the Fuzzing 
Module Itself 
Given that 5G/B5G/6G protocols/specifications are still 

evolving and actively being defined by standards bodies, 
(e.g., 3rd Generation Partnership Project or 3GPP, Internet 
Engineering Task Force or IETF, International 
Telecommunication Union or ITU), and since each NS has 
its own associated cyber risks, varying implementations of 
fuzzing modules exist within 5G/B5G/6G architectural 
frameworks [14]. On the surface, it seems that the very use 
of a fuzzing module is in keeping with the spirit of cyber 
hygiene best practices. However, upon scrutinization of 
varied implementations, potential cyber vulnerabilities have 
been uncovered within the fuzzing module itself. In these 
cases, the fuzzing module represents a potentially specious 
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cyber security offering for 5G/B5G/6G, as it itself is subject 
to compromise. 

 
Overall, the work presented in this paper differs from 

prior research in that a particular sequence of bespoke grey-
box concolic fuzzers is utilized to mitigate against the known 
coverage issue and better discern known CVEs. The chosen 
sequence shows promise in that it overcomes some of the 
disadvantages of prototypical black-box and white-box 
fuzzers. 

III. EXPERIMENTATION FINDINGS 
This paper examined a 5G/B5G/6G architectural 

framework, which was used in a Technology Readiness 
Level (TRL) 5 (i.e., laboratory environment) and 6 (i.e., 
relevant environment). Typically, fuzz testing is conducted 
in a controlled, isolated laboratory environment (such as in 
the case of TRL 5), and isolation is often provided, via 
containerization. The notion of utilizing containers (as a 
testing target) is predicated upon the notion that it provides 
enhanced consistency and reproducibility (particularly when 
using container images) [15].  

The previously discussed implementation intricacies 
(e.g., signature consistency, dependencies) that result in 
inadvertent errors and/or incorrect results are already 
problematic enough; however, this paradigm can be 
exacerbated when it is intentionally exploited. To better 
delineate this point, first, the containerization aspect is 
described. Second, some identified vulnerabilities related to 
the containerization paradigm are presented. Third, further 
vulnerabilities are identified within underlying legacy 
supply chains. 

A. Containerization Aspect of Fuzzing 
Traditionally, containerization has provided the desired 

isolation paradigm for fuzzing. The often-used workflow for 
containerization (e.g., specifying configuration, building a 
Dockerfile — a text file that contains all the commands 
required to build a Docker images — for each desired 
image, and using Docker Compose to assemble the images) 
facilitates reproducible/consistent testing results. Typical 
fuzzing architectures might utilize, by way of example, 
either of two container orchestration platforms for 
containerization: Docker (referring to either Docker Swarm 
or Classic Swarm, which was initially released in 2014, or 
Swarmkit, which was initially released in 2016; of note, 
Swarmkit stemmed from Docker’s acquisition of 
SocketPlane, an SDN technology firm, in March 2015) and 
Kubernetes. Generally speaking, Docker, by default, 
prioritizes isolation between containers; this is construed by 
some to represent higher security. In contradistinction, 
Kubernetes prioritizes communication between multiple 
containers within the same pod; this is construed by some to 
represent higher efficacy, but lower security. Depending 
upon the specific requirement, the choice of orchestrator 
(i.e., Docker or Kubernetes) can be made explicitly. 

Over the past several years, the leadership for container 
orchestration, potentially, has shifted from Docker to 
Kubernetes. In fact, Docker itself adopted Kubernetes and 
announced native support for Kubernetes at DockerCon 
Europe in Copenhagen on 17 October 2017. Yet, Docker’s 
architecture enables users to select the desired orchestration 
engine (Docker, Kubernetes) at runtime. On the Kubernetes 
side, as of Kubernetes v1.20, Docker (specifically, 
Dockershim, which communicates with Docker Engine, 
which was renamed to Docker Community Edition or 
Docker CE in March 2017) has been deprecated as a 
container runtime.  

