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Abstract—Modern Cyber-Physical Systems (CPSs), such as our
energy infrastructure, are becoming increasingly complex: An
ever-higher share of Artificial Intelligence (AI)-based technologies
use the Information and Communication Technology (ICT) facet
of energy systems for operation optimization, cost efficiency, and
to reach CO2 goals worldwide. At the same time, markets with
increased flexibility and ever shorter trade horizons enable the
multi-stakeholder situation that is emerging in this setting. These
systems still form critical infrastructures that need to perform
with highest reliability. However, today’s CPSs are becoming too
complex to be analyzed in the traditional monolithic approach,
where each domain, e.g., power grid and ICT, as well as the
energy market, are considered as separate entities while ignoring
dependencies and side-effects. To achieve an overall analysis, we
introduce the concept for an application of distributed artificial
intelligence as a self-adaptive analysis tool that is able to analyze
the dependencies between domains in CPSs by attacking them.
It eschews pre-configured domain knowledge, instead exploring
the CPS domains for emergent risk situations and exploitable
loopholes in codices, with a focus on rational market actors that
exploit the system while still following the market rules.

Keywords—Cyber-Physical Systems Analysis; Distributed Artifi-
cial Intelligence; Reinforcement Learning; ICT Security; Market
Design.

I. INTRODUCTION

During the last two decades, the power grid has seen an
enormous development in the adoption of Information and
Communication Technology (ICT) on a large scale in order to
facilitate the inclusion of advanced methodologies, including
Artificial Intelligence (AI)-based approaches. This increases
efficiency and flexibility, which ultimately allows a higher share
of renewable energy sources in the grid. However, together
with a proceeding decentralization and the inclusion of energy
markets, the complexity of the overall system also increased,
with different factors adding to it, e.g., prosumers directly
selling their Photovoltaic (PV) power or new market-based
concepts for ancillary service provisioning, which need to be
implemented by 2021 as per EU regulations [1].

Decentralized generation and consumption has led to
the emergence of decentralized grid operation and control

paradigms, many of which feature independent software agents.
These Multi Agent Systems (MAS) exist for different tasks,
e.g., to equalize real power generation and consumption, or to
facilitate voltage control on local levels. A newer example of
such a decentralized, specifically all-encompassing MAS that
is aimed at including a high share of volatile, renewable energy
sources is the Universal Smart Grid Agent system [2]–[4].

Assuming that major Internet of Things (IoT) trends will also
influence the future power grid, the comprehensive use of ICT
and AI technologies will, through their complexity, inevitably
create an obstacle for a reliable operation of the power grid
[5], [6]. At least since the cyber attack on the power grid of
the Ukraine in December 2015 [7], [8], energy systems are
recognized as valuable and vulnerable targets. Further attacks
were seen in different stages with varying targets until and
beyond 2017 [9]. These attacks demonstrate how ICT has a
vital role in modern energy distribution networks. It needs to
be reliable to ensure a stable power grid. However, due to the
increasing ICT in modern power grids, the attack surface is
getting bigger. Darknet marketplaces offer Distributed Denial-
of-Service (DDoS)-as-a-Service and other attack-services for
small money [10], which demonstrates that security testing is
getting more important in this special domain.

Research actively addresses the numerous challenges that
arise from the increased complexity and, thus, new attack
vectors the emerge not only in the energy domain, but all
Cyber-Physical Systems (CPSs) in general. Among them are
neural control falsification, e.g., through Adversarial Learning
(AL) [11]–[13], false data injection as attacks on state esti-
mators [14]–[18], or utilizing compromised assets to actively
damage the CPS [19].

In addition, a new type of attack has emerged in market-
connected CPS like energy systems: The attack as a side effect
of economically rational behavior. Energy markets are highly
regulated in all countries. The need for regulation directly
follows from the energy systems’ inherent dependability on
a dedicated infrastructure, like power grids, gas and heat
networks. With this kind of infrastructure, a natural monopoly
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is given. To ensure system stability while optimizing costs,
market-based approaches are regulated to realize access to this
infrastructure and system stability responsibility. The adaption
of regulative frameworks is late by design: Once a loophole has
been found, regulation is readjusted. Even if no outright cyber-
attack is staged, actors in the market might exploit loopholes
while still conforming to the rules. There are a couple of known
examples where this has been done and actually affected the
power grid, e.g., in Germany with Inc-Dec Gaming against the
zonal system with uniform pricing scheme [20], or in another
case in Great Britain [21].

