
A Potentially Specious Cyber Security Offering for 5G/B5G/6G
Software Supply Chain Vulnerabilities within Certain Fuzzing Modules

Steve Chan
Decision Engineering Analysis Laboratory, VT

San Diego, USA
e-mail: schan@dengineering.org

Abstract—A plethora of fuzzing Tactics, Techniques, and
Procedures (TTPs) have been either proposed or described in
the literature for the purpose of discerning software
vulnerabilities with efficacy. The benefits of fuzzing have been
well documented, such as when researchers found dozens of
vulnerabilities in 4G LTE wireless networks, and fuzzing has
become prevalent among the disparate actors within the
wireless network ecosystem (to include 5G). However, fuzzing
implementations are varied, and ironically, in some cases,
implementations have utilized software bundles that have
contained known “High Severity” Common Vulnerabilities
and Exposures (CVE). On the surface, it seems that fuzzing the
fuzzing module itself would constitute a simple solution to this
issue. However, prototypical fuzzers have coverage issues (i.e.,
they only fuzz certain lines of code or sections of the software
program). In addition, as numerous fuzzers utilize Docker
containers, which are essentially inert when not in use, the
complexity of the challenge is non-trivial. This paper
introduces a fuzzing framework that capitalizes upon a
sequence of bespoke grey-box concolic (i.e., hybridized
symbolic and concrete execution) fuzzers (one set that fuzzes
the next) to better address the coverage issue (as well as more
likely to discern CVEs) and leverage their hybridized nature to
overcome the disadvantages of black-box (higher
computational performance, but lower coverage) and white-
box fuzzers (e.g., lower computational performance, but higher
coverage). The introduced bespoke grey-box concolic fuzzer
architecture has certain advantages over other Coverage-based
Grey-box Fuzzers (CGF) via the numerical stability-centric
approach by which it selects seeds, undertakes seed scheduling,
and operationalizes the seed pool.

Keywords-cyber security; fuzzing; wireless networks; 5G;
autonomous vehicles; grey-box concolic fuzzer.

I. INTRODUCTION
The growth within the 5G arena is well documented in

the literature. According to TeleGeography, “nine 5G
networks went live globally in Q1 2021, bringing the global
total up to 172 networks” [1], and according to the Global
Mobile Suppliers Association (GSA), there are now “511
commercially available 5G devices as of June 2021” [1]. To
date, the rollout of 5G has occurred by way of three core
service categories (a.k.a., “5G triangle”): Enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency
Communications (URLLC), and massive Machine-Type
Communications (mMTC). These service categories support
a wide range of Quality of Service (QoS) needs. The QoS

needs differ by application (e.g., fixed wireless access,
connected machinery/equipment, video monitoring/
detection, as well as connected/autonomous vehicles) [2].
QoS needs are constantly evolving as existing applications
become more sophisticated and emergent applications are
designed for the envisioned capabilities of 5G, Beyond 5G
(B5G), and the 6G ecosystem.

A key aspect of the 5G/B5G/6G ecosystem is that
hardware is principally supplanted with software so that
future upgrades will be software-centric. However, this
increased utilization of Software-Defined Networking (SDN)
within the network core also expands the attack surface
opportunities [3][4]. In fact, the literature shows that cyber
security researchers have found a plethora of security
vulnerabilities (e.g., improper handling of procedures,
invalid integrity protection, and security procedure
bypasses), via fuzz testing (a.k.a., fuzzing), within wireless
networks [5].

It should be of no surprise that governments and
industries around the world are concerned about availability
(a key aspect of the cyber notion pertaining to the
Confidentiality, Integrity, and Availability Triad) being
compromised, particularly as pertains to critical/strategic
infrastructure and mission-critical applications [6]. Given the
recent surge in issued directives, such as the “Improving the
Nation’s Cybersecurity” (Executive Order 14028, which was
issued on 12 May 2021 and proceeded to direct the National
Institute of Standards and Technology or NIST to enhance
software supply chain security guidelines), it seems ironic
that there remains software supply chain vulnerabilities
within certain mission-critical software fuzzing paradigms;
after all, these are the very mechanisms that are supposed to
discern cyber vulnerabilities and enhance the cyber posture.
The main contribution of the paper is to introduce a bespoke
fuzzing framework that addresses the issues of limited
coverage and inadvertent inherent vulnerabilities within
certain fuzzing paradigms.

This paper is structured as follows. Section I introduces
the problem space. Section II presents background
information and discusses the operating environment and the
state of the challenge. Section III delineates the referenced
software supply chain challenge and presents some
experimental findings derived from scrutinizing a particular
architectural stack, which supports a mainstay of the 5G
network core — the family of Fast Fourier Transform (FFT)-
related functions for signal processing. Section IV posits a
potential mitigation pathway for the discussed cyber

43Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

exposure. Section V concludes with some observations, puts
forth envisioned future work, and the acknowledgements
close the paper.