Whatever the case may be with regards to the leadership 
for container orchestration, Docker images remain a 
mainstay within the development ecosystem. In addition, 
Docker Compose still remains in wide use for building 
Dockerfiles. While container images can indeed be built with 
tools, such as Kaniko (an open-source tool for building 
container images from a Dockerfile) [16], Podman, Buildah, 
and Buildkit, etc., Docker images assembled with Docker 
Compose may be more prevalent for certain facets of 
5G/B5G/6G architectural stacks (particularly those utilizing 
GNU Octave). Indeed, there is a plethora of GNU Octave-
related experimentation (e.g., [17]). By way of background 
information, whereas the utilization of docker run can indeed 
start up a container, Docker Compose is often utilized to 
automatically start up multi-container applications. 
Historically, Docker Compose has been the configuration 
component of the Docker ecosystem (whereas Docker 
Swarm was the scheduling component of the Docker 
ecosystem and determined where to place the containers 
within the cluster of Docker hosts, which were in the form of 
physical computer systems or VMs running Linux). Overall, 
containerization remains an accepted methodology for 
consistency/reproducibility; yet, this containerization 
paradigm for fuzzing modules introduces a new set of 
potential vulnerabilities. 

B. Identified Vulnerabilities Related to certain 
Containerization Paradigms of Fuzzing Modules 
The system of Common Vulnerabilities and Exposures 

(CVE) is a compilation of Information Security (InfoSec) 
issues. For example, CVE-2020-1971 identified an OpenSSL 
(wherein the identity of an involved website/web service is 
validated, and the information flowing between the 
website/web service and user is encrypted) “High Severity” 
issue, which had been reported on 8 December 2020 [18]. 
The Cybersecurity & Infrastructure Security Agency (CISA) 
noted that, “OpenSSL has released a security update to 
address a vulnerability affecting all versions of 1.0.2 and 
1.1.1 released before version 1.1.1i. An attacker could 
exploit this vulnerability to cause a denial-of-service 
condition” [19]. In brief, the vulnerability issue simply 
affected OpenSSL v1.0.2, which was out of support and no 
longer receiving public updates; theoretically, OpenSSL 
v1.1.1i and beyond are no longer vulnerable to the 
referenced issue, and the matter should be closed. However, 
the key issue is not simply that there was a vulnerability 
issue in a deprecated version; more importantly, various 
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Github commentators/contributors had noted, such as years 
prior (e.g., [20]) that various bundled OpenSSL versions had 
been out of date. Yet, various offerings (e.g., various Docker 
Compose offerings) still continued to incorporate outdated 
OpenSSL versions, such as can be seen in Table I below. 

TABLE I.  DOCKER COMPOSE WITH BUNDLED OPENSSL VERSION 

 
Exemplars 

Constituent Components of the Bundle 
Docker 

Compose 
Version 

Docker-Py 
Version 

CPython 
Version 

OpenSSL 
Version 

Case #1a 1.23.2, 
build 

1110ad0 

3.7.3 
 

2.7.16 
 

1.1.1c 28 
May 2019 

Case #2b 1.26.0-rc3, 
build 

46118bc5 

4.2.0 3.7.6 
 

1.1.1d 10 
Sep 2019 

 
Case #3c 1.26.2, 

build 
eefe0d31 

4.2.2 
 

3.7.7 
 

1.1.0l 10 
Sep 2019 

a. https://dockerlabs.collabnix.com/intermediate/workshop/DockerCompose/version_Command.html 
b. https://github.com/docker/compose/issues/7348 
c. https://github.com/docker/compose/issues/7686 

 
Cases #1 through #3 represent just a small sample set of the 
implications of CVE-2020-1971. Additional OpenSSL CVEs 
are available at the OpenSSL portal (e.g., [21]), and other 
CVEs are available at the National Vulnerability Database 
(NVD) (https://nvd.nist.gov) as well as the U.S. Computer 
Emergency Response Team (CERT)-CISA (https://us-
cert.cisa.gov) portals. As discussed, OpenSSL versions 
affected by CVE-2020-1971, among others, had been 
bundled with Docker Compose. Yet, despite the published 
CVEs, it should be noted that certain images of Docker 
Compose v1.28.0 might still be deploying with OpenSSL 
v1.1.1h (i.e., vulnerable to CVE-2020-1971); OpenSSL 
v1.1.1i and above have the security update for CVE-2020-
1971. As of the writing of this paper in January 2021, 
v1.28.2 was the current version of Docker Compose; as of 
the finalization of this paper in July 2021, v1.29.2 is the 
current version of Docker Compose. The latest OpenSSL 
tarball source files can be found here: 
https://www.openssl.org/source/; this page asserts that the 
latest stable version is the 1.1.1 series, which is the 
OpenSSL.org’s Long Term Support (LTS) version, which is 
slated to be supported until 11 September 2023. For 
convenience, please refer to Table 2 below. The current 
version (v1.29.2) is bolded for convenience as are the 
referenced v1.28.0, v1.28.2, and v1.26.2. 