However, in a recent survey looking at CPSs from the
perspective of AI research, we found that a large portion of
research focuses on a safe inclusion of AI technologies, such as
Deep Learning or decentralized control through MAS in critical
infrastructures, but also emphasizes the gaps between almost
fully analyzed, reliable CPS and the complexity introduced by
these techniques. Additionally, there is currently no systemic
analysis approach that includes AI technologies as the driver
to explore and analyze unknown CPSs for safety [22]. This
survey can be seen as the main motivational background for
this work: Traditional methods for analyzing the operational
safety of a CPS can only cover specific, partial aspects. Hence,
we found extensive research into many different aspects of
safe CPS operation, but no approach for systemic testing of
intra- and inter-domain relationships. From the point of the
analysis, this causes a fragmentation of the whole system into
islands. Aggregating subsystems also means that the effects
of the interaction of components, as well as the influence of
market actors is not completely covered. This holds especially
true for systemic vulnerabilities, in which isolated parameters
are within nominal boundaries, but the overall system is being
destabilized through emergent effects. On the basis of the
challenges outlined above, we create an intelligent, cross-
sectional software technology for analyzing complex CPS in
project PYRATE. It analyzes complex CPS with interdependent
components autonomously, finding vulnerabilities leading to
systemic failures. The core of the software technology to be
developed is based on learning software agents that interact
with a model—ideally a digital twin—of a CPS, using the
resulting system states as reinforcing feedback signals for full
self-adaptivity to efficiently explore the search space of actions
for destabilizing ones.

Our project works on two different levels: On a methodical
level, we plan to develop a universal methodology to analyze
weaknesses of arbitrary CPS by finding successful attack
strategies. On a practical level, we apply this methodology to
an exemplary scenario containing a power system, an ancillary
service market, and an ICT system, to demonstrate possible
applications and the effectiveness of the methodology.

The remainder of this paper is structured as follows: Due
to didactic reasons, in Section II, we first introduce the three
environments of our demonstrator, explain major challenges
in them, and describe the co-simulation setup. Afterwards, in
Section III, we follow with a description of our cross-domain
learning MAS that explores a CPS in order to defeat it. The

experimentation process that underpins any analysis of our
technology is described next, in Section IV, followed by the
post-run analysis in Section V that aims to isolate the minimal
chain of actions that led to CPS failure. Finally, in Section VI,
we conclude with an outlook towards the realization.

II. ENVIRONMENT UNDER SCRUTINY: A DEMONSTRATOR

In the research project, a power grid, an ICT network, and a
local ancillary service market are simultaneously subjected to
analysis, since the goal is to analyze interdependent behavior.
Since the analysis cannot be performed on real infrastructure
for obvious reasons, simulation models of each of the different
domains are being synchronized at run-time using a co-
simulation approach.

A. Power System

In this project’s demonstrator, we focus on distribution grids
to show the feasibility of the approach. Today’s distribution
grids lend themselves very well: They contain both, distributed
large and aggregateable small loads, connect the major portion
of Distributed Energy Resources (DERs), and are currently
subject to large-scale ICT inclusion, as well as the development
of local ancillary market concepts. Furthermore, they form the
smallest meaningful, mostly self-contained environment that
features a complex CPS with a variety of outside influence
factors such as volatile power generation from renewable energy
sources.

For simulation and benchmark purposes on distribution grid
level, a scenario-based benchmark environment was developed.
This benchmark environment incorporates a Medium Voltage
(MV) grid developed by the International Council on Large
Electric Systems (CIGRE) [23], [24], time series data of one
year in 15min resolution (e.g., for wind, solar radiation, or
consumption) from a former research project Smart Nord [25],
and different component models, like PV or Combined Heat
and Power (CHP).