II. BACKGROUND INFORMATION
Within the 5G/B5G/6G ecosystems, maximizing

spectrum efficiency by optimal allocation of
frequency/time/power resources is vital, and the
orchestration of the involved waveforms is complex.
Exemplar waveforms include Generalized Frequency
Division Multiplexing (GFDM), Filter Bank Multicarrier
(FBMC), Orthogonal Frequency Division Multiplexing
(OFDM), Universal Filtered Multi-Carrier Modulation
(UFMC), etc. In turn, there are variants of these waveform
types. For example, FBMC has two principal variants:
Quadrature Amplitude Modulation (QAM) and real-valued
Offset QAM (OQAM) (a.k.a. FBMC/OQAM). OFDM,
which conjoins the advantages of QAM and Frequency
Division Multiplexing (FDM), has an even greater number of
variants. UFCM (a generalization of FBMC and OFDM) has
greater variants still.

The library of FFT-related functions for signal processing
is of critical import, and as just one example, the library is
used for spectrum enhancement of the previously referenced
Orthogonal Frequency Division Multiplexing (OFDM)-
based waveforms within Fifth Generation New Radio (5G
NR) development [7]; 5G NR is, in essence, a new Radio
Access Technology (RAT) for cellular networks. The
involved functions include not only FFT, but also Inverse
FFT (IFFT), Real-Valued FFT (RFFT), Inverse RFFT
(IRFFT), Short-Time Fourier Transform (STFT), and Inverse
STFT (ISTFT), among others. In particular, STFT is a key
requisite functionality within the 5G/B5G/6G ecosystem.

Prior research has indicated that the selection and
utilization of, by way of example, specific STFT
implementations from the available machine learning
libraries/toolkits is critical; it is vital for the 5G/BFG/6G
researcher/programmer to understand and contend with the
implementation intricacies of the numerical algorithms being
utilized for the involved functions. For example, signature
consistency and dependency intricacies have been shown to
result in errors and/or incorrect results, and these issues can
cause a non-graceful degradation of the involved system [8].
Clearly, this would be unacceptable, particularly for those
applications (e.g., autonomous vehicles), which have mission
critical requirements that necessitate a certain QoS (and even
Quality of Experience or QoE for some cases). In particular,
those applications with mission critical requirements would
be extremely sensitive to the issues of data rate (the data
packet transfer rate per unit time), latency (the delay before
the mandated transfer of data packets begins), and jitter (the
variation in the time between data packets arriving).

Network Slicing (NS) is often utilized to satisfy varied
NS QoS requirements (e.g., data rate, latency, jitter).
Typically, a Service Function Chain (SFC) handles specific
traffic within each NS. As each NS has its own cyber
characteristics, each SFC will encounter varied cyber
requirements. Consequently, the involved fuzzing modules
will have varied implementations; each implementation will

have its own set of potential cyber vulnerabilities. This
challenge is more fully described in subsections A through D
below.

A. Network Slice (NS)
To support a wide range of applications with varying

QoS requirements (and particularly for mission critical QoS
requirements), 5G/B5G/6G networks endeavor to provide
high data rates with low end-to-end (E2E) latency and
minimal jitter. To achieve this, among a myriad of
approaches, NS is often utilized. In essence, each NS QoS
requirement is met for the particular involved application
while the overall involved 5G/B5G/6G network resources
are still, ideally, optimally distributed for all involved NS
[9].

B. Service Function Chain (SFC)
Operationally, NS leverages both Software Defined

Networking (SDN) and Network Function Virtualization
(NFV). In essence, NFV is the de-coupling of Network
Functions (NFs) from a myriad of hardware appliances and
the running of NFs as software in Virtual Machines (VMs).
The various NFs (e.g., traffic control), which consist of the
involved core network and Radio Access Network (RAN)
component, are referred to as Virtual Network Functions
(VNFs). Each SFC handles specific traffic within the NS,
over varied technological and administrative ecosystems, and
is an ecosystem in it of itself [10],[11].

C. Cyber Implications of using SFCs
The varied ecosystems can equate to physically

dispersed, low-cost, short-range, small-cell antennas (e.g.,
low-power femtocells, picocells, and microcells).
Functionally, each of these small-cell antennas leverages the
5G/B5G/6G dynamic spectrum sharing capability, wherein
multiple streams of information share the available
bandwidth, via a NS. In turn, each NS has its own varying
degree of cyber risk [12][13]. To continually evaluate the
ongoing risks, oftentimes a fuzzing module (which
intentionally injects malformed inputs into the involved
software, so as to ascertain failure/vulnerability points) is
utilized.

D. Potential Cyber Vulnerabilities within the Fuzzing
Module Itself
Given that 5G/B5G/6G protocols/specifications are still

evolving and actively being defined by standards bodies,
(e.g., 3rd Generation Partnership Project or 3GPP, Internet
Engineering Task Force or IETF, International
Telecommunication Union or ITU), and since each NS has
its own associated cyber risks, varying implementations of
fuzzing modules exist within 5G/B5G/6G architectural
frameworks [14]. On the surface, it seems that the very use
of a fuzzing module is in keeping with the spirit of cyber
hygiene best practices. However, upon scrutinization of
varied implementations, potential cyber vulnerabilities have
been uncovered within the fuzzing module itself. In these
cases, the fuzzing module represents a potentially specious

44Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

cyber security offering for 5G/B5G/6G, as it itself is subject
to compromise.