TABLE II.  DOCKER COMPOSE RELEASE VERSIONS WITH DATES 

Release Version Release Date 
1.29.2 2021-05-10 
1.29.1 2021-04-13 
1.29.0 2021-04-06 
1.28.6 2021-03-23 
1.28.5 2021-02-26 
1.28.4 2021-02-18 
1.28.3 2021-02-17 
1.28.2 2021-01-26 
1.28.0 2021-01-20 
1.27.4 2020-09-24 
1.27.3 2020-09-16 
1.27.2 2020-09-10 

1.27.1 2020-09-10 
1.27.0 2020-09-07 

1.26.2 (Case #3 from Table I) 2020-07-02 
Source: https://docs.docker.com/compose/release-notes/ 

 
The Docker Compose bundling issue has persisted for 

quite some time — as far back as 25 June 2015 (e.g., 
https://github.com/docker/compose/issues/1601) (e.g., [22]). 
The bundling issue has also been noted in Linux binaries (as 
well as Mac binaries). Despite the delineated bundling issue, 
many vendors, who bundle OpenSSL, “will selectively 
retrofit urgent fixes to an older version of code, in order to 
maintain [Application Programming Interface] API 
stability/predictability. This is especially true for ‘long-term 
release’ and appliance platforms” [23]. This trend is 
significant, for in the current environment, 5G App 
developers are actively leveraging the faster speeds and 
lower latencies to innovate and release next-generation 
Augmented Reality (AR) and other immersive experience 
Applications (a.k.a., apps), which are used by healthcare 
providers (e.g., collaborative apps for sharing high-resolution 
medical images for telemedicine triaging), manufacturers 
(e.g., inspection apps to assist in identifying defects more 
quickly), and others. As the involved industries require 
mission-critical QoS, API stability/predictability is 
paramount. Therein resides the dilemma; many vendors have 
utilized older software release versions to maintain the 
requisite stability/predictability. However, this has resulted 
in the described bundling issues, which contain — in many 
cases — deprecated versions of various constituent 
components of the bundle. 

For the architectural stack scrutinized, it was found that 
the containerization implementation, for an extended period 
of time (until flagged by the author), contained “High 
Severity” versions of OpenSSL and other components 
utilized for the involved fuzzing modules. The implication is 
that the entire fuzzing TTP could have been compromised, 
and discovered vulnerabilities within the fuzzing target 
might have been non-logged; the significance of logs has 
been previously illuminated by various reports, such as the 
“Verizon Data Breach Report: Detective Controls by 
Percent of Breach Victims” (which highlighted the fact that 
71% of breach victims relied predominantly upon System 
Device Logs, 20% for Automated Log Analysis, and 11% 
for Log Review Process), and extensively discussed in the 
literature [24]; in essence, logs remain a mainstay of a cyber 
framework. 

C. Further Legacy Vulnerabilities within the Fuzzing 
Module Supply Chain 
Given the possibility of discovered vulnerabilities being 