B. Ancillary Service Market

For current energy markets, regulation is mainly settled,
though adaptions still can be seen quite often, e.g., for
optimization reasons. When implementing new energy markets,
a whole new set of regulations is needed, though: There is a lot
of activity in the implementation of regional energy markets
and cell-based approaches, which are still in their infancy. Thus,
we can expect many upcoming iterations on the regulation sets
[26]. This holds especially true for all kinds of ancillary service
markets, e.g., reactive power or flexibility markets [27], [28].

In this context, even new problems arise: We found that, for
grid-stabilizing ancillary service markets, regional actors and
even private households could cooperatively induce problems
into the grid to later get paid for eliminating these very
problems. E.g., if we assume that the grid operator has to
procure reactive power in a purely market-based way, private
households could synchronize their load behavior in order to
manipulate the local voltage level and to violate the voltage
band. That forces the grid operator to announce a reactive power
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auction, in which generator agents would offer reactive power
provision as ancillary service. Afterwards, the generator and
household agents would divide profits and start a new attack.
Regulation for such problems is not known at all, especially as
this kind of malicious behavior is difficult to detect and proof.

Our methodology will help to systematically investigate
and understand such profit-driven attacks, which will in turn
allow for better market designs. For this, a local auction-based
reactive power market with simple rules will be implemented
as incentive for profit-driven attacks. This will allow for better
understanding of possible attack vectors for profit maximization.
Later, systematic comparison with more sophisticated market
designs and rules will enable insights which market rules
increase resilience against which attack strategies. Finally, we
hope to find market designs that minimize attacks and that
maximize grid stability, as well as detectability of such attacks.

C. ICT Simulation

Distributed power units are equipped with ICT to connect
to wide-area networks. This enables operators to regulate
and monitor distributed locations remotely, which is the
foundation for implementing local ancillary service markets
at the distribution grid level. The CIGRE MV model only
specifies a distribution grid topology without covering the ICT
domain, thus, we extend and overlay it with relevant ICT
components to model a realistic multi-domain distribution grid
infrastructure. Consequently, each node of the energy grid
is accompanied by the corresponding representation in the
ICT network that would, in reality, provide access to relevant
sensors and actuators. Additionally, a communication network
is built with routers and switches that connects these CPSs,
arranged in multiple subnets, hence modelling a realistic ICT
network.

Specific requirements arise from the multi-domain co-
simulation setting: First, it needs to be efficient at simulating
large networks. Second, the ICT simulation is required to
create an accurate model of the reality and, therefore, compute
realistic results, which is especially important when examining
networks in a security context. Thus, it is necessary that
existing software can be integrated with minimal modifications.
Lastly, the simulation tool needs to be easy-to-use, so that
also experts of the other simulated domains—who might have
limited knowledge about ICT networks—can work with it
after a short period of time. As there is no such simulator
available that can meet all of these requirements, the rettij
network simulator was developed. It is designed to simulate
ICT components like routers, switches, clients and servers,
provided as Docker containers [29] in order to represent a
realistic behaviour as opposed to synthetic, simulated models.
The configuration files of the ICT simulator integrate tightly
with the rest of the software stack [30].

Co-Simulation

The multi-domain simulation for analysis can hardly be
performed by one software tool alone. The setup of the last three
sections describes three different, but intertwined, domains;

each one warrants its own specific simulation software to yield
realistic results [31]. In addition, specific models for power
plants, wind parks, or independent market actors exist. These
components are coordinated with the open-source co-simulation
framework mosaik [32] and can therefore easily be integrated
in other simulation setups relying on mosaik.

Figure 1 shows the complete software stack. The bottom
box, labelled co-simulation, provides the technical view of the
different simulators. Each simulator offers models, as well as
attributes on these models, which form a hierarchy: The address
scheme Simulator.Model.Attribute allows for unam-
biguous identification of each individual attribute and to connect
them. E.g., ARL.Attacker-1.Actuator-1 can be con-
nected to PowerGrid.WindFarm-1.P-Feedin to deliver
setpoints from the adaptive attacker agent to a wind farm under
its control; similarly, PowerGrid.Sensor-1.Voltage,
connected to ARL.Attacker-1.Sensor-1, allows the
agent to measure the effects of its actions in terms of voltage
values. mosaik synchronizes all simulators with each other and
provides a common simulation clock time, the time step; data
is transmitted to a simulator when it is stepped, data from its
models’ attributes is queried afterwards.