Overall, the work presented in this paper differs from

prior research in that a particular sequence of bespoke grey-
box concolic fuzzers is utilized to mitigate against the known
coverage issue and better discern known CVEs. The chosen
sequence shows promise in that it overcomes some of the
disadvantages of prototypical black-box and white-box
fuzzers.

III. EXPERIMENTATION FINDINGS
This paper examined a 5G/B5G/6G architectural

framework, which was used in a Technology Readiness
Level (TRL) 5 (i.e., laboratory environment) and 6 (i.e.,
relevant environment). Typically, fuzz testing is conducted
in a controlled, isolated laboratory environment (such as in
the case of TRL 5), and isolation is often provided, via
containerization. The notion of utilizing containers (as a
testing target) is predicated upon the notion that it provides
enhanced consistency and reproducibility (particularly when
using container images) [15].

The previously discussed implementation intricacies
(e.g., signature consistency, dependencies) that result in
inadvertent errors and/or incorrect results are already
problematic enough; however, this paradigm can be
exacerbated when it is intentionally exploited. To better
delineate this point, first, the containerization aspect is
described. Second, some identified vulnerabilities related to
the containerization paradigm are presented. Third, further
vulnerabilities are identified within underlying legacy
supply chains.

A. Containerization Aspect of Fuzzing
Traditionally, containerization has provided the desired

isolation paradigm for fuzzing. The often-used workflow for
containerization (e.g., specifying configuration, building a
Dockerfile — a text file that contains all the commands
required to build a Docker images — for each desired
image, and using Docker Compose to assemble the images)
facilitates reproducible/consistent testing results. Typical
fuzzing architectures might utilize, by way of example,
either of two container orchestration platforms for
containerization: Docker (referring to either Docker Swarm
or Classic Swarm, which was initially released in 2014, or
Swarmkit, which was initially released in 2016; of note,
Swarmkit stemmed from Docker’s acquisition of
SocketPlane, an SDN technology firm, in March 2015) and
Kubernetes. Generally speaking, Docker, by default,
prioritizes isolation between containers; this is construed by
some to represent higher security. In contradistinction,
Kubernetes prioritizes communication between multiple
containers within the same pod; this is construed by some to
represent higher efficacy, but lower security. Depending
upon the specific requirement, the choice of orchestrator
(i.e., Docker or Kubernetes) can be made explicitly.

Over the past several years, the leadership for container
orchestration, potentially, has shifted from Docker to
Kubernetes. In fact, Docker itself adopted Kubernetes and
announced native support for Kubernetes at DockerCon
Europe in Copenhagen on 17 October 2017. Yet, Docker’s
architecture enables users to select the desired orchestration
engine (Docker, Kubernetes) at runtime. On the Kubernetes
side, as of Kubernetes v1.20, Docker (specifically,
Dockershim, which communicates with Docker Engine,
which was renamed to Docker Community Edition or
Docker CE in March 2017) has been deprecated as a
container runtime.

Whatever the case may be with regards to the leadership
for container orchestration, Docker images remain a
mainstay within the development ecosystem. In addition,
Docker Compose still remains in wide use for building
Dockerfiles. While container images can indeed be built with
tools, such as Kaniko (an open-source tool for building
container images from a Dockerfile) [16], Podman, Buildah,
and Buildkit, etc., Docker images assembled with Docker
Compose may be more prevalent for certain facets of
5G/B5G/6G architectural stacks (particularly those utilizing
GNU Octave). Indeed, there is a plethora of GNU Octave-
related experimentation (e.g., [17]). By way of background
information, whereas the utilization of docker run can indeed
start up a container, Docker Compose is often utilized to
automatically start up multi-container applications.
Historically, Docker Compose has been the configuration
component of the Docker ecosystem (whereas Docker
Swarm was the scheduling component of the Docker
ecosystem and determined where to place the containers
within the cluster of Docker hosts, which were in the form of
physical computer systems or VMs running Linux). Overall,
containerization remains an accepted methodology for
consistency/reproducibility; yet, this containerization
paradigm for fuzzing modules introduces a new set of
potential vulnerabilities.

B. Identified Vulnerabilities Related to certain
Containerization Paradigms of Fuzzing Modules
The system of Common Vulnerabilities and Exposures

(CVE) is a compilation of Information Security (InfoSec)
issues. For example, CVE-2020-1971 identified an OpenSSL
(wherein the identity of an involved website/web service is
validated, and the information flowing between the
website/web service and user is encrypted) “High Severity”
issue, which had been reported on 8 December 2020 [18].
The Cybersecurity & Infrastructure Security Agency (CISA)
noted that, “OpenSSL has released a security update to
address a vulnerability affecting all versions of 1.0.2 and
1.1.1 released before version 1.1.1i. An attacker could
exploit this vulnerability to cause a denial-of-service
condition” [19]. In brief, the vulnerability issue simply
affected OpenSSL v1.0.2, which was out of support and no
longer receiving public updates; theoretically, OpenSSL
v1.1.1i and beyond are no longer vulnerable to the
referenced issue, and the matter should be closed. However,
the key issue is not simply that there was a vulnerability
issue in a deprecated version; more importantly, various

45Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

Github commentators/contributors had noted, such as years
prior (e.g., [20]) that various bundled OpenSSL versions had
been out of date. Yet, various offerings (e.g., various Docker
Compose offerings) still continued to incorporate outdated
OpenSSL versions, such as can be seen in Table I below.