non-logged, among other paradigms, the notion of a script, 
which serves to ensure the bundling of an apropos (e.g., 
patched) OpenSSL version, as just one example of a bundled 
component, and the notion of a vetted installer (e.g., 
PyInstaller) that links to an apropos OpenSSL version 
dynamically, have been discussed extensively [25]. The 
notion of such a script to check for CVEs on an ongoing 
basis seems quite simple; however, because Docker 
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containers are essentially inert when not in use, a systematic 
evaluation of what CVEs are present is non-trivial. In 
addition, as the constituent components of a bundle are ever-
evolving, and as certain sub-components become deprecated, 
legacy issues are ongoing. For example, as each network 
operator has its own 5G/B5G/6G network roll-out plan, at 
least for the interim, each operator’s network is actually a 
patchwork of 2G, 3G, 4G, and 5G networks. Since 5G 
networks will, for the foreseeable future, continue to 
interoperate with legacy networks, they will be subject to 
prototypical legacy vulnerabilities (e.g., spoofing, denial-of-
service, etc.). By way of example, network operators will 
continue to rely upon General Packet Radio Service (GPRS) 
Tunneling Protocol (GTP) (designed to facilitate data 
packets moving backing and forth between the wireless 
networks of different operators, such as when a user is 
roaming). Furthermore, in addition to fuzzing modules 
within the 5G/B5G/6G ecosystem containing vulnerable 
constituent components within their bundles, fuzzing 
modules within the 4G ecosystem, etc. have also been found 
to contain the described vulnerabilities. Hence, even if the 
5G/B5G/6G fuzzing modules are robustly scrutinized, the 
fuzzing modules (a.k.a., fuzzers) of the underlying 
patchwork (i.e., 2G, 3G, 4G) need commensurate 
scrutinization. 

The implications of this underlying legacy patchwork are 
profound, particularly in the matter of mission-critical QoS 
and 5G-enabled software defined networks, such as 
vehicular networks (5G-SDVN), which have been 
burgeoning (to support the ever-growing autonomous 
vehicle market). However, the cyber security issues 
surrounding 5G-SDVN are complex not only because of the 
underlying legacy patchwork issues, but also because 
conventional fuzzers are comprised of varied classes — 
each with certain advantages/disadvantages: black-box 
(coverage information is not considered and inputs are 
randomly generated), white-box (coverage is maximized by 
considering the data structure/logical constraints of the 
internal implementation, and inputs are crafted, but the time 
requirement is higher),  and grey-box (in contrast to black-
box fuzzing, coverage information is considered, but 
perhaps not to the extent of white-box fuzzing so as to save 
on time). Among other distinctions, coverage-based 
evaluation metrics are difficult to ascertain as it is difficult 
to determine “which parts of a [software] program a fuzzer 
actually visits and how consistently it does so,” and the lack 
of a standardized methodology for evaluating coverage 
remains a challenge [26]. 

IV. A PROSPECTIVE MITIGATION PATHWAY  
As discussed, white-box fuzzers produce quality inputs, 

but the computational overhead is much higher, while black-
box fuzzers that focus upon random mutation have  
computational overhead that is much lower, but have 
difficulty producing quality inputs [27]. Even state-of-the-art 
fuzzers are sub-optimal at discerning “ ‘hard-to-trigger’ bugs 
in applications that expect highly structured inputs” [28]. 

While grammar-based fuzzers (capable of generating 
syntactically correct inputs) can indeed be effective, the 
computational overhead is high and feature engineering is 
required. 

To address these challenges, in this paper, we present a 
bespoke grey-box concolic fuzzing module, which is 
comprised of four differing bespoke grey-box concolic 
fuzzers. A primary grey-box concolic fuzzer is able to 
achieve higher coverage (on average) and able to more 
robustly discern which parts of a software program it visits 
and how consistent it is in doing so; the primary fuzzer is 
complemented by a secondary fuzzer, which utilizes 
different classes (from that of the primary fuzzer) for 
mutating a seed. Together, they comprise an aggregate fuzzer 
for the test target; this is an improvement upon prototypical 
fuzzers, which might simply report on the number of lines or 
basic blocks (a straight-line code sequence that has no 
branches except to the entry and from the exit), but does not 
indicate whether it missed visiting certain sectors of the 
software program. By having a myriad of distinct and 
disparate classes (e.g., Class 1a Family, Class 2a Family, etc) 
for mutating a seed and by utilizing differing seed schedules 
(i.e., varying distributions of the fuzzing time spent among 
the seeds) for coverage (e.g., Class 1b Seed Schedule, Class 
2b Seed Schedule, etc.), the primary and secondary fuzzers 
constitute a complementary set. In turn, this set is fuzzed by 
tertiary and quaternary grey-box concolic fuzzers, so as to 
mitigate against inadvertently not discerning vulnerabilities 
within the primary and secondary fuzzers themselves. The 
utilization of distinct and disparate tertiary and quaternary 
fuzzers (which utilize different classes for mutating a seed as 
well as seeding schedules) increases the likelihood of 
increased coverage (on average). The described paradigm is 
shown in Figures 1 and 2 below, wherein the entirety of 
Figure 1 is situated within the yellow box of Figure 2, which 
is roughly based upon [29]. 
 