TABLE I. DOCKER COMPOSE WITH BUNDLED OPENSSL VERSION

Exemplars

Constituent Components of the Bundle
Docker

Compose
Version

Docker-Py
Version

CPython
Version

OpenSSL
Version

Case #1a 1.23.2,
build

1110ad0

3.7.3

2.7.16

1.1.1c 28
May 2019

Case #2b 1.26.0-rc3,
build

46118bc5

4.2.0 3.7.6

1.1.1d 10
Sep 2019

Case #3c 1.26.2,

build
eefe0d31

4.2.2

3.7.7

1.1.0l 10
Sep 2019

a. https://dockerlabs.collabnix.com/intermediate/workshop/DockerCompose/version_Command.html
b. https://github.com/docker/compose/issues/7348
c. https://github.com/docker/compose/issues/7686

Cases #1 through #3 represent just a small sample set of the
implications of CVE-2020-1971. Additional OpenSSL CVEs
are available at the OpenSSL portal (e.g., [21]), and other
CVEs are available at the National Vulnerability Database
(NVD) (https://nvd.nist.gov) as well as the U.S. Computer
Emergency Response Team (CERT)-CISA (https://us-
cert.cisa.gov) portals. As discussed, OpenSSL versions
affected by CVE-2020-1971, among others, had been
bundled with Docker Compose. Yet, despite the published
CVEs, it should be noted that certain images of Docker
Compose v1.28.0 might still be deploying with OpenSSL
v1.1.1h (i.e., vulnerable to CVE-2020-1971); OpenSSL
v1.1.1i and above have the security update for CVE-2020-
1971. As of the writing of this paper in January 2021,
v1.28.2 was the current version of Docker Compose; as of
the finalization of this paper in July 2021, v1.29.2 is the
current version of Docker Compose. The latest OpenSSL
tarball source files can be found here:
https://www.openssl.org/source/; this page asserts that the
latest stable version is the 1.1.1 series, which is the
OpenSSL.org’s Long Term Support (LTS) version, which is
slated to be supported until 11 September 2023. For
convenience, please refer to Table 2 below. The current
version (v1.29.2) is bolded for convenience as are the
referenced v1.28.0, v1.28.2, and v1.26.2.

TABLE II. DOCKER COMPOSE RELEASE VERSIONS WITH DATES

Release Version Release Date
1.29.2 2021-05-10
1.29.1 2021-04-13
1.29.0 2021-04-06
1.28.6 2021-03-23
1.28.5 2021-02-26
1.28.4 2021-02-18
1.28.3 2021-02-17
1.28.2 2021-01-26
1.28.0 2021-01-20
1.27.4 2020-09-24
1.27.3 2020-09-16
1.27.2 2020-09-10

1.27.1 2020-09-10
1.27.0 2020-09-07

1.26.2 (Case #3 from Table I) 2020-07-02
Source: https://docs.docker.com/compose/release-notes/

The Docker Compose bundling issue has persisted for

quite some time — as far back as 25 June 2015 (e.g.,
https://github.com/docker/compose/issues/1601) (e.g., [22]).
The bundling issue has also been noted in Linux binaries (as
well as Mac binaries). Despite the delineated bundling issue,
many vendors, who bundle OpenSSL, “will selectively
retrofit urgent fixes to an older version of code, in order to
maintain [Application Programming Interface] API
stability/predictability. This is especially true for ‘long-term
release’ and appliance platforms” [23]. This trend is
significant, for in the current environment, 5G App
developers are actively leveraging the faster speeds and
lower latencies to innovate and release next-generation
Augmented Reality (AR) and other immersive experience
Applications (a.k.a., apps), which are used by healthcare
providers (e.g., collaborative apps for sharing high-resolution
medical images for telemedicine triaging), manufacturers
(e.g., inspection apps to assist in identifying defects more
quickly), and others. As the involved industries require
mission-critical QoS, API stability/predictability is
paramount. Therein resides the dilemma; many vendors have
utilized older software release versions to maintain the
requisite stability/predictability. However, this has resulted
in the described bundling issues, which contain — in many
cases — deprecated versions of various constituent
components of the bundle.

For the architectural stack scrutinized, it was found that
the containerization implementation, for an extended period
of time (until flagged by the author), contained “High
Severity” versions of OpenSSL and other components
utilized for the involved fuzzing modules. The implication is
that the entire fuzzing TTP could have been compromised,
and discovered vulnerabilities within the fuzzing target
might have been non-logged; the significance of logs has
been previously illuminated by various reports, such as the
“Verizon Data Breach Report: Detective Controls by
Percent of Breach Victims” (which highlighted the fact that
71% of breach victims relied predominantly upon System
Device Logs, 20% for Automated Log Analysis, and 11%
for Log Review Process), and extensively discussed in the
literature [24]; in essence, logs remain a mainstay of a cyber
framework.

C. Further Legacy Vulnerabilities within the Fuzzing
Module Supply Chain
Given the possibility of discovered vulnerabilities being

non-logged, among other paradigms, the notion of a script,
which serves to ensure the bundling of an apropos (e.g.,
patched) OpenSSL version, as just one example of a bundled
component, and the notion of a vetted installer (e.g.,
PyInstaller) that links to an apropos OpenSSL version
dynamically, have been discussed extensively [25]. The
notion of such a script to check for CVEs on an ongoing
basis seems quite simple; however, because Docker

46Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

containers are essentially inert when not in use, a systematic
evaluation of what CVEs are present is non-trivial. In
addition, as the constituent components of a bundle are ever-
evolving, and as certain sub-components become deprecated,
legacy issues are ongoing. For example, as each network
operator has its own 5G/B5G/6G network roll-out plan, at
least for the interim, each operator’s network is actually a
patchwork of 2G, 3G, 4G, and 5G networks. Since 5G
networks will, for the foreseeable future, continue to
interoperate with legacy networks, they will be subject to
prototypical legacy vulnerabilities (e.g., spoofing, denial-of-
service, etc.). By way of example, network operators will
continue to rely upon General Packet Radio Service (GPRS)
Tunneling Protocol (GTP) (designed to facilitate data
packets moving backing and forth between the wireless
networks of different operators, such as when a user is
roaming). Furthermore, in addition to fuzzing modules
within the 5G/B5G/6G ecosystem containing vulnerable
constituent components within their bundles, fuzzing
modules within the 4G ecosystem, etc. have also been found
to contain the described vulnerabilities. Hence, even if the
5G/B5G/6G fuzzing modules are robustly scrutinized, the
fuzzing modules (a.k.a., fuzzers) of the underlying
patchwork (i.e., 2G, 3G, 4G) need commensurate
scrutinization.

The implications of this underlying legacy patchwork are
profound, particularly in the matter of mission-critical QoS
and 5G-enabled software defined networks, such as
vehicular networks (5G-SDVN), which have been
burgeoning (to support the ever-growing autonomous
vehicle market). However, the cyber security issues
surrounding 5G-SDVN are complex not only because of the
underlying legacy patchwork issues, but also because
conventional fuzzers are comprised of varied classes —
each with certain advantages/disadvantages: black-box
(coverage information is not considered and inputs are
randomly generated), white-box (coverage is maximized by
considering the data structure/logical constraints of the
internal implementation, and inputs are crafted, but the time
requirement is higher), and grey-box (in contrast to black-
box fuzzing, coverage information is considered, but
perhaps not to the extent of white-box fuzzing so as to save
on time). Among other distinctions, coverage-based
evaluation metrics are difficult to ascertain as it is difficult
to determine “which parts of a [software] program a fuzzer
actually visits and how consistently it does so,” and the lack
of a standardized methodology for evaluating coverage
remains a challenge [26].

IV. A PROSPECTIVE MITIGATION PATHWAY
As discussed, white-box fuzzers produce quality inputs,

but the computational overhead is much higher, while black-
box fuzzers that focus upon random mutation have
computational overhead that is much lower, but have
difficulty producing quality inputs [27]. Even state-of-the-art
fuzzers are sub-optimal at discerning “ ‘hard-to-trigger’ bugs
in applications that expect highly structured inputs” [28].

While grammar-based fuzzers (capable of generating
syntactically correct inputs) can indeed be effective, the
computational overhead is high and feature engineering is
required.

To address these challenges, in this paper, we present a
bespoke grey-box concolic fuzzing module, which is
comprised of four differing bespoke grey-box concolic
fuzzers. A primary grey-box concolic fuzzer is able to
achieve higher coverage (on average) and able to more
robustly discern which parts of a software program it visits
and how consistent it is in doing so; the primary fuzzer is
complemented by a secondary fuzzer, which utilizes
different classes (from that of the primary fuzzer) for
mutating a seed. Together, they comprise an aggregate fuzzer
for the test target; this is an improvement upon prototypical
fuzzers, which might simply report on the number of lines or
basic blocks (a straight-line code sequence that has no
branches except to the entry and from the exit), but does not
indicate whether it missed visiting certain sectors of the
software program. By having a myriad of distinct and
disparate classes (e.g., Class 1a Family, Class 2a Family, etc)
for mutating a seed and by utilizing differing seed schedules
(i.e., varying distributions of the fuzzing time spent among
the seeds) for coverage (e.g., Class 1b Seed Schedule, Class
2b Seed Schedule, etc.), the primary and secondary fuzzers
constitute a complementary set. In turn, this set is fuzzed by
tertiary and quaternary grey-box concolic fuzzers, so as to
mitigate against inadvertently not discerning vulnerabilities
within the primary and secondary fuzzers themselves. The
utilization of distinct and disparate tertiary and quaternary
fuzzers (which utilize different classes for mutating a seed as
well as seeding schedules) increases the likelihood of
increased coverage (on average). The described paradigm is
shown in Figures 1 and 2 below, wherein the entirety of
Figure 1 is situated within the yellow box of Figure 2, which
is roughly based upon [29].