 
Figure 1.  Bespoke Grey-box Concolic Fuzzers 
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Figure 2.  Grey-box Concolic Fuzzing Module  

The coverage feedback derived by both primary and 
secondary fuzzers help to operationalize an underpinning 
numerical stability-centric Deep [Learning] Convolutional 
Generative Adversarial [Neural] Network (DCGAN)-
facilitated Enhanced Context Module (ECM). The ECM is 
comprised of a Numerical Stability-Centric Module 
(NSCM), which in turn contains two Convolutional 
Adversarial Neural Networks (CANNs), each with a 
different implementation and version of PyTorch; PyTorch 
v0.4.1 (more numerically stable) is used in CANN #1, and 
PyTorch v1.7.0 (less numerically stable) is used CANN #2. 
The ECM’s NSCM, which is shown in light purple in Figure 
3 below, directs the aggregate fuzzer set for the test target 
(a.k.a., directed grey-box concolic fuzzing) to progress more 
rapidly into deeper code sectors.  
 

 
Figure 3.  Numerical Stability-Centric Module (NSCM) which Leverages 

Coverage Feedback and an Adaptive Weighting System for Assigning 
Relative Weights to Fuzzer Seed Mutations/Schedules 

The NSCM architecture is loosely based upon work that 
had been previously articulated in [8], but this version 
leverages coverage feedback and utilizes an adaptive 
weighting system to assign a relative weight to the fuzzer 
seeds rw(fs) that have the potential to achieve greater 
coverage, as shown in (1) below, 
 

    rw(fs) = 1/fr(pw(fs))e ,                                        (1) 
 
where pw(fs) is the pathway identifier selected by fs, fr(pw) 
is the frequency at which the pathway pw is actually selected 
by the generated inputs, and e is a given exponent. The 
schedule is dynamically updated depending upon the 
frequency for which each pathway fr(pw) is utilized.  

Overall, the feedback orientation (e.g., coverage, 
schedule) provided by the ECM well lends to a runtime 
coverage feedback paradigm, which in turn lends to, 
interestingly, enhanced thread-context. In this way, feedback 
can be operationalized, via the dynamic seed selection, 
mutation, weighting, and ensuing execution so as to better 
discern vulnerabilities within even a multi-threaded context 
[30]. With regards to the inner workings of the ECM of 
Figure 3, the entirety of Figure 1 is situated within the yellow 
box of Figure 2, the entirety of Figure 2 is situated within the 
light blue box of Figure 3, and the various components are 
described as follows.  

A. Grey-box Concolic Fuzzing Module 
Standard performance metrics for assessing the Grey-box 

Fuzzing Module (GFM) include, but are not limited to: (1) 
Unique Crashes, (2) Computational Resources Overhead, 
and (3) Coverage. First, Unique Crashes are further 
translated into unique bugs; it can also further be subdivided 
into quantity of unique bugs found, quality of bugs found 
(e.g., common or rare, CVE severity level, etc), speed at 
which bugs are found (i.e., Time-to-Exposure or TTE), and 
performance stability for finding bugs (i.e., Relative 
Standard Deviation or RSD for the number of unique bugs 
found for the fuzzing iterations; a lower RSD implies higher 
performance stability) [29]. Second, Computational 
Resources Overhead reflects the computing resources 
required by the involved fuzzing paradigm; if a particular 
paradigm is effective at finding more bugs, but the resources 
consumed are disproportionate, then that must be taken into 
consideration. Third, Coverage signifies the intrinsic ability 
of the fuzzer for exploring new pathways; this is of import 
for pursuing the desired pathway, which leads to the 
vulnerable code (i.e., quality versus quantity). 