Figure 1. Bespoke Grey-box Concolic Fuzzers

47Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

Figure 2. Grey-box Concolic Fuzzing Module

The coverage feedback derived by both primary and
secondary fuzzers help to operationalize an underpinning
numerical stability-centric Deep [Learning] Convolutional
Generative Adversarial [Neural] Network (DCGAN)-
facilitated Enhanced Context Module (ECM). The ECM is
comprised of a Numerical Stability-Centric Module
(NSCM), which in turn contains two Convolutional
Adversarial Neural Networks (CANNs), each with a
different implementation and version of PyTorch; PyTorch
v0.4.1 (more numerically stable) is used in CANN #1, and
PyTorch v1.7.0 (less numerically stable) is used CANN #2.
The ECM’s NSCM, which is shown in light purple in Figure
3 below, directs the aggregate fuzzer set for the test target
(a.k.a., directed grey-box concolic fuzzing) to progress more
rapidly into deeper code sectors.

Figure 3. Numerical Stability-Centric Module (NSCM) which Leverages

Coverage Feedback and an Adaptive Weighting System for Assigning
Relative Weights to Fuzzer Seed Mutations/Schedules

The NSCM architecture is loosely based upon work that
had been previously articulated in [8], but this version
leverages coverage feedback and utilizes an adaptive
weighting system to assign a relative weight to the fuzzer
seeds rw(fs) that have the potential to achieve greater
coverage, as shown in (1) below,

 rw(fs) = 1/fr(pw(fs))e , (1)

where pw(fs) is the pathway identifier selected by fs, fr(pw)
is the frequency at which the pathway pw is actually selected
by the generated inputs, and e is a given exponent. The
schedule is dynamically updated depending upon the
frequency for which each pathway fr(pw) is utilized.

Overall, the feedback orientation (e.g., coverage,
schedule) provided by the ECM well lends to a runtime
coverage feedback paradigm, which in turn lends to,
interestingly, enhanced thread-context. In this way, feedback
can be operationalized, via the dynamic seed selection,
mutation, weighting, and ensuing execution so as to better
discern vulnerabilities within even a multi-threaded context
[30]. With regards to the inner workings of the ECM of
Figure 3, the entirety of Figure 1 is situated within the yellow
box of Figure 2, the entirety of Figure 2 is situated within the
light blue box of Figure 3, and the various components are
described as follows.

A. Grey-box Concolic Fuzzing Module
Standard performance metrics for assessing the Grey-box

Fuzzing Module (GFM) include, but are not limited to: (1)
Unique Crashes, (2) Computational Resources Overhead,
and (3) Coverage. First, Unique Crashes are further
translated into unique bugs; it can also further be subdivided
into quantity of unique bugs found, quality of bugs found
(e.g., common or rare, CVE severity level, etc), speed at
which bugs are found (i.e., Time-to-Exposure or TTE), and
performance stability for finding bugs (i.e., Relative
Standard Deviation or RSD for the number of unique bugs
found for the fuzzing iterations; a lower RSD implies higher
performance stability) [29]. Second, Computational
Resources Overhead reflects the computing resources
required by the involved fuzzing paradigm; if a particular
paradigm is effective at finding more bugs, but the resources
consumed are disproportionate, then that must be taken into
consideration. Third, Coverage signifies the intrinsic ability
of the fuzzer for exploring new pathways; this is of import
for pursuing the desired pathway, which leads to the
vulnerable code (i.e., quality versus quantity).

B. Bespoke Grey-box Concolic Fuzzers
The GFM is, in essence, powered by an amalgam of four

bespoke grey-box concolic fuzzers: primary, secondary,
tertiary and quaternary. Each utilizes distinct class families
for mutating the seed as well as a multi-objective
optimization seed schedule (whose aim is to decrease the
TTE). Furthermore, the seed schedule is further subdivided
into seed pool states (e.g., wide area search, targeted search,
and assessment). First, for the wide area search, the aim is to
seek high-promise pathways. Second, for the targeted search,

48Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

the aim is to allocate increased weighting (via the Adaptive
Weighting System) towards those identified high-promise
pathways. Third, for the assessment, the aim is to ascertain
and assess promising seeds. The primary and secondary
fuzzers form an aggregate fuzzer set for the test target. The
tertiary and quaternary fuzzers are tasked with fuzzing the
primary and secondary fuzzers. This amalgam of fuzzers
comprise the Fuzzing Module.

C. Deep Learning Convolutional Generative Adversarial
Neural Network-facilitated Enhanced Context Module
The Enhanced Context Module (ECM) encompasses the

Fuzzing Module; its purpose is to serve as a macro feedback
loop. In essence the ECM selects a seed, mutates it, and
serves it as input to the test target. If the input causes a crash,
it will be added to the ECM’s crash set. Alternatively, if the
input segues to new coverage, it will be added to the search
seed pool. In turn, the Fuzzing Module derives Coverage
Feedback from the Aggregate Fuzzer Set for the Test Target.
This then serves an input to the NSCM, which processes the
information and informs the Adaptive Weighting System,
which dynamically weights the Class Families for Mutating
Seed and Seed Schedules. This should segue to a more
optimal Seed Schedule for decreasing TTE as well as RSD;
the resulting lower RSD/higher performance stability can be
attributed to the NSCM and Adaptive Weighting System.