B. Bespoke Grey-box Concolic Fuzzers 
The GFM is, in essence, powered by an amalgam of four 

bespoke grey-box concolic fuzzers: primary, secondary, 
tertiary and quaternary. Each utilizes distinct class families 
for mutating the seed as well as a multi-objective 
optimization seed schedule (whose aim is to decrease the 
TTE). Furthermore, the seed schedule is further subdivided 
into seed pool states (e.g., wide area search, targeted search, 
and assessment). First, for the wide area search, the aim is to 
seek high-promise pathways. Second, for the targeted search, 
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the aim is to allocate increased weighting (via the Adaptive 
Weighting System) towards those identified high-promise 
pathways. Third, for the assessment, the aim is to ascertain 
and assess promising seeds. The primary and secondary 
fuzzers form an aggregate fuzzer set for the test target. The 
tertiary and quaternary fuzzers are tasked with fuzzing the 
primary and secondary fuzzers. This amalgam of fuzzers 
comprise the Fuzzing Module. 

C. Deep Learning Convolutional Generative Adversarial 
Neural Network-facilitated Enhanced Context Module 
The Enhanced Context Module (ECM) encompasses the 

Fuzzing Module; its purpose is to serve as a macro feedback 
loop. In essence the ECM selects a seed, mutates it, and 
serves it as input to the test target. If the input causes a crash, 
it will be added to the ECM’s crash set. Alternatively, if the 
input segues to new coverage, it will be added to the search 
seed pool. In turn, the Fuzzing Module derives Coverage 
Feedback from the Aggregate Fuzzer Set for the Test Target. 
This then serves an input to the NSCM, which processes the 
information and informs the Adaptive Weighting System, 
which dynamically weights the Class Families for Mutating 
Seed and Seed Schedules. This should segue to a more 
optimal Seed Schedule for decreasing TTE as well as RSD; 
the resulting lower RSD/higher performance stability can be 
attributed to the NSCM and Adaptive Weighting System. 

Given the page limitations of this paper, future work will 
include more quantitative comparison with various CGFs, 
such as AFLGo (generates input to reach specified target test 
sectors) [31], FairFuzz (discerns rare branches within the 
target test and adapts mutation strategies to enhance 
coverage) [32], MOPT (utilizes Particle Swarm Optimization 
or PSO to optimize the mutation schedule and reduce TTE) 
[33], etc. 
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V. CONCLUSION 
In a not insignificant portion of the 5G/B5G/6G 

ecosystem cyber cases, the more serious security problems 
are implementation imperfections (e.g., network protocols); 
these constitute attack surface areas, which are often 
exploited. In the case for which 5G/B5G/6G protocols are 
still evolving and being defined, these implementation 
imperfections can be amplified. Conventional software cyber 
security frameworks, which involve code review, risk 
analysis, penetration testing, and prototypical fuzzing, do not 
currently suffice for robustly addressing a domain space, 
such as the 5G/B5G/6G ecosystem, wherein the protocols are 
evolving at a rapid pace. Indeed, prototypical fuzzers are 
challenged by the coverage issue, and conventional CGFs are 
as well. In an endeavor to provide a mitigation pathway, this 
paper presented an architectural stack comprised of a 

sequence of bespoke grey-box concolic fuzzers; as the 
primary grey-box concolic fuzzer (used against the testing 
target) is designed to work in conjunction with a secondary 
grey-box concolic fuzzer, so as to better mitigate against 
coverage issues (e.g., increasing the probability of visiting 
certain blocks/lines of code of the software program), and 
both are fuzzed by tertiary and quaternary grey-box concolic 
fuzzers (which utilize different classes for mutating a seed as 
well as seeding schedules), so as to mitigate against 
inadvertently not discerning vulnerabilities within the 
primary and secondary fuzzers themselves, the likelihood of 
increased coverage (on average) is enhanced. The feedback 
for coverage and adaptive weighting, as well as seed 
scheduling schemas, contribute to the efficacy. Future work 
will involve more quantitative experimentation. 
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