Given the page limitations of this paper, future work will
include more quantitative comparison with various CGFs,
such as AFLGo (generates input to reach specified target test
sectors) [31], FairFuzz (discerns rare branches within the
target test and adapts mutation strategies to enhance
coverage) [32], MOPT (utilizes Particle Swarm Optimization
or PSO to optimize the mutation schedule and reduce TTE)
[33], etc.

ACKNOWLEDGMENT
This research is supported by the Decision Engineering

Analysis Laboratory (DEAL), an Underwatch initiative.
This is part of a VT white paper series on 5G-enabled
defense applications, via proxy use cases, to help inform
Project Enabler.

V. CONCLUSION
In a not insignificant portion of the 5G/B5G/6G

ecosystem cyber cases, the more serious security problems
are implementation imperfections (e.g., network protocols);
these constitute attack surface areas, which are often
exploited. In the case for which 5G/B5G/6G protocols are
still evolving and being defined, these implementation
imperfections can be amplified. Conventional software cyber
security frameworks, which involve code review, risk
analysis, penetration testing, and prototypical fuzzing, do not
currently suffice for robustly addressing a domain space,
such as the 5G/B5G/6G ecosystem, wherein the protocols are
evolving at a rapid pace. Indeed, prototypical fuzzers are
challenged by the coverage issue, and conventional CGFs are
as well. In an endeavor to provide a mitigation pathway, this
paper presented an architectural stack comprised of a

sequence of bespoke grey-box concolic fuzzers; as the
primary grey-box concolic fuzzer (used against the testing
target) is designed to work in conjunction with a secondary
grey-box concolic fuzzer, so as to better mitigate against
coverage issues (e.g., increasing the probability of visiting
certain blocks/lines of code of the software program), and
both are fuzzed by tertiary and quaternary grey-box concolic
fuzzers (which utilize different classes for mutating a seed as
well as seeding schedules), so as to mitigate against
inadvertently not discerning vulnerabilities within the
primary and secondary fuzzers themselves, the likelihood of
increased coverage (on average) is enhanced. The feedback
for coverage and adaptive weighting, as well as seed
scheduling schemas, contribute to the efficacy. Future work
will involve more quantitative experimentation.

REFERENCES
[1] “5G Uptake Progresses Across the Globe: Global 5G

Connections Reach 298M in Q1 2021, 5G Connections
Added in 2021 Nearly Triple that of 2020, 172 5G
Commercial Networks Deployed Worldwide,” 5G Americas,
June 2021.

[2] H. Remmert, “5G Applications and Use Cases,” Digi,
November 2019.

[3] K. Fysarakis et al., “A Reactive Security Framework for
operational wind parks using Service Function
Chaining,”2017 IEEE Symposium on Computers and
Communications (ISCC), 2017, pp. 663-668, doi:
10.1109/ISCC.2017.8024604

[4] H. Xu, M. Dong, K. Ota, J. Wu, and J. Li, “Toward Software
Defined Dynamic Defense as a Service for 5G-Enabled
Vehicular Networks,” 2019 International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2019, pp. 880-887, doi:
10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00158

[5] C. Cimpanu, “South Korean researchers apply fuzzing
techniques to LTE protocol and find 51 vulnerabilities, of
which 36 were new,” Zdnet, March 2019.

[6] “Department of Defense (DoD) 5G Strategy (U),” Accessed
on: Aug 27, 2021. [Online]. Available:
https://www.cto.mil/wp-
content/uploads/2020/05/DoD_5G_Strategy_May_2020.pdf.

[7] J. Yli-Kaakinen, T. Levanen, M. Renfors, M. Valkama, and
K. Pajukoski, “FFT-Domain Signal Processing for Spectrally-
Enhanced CP-OFDM Waveforms in 5G New Radio,” 2018
52nd Asilomar Conference on Signals, Systems, and
Computers, 2018, pp. 1049-1056, doi:
10.1109/ACSSC.2018.8645100

[8] S. Chan, M. Krunz, and B. Griffin, “AI-based Robust Convex
Relaxations for Supporting Diverse QoS in Next-Generation
Wireless Systems,” Proc. of the IEEE ICDCS Workshop -
Next-Generation Mobile Networking and Computing
(NGMobile 2021), July 2021, pp. 1-8.

[9] B. Han, J. Lianghai, and H. D. Schotten, "Slice as an
Evolutionary Service: Genetic Optimization for Inter-Slice
Resource Management in 5G Networks," in IEEE Access,
vol. 6, pp. 33137-33147, 2018, doi:
10.1109/ACCESS.2018.2846543.

[10] L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han and C. S. Hong,
"Network Slicing: Recent Advances, Taxonomy,
Requirements, and Open Research Challenges," in IEEE
Access, vol. 8, pp. 36009-36028, 2020, doi:
10.1109/ACCESS.2020.2975072

49Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

[11] A. Farrel, “Recent Developments in Service Function
Chaining (SFC) and Network Slicing in Backhaul and Metro
Networks in Support of 5G,” 2018 20th International
Conference on Transparent Optical Networks (ICTON), 2018,
pp. 1-4, doi: 10.1109/ICTON.2018.8473624.

[12] A. J. Gonzalez et al., “The Isolation Concept in the 5G
Network Slicing,” 2020 European Conference on Networks
and Communications (EuCNC), 2020, pp. 12-16, doi:
10.1109/EuCNC48522.2020.9200939

[13] B. L. Parne, S. Gupta, K. Gandhi and S. Meena, “PPSE:
Privacy Preservation and Security Efficient AKA Protocol for
5G Communication Networks,” 2020 IEEE International
Conference on Advanced Networks and Telecommunications
Systems (ANTS), 2020, pp. 1-6, doi:
10.1109/ANTS50601.2020.9342780.

[14] J. Knudsen, “How to cyber security: containerizing fuzzing
targets,” Synopsys, February 2021.

[15] R. Nagler, D. Bruhwiler, P. Moeller, and S. Webb,
“Sustainability and Reproducibility via Containerized
Computing,” 2015, pp. 1-2, arXiv:1509.08789 [cs.SE].

[16] "Use Kaniko to build Docker images," Accessed on: Aug 27,
2021. [Online]. Available:
https://docs.gitlab.com/ee/ci/docker/using_kaniko.html.

[17] "Octave-x11-novnc-docker," Accessed on: Aug 27, 2021.
[Online]. Available: https://github.com/epfl-sti/octave-x11-
novnc-docker

[18] “OpenSSL Release Security Update [08 December 2020],”
Accessed on: Aug 27, 2021. [Online]. Available:
https://www.openssl.org/news/secadv/20201208.txt.

[19] “OpenSSL Release Security Update [25 August 2021],”
Accessed on: Jul 19, 2021. [Online]. Available: https://us-
cert.cisa.gov/ncas/current-activity/2021/08/25/openssl-
releases-security-update

[20] "Update the bundled OpenSSL version #1834," Accessed on:
Aug 27, 2021. [Online]. Available:
https://github.com/docker/compose/issues/1834.

[21] "[OpenSSL] Vulnerabilities," Accessed on: Aug 27, 2021.
[Online]. Available:
https://www.openssl.org/news/vulnerabilities.html

[22] "Openssl version used is insecure #1601," Accessed on: Aug
27, 2021. [Online]. Available:
https://github.com/docker/compose/issues/1601

[23] “Heartbleed: how to reliably and portably check the OpenSSL
version,” Accessed on: Jul 19, 2021. [Online]. Available:

https://serverfault.com/questions/587324/heartbleed-how-to-
reliably-and-portably-check-the-openssl-version text 10

[24] S. Chan, “Prototype Orchestration Framework as a High
Exposure Dimension Cyber Defense Accelerant Amidst Ever-
Increasing Cycles of Adaptation by Attackers,” The Third
International Conference on Cyber-Technologies and Cyber-
Systems, November 2018, pp. 28-38.

[25] “Dynamically linking OpenSSL #1304,” Accessed on: Jul 19,
2021. [Online]. Available:
https://github.com/bitshares/bitshares-core/issues/1304

[26] L. Simon and A. Verma, “Improving Fuzzing through
Controlled Compilation,” 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), 2020, pp. 34-52, doi:
10.1109/EuroSP48549.2020.00011.

[27] P. Chen and H. Chen, “Angora: Efficient Fuzzing by
Principled Search,” 2018 IEEE Symposium on Security and
Privacy (SP), 2018, pp. 711-725, doi:
10.1109/SP.2018.00046.

[28] X. Wang, C. Hu, R. Ma, B. Li and X. Wang, "LAFuzz:
Neural Network for Efficient Fuzzing," 2020 IEEE 32nd
International Conference on Tools with Artificial Intelligence
(ICTAI), 2020, pp. 603-611, doi:
10.1109/ICTAI50040.2020.00098.

[29] Y. Li et al., “UNIFUZZ: A Holistic and Pragmatic Metrics-
Driven Platform for Evaluating Fuzzers,” 2020, pp. 1-18,
arXiv:2010.01785 [cs.CR]

[30] H. Chen et al., “MUZZ: Thread-aware Grey-box Fuzzing for
Effective Bug Hunting in Multithreaded Programs,” 2020,
arXiv:2007.15943v1 [cs.SE].

[31] M. Bohem, V. Pham, M. Nguyen, and A. Roychoudhury,
“Directed Greybox Fuzzing,” ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 2329-
2344.

[32] C. Lemieux and K. Sen, “Fairfuzz: A Targeted Mutation
Strategy for Increasing Greybox Fuzz Testing Coverage,” 33rd
ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 475-485.

[33] C. Lyu, S. Ji, C. Zhang, Y. Li, W. Lee, Y. Song, and R.
Beyah, “MOPT: Optimized Mutation Scheduling for
Fuzzers,” 28th USENIX Security Symposium, 2019, pp. 1949-
1966.

50Copyright (c) IARIA, 2021. ISBN: 978-1-61208-893-8

CYBER 2021 : The Sixth International Conference on Cyber-Technologies and Cyber-Systems