III. DISTRIBUTED ANALYSIS: COMMUNICATION &
CONTROL

To analyze this interconnected complex system, the core tool
is the application of the Adversarial Resilience Learning (ARL)
methodology. ARL defines in its pure form [33] two classes
of agents: attacker agents and defender agents. An instance
of every class operates on a model of a CPS, i.e., both agents
operate on the same shared model. However, neither attacker
nor defender know of each other: They gather data from the
CPS through their sensors, which retrieve the current state of
the system—as far as it is observable to the respective agent—,
but do not explicitly track changes induced by another party.

This specific distinction makes sense for the power grid, as
well as for many other CPSs: Whether a voltage irregularity
is induced by a larger PV feed-in at the end of the branch
(e.g., coming from a farm) or forms a part of an attack, is
hardly distinguishable, but needs to be countered in any case.
Stringently, we assume that the defender needs to counter
a variety of effects for resilient operation, from fluctuation
in renewable feed-in to accidents to actual attacks without
differentiating between them as a rule-based system would
do. Therefore, neither the overall system design nor the
experimenter differentiates between different causes and effects,
leaving the development of strategies, as well as countering the
adaption of the attacker to the defender’s capability to adapt
(and vice versa). That both agents learn to counter each other’s
strategies, thus developing them further and further, is the
core of the system-of-systems learning principle of ARL [34].
Consequently, we use the attacker not just to execute actual
cyber-attacks, but to represent any potentially system-harming
behavior. Thus, the attacker becomes a universal analysis tool.

Focusing on the attacker, we consider a group of attacking
ARL agents that form a self-organizing MAS and a single
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Figure 1. The Demonstrator’s Co-Simulated Environments for Analysis

defender agent that represents the grid operator. All ARL
agents use a modified Reinforcement Learning (RL) algorithm
to explore a system that is initially unknown to them. In
fact, ARL agents possess no domain-specific knowledge; their
sensors and actuators contain only a description of the space for
valid values. For the experimenter, these space types provide
an easy way to describe types and boundaries for values; they
can also be used as predicates to check whether a concrete
value is a valid member of the given space. E.g., for a given
value x, x is a member of the space Discrete{x} iff:

Discrete{n} : x ∈ N, 0 ≤ x ≤ n− 1 . (1)

Similarly, we can denote a box in Rn and check for a value
x to be a member of it:

Box
{
(l1, . . . , ln), (h1, . . . , hn)

}
: x ∈ R,

n∧
i=1

li ≤ x ≤ hi .

(2)
Other space types are MultiDiscrete, MultiBinary, or Tuple.

Such a space description might represent the state of a tap-
changer or the feed-in of a power plant in terms of a faction
of its nominal output, but this logic is completely hidden from
the agent. In fact, the domain logic is the responsibility of
the experimenter. As the only way for RL agents to learn is
to receive feedback, the experimenter has to derive a proper
reward function that covers the relevant aspects of the CPS.
The reward function bridges the otherwise separated concerns,
i.e., the ARL perspective that eschews domain knowledge and
the CPS domain. Thus, the ARL agents remain free of any
domain-specific knowledge, as the reward function is a unit-less
scalar and the objective can be learned.

Because of this feature, we describe the agents as being
polymorphic. Drawing from the analogy in software engineer-
ing, the agents’ interfaces are fixed and soundly described, but

do not carry any model. That means, the space types assigned
to the agents’ sensors and actuators form a declaration, but no
definition. The agents derive this definition—i.e., their model—
through exploration. Hence, they are polymorphic. This means
that an abstract definition of a CPS’ interface in terms of
the spaces outlined above is enough to have the ARL agents
explore the systems; this constitutes a fundamental difference
from many modelling and analysis tools that require implicit
or explicit modelling of the target domain.

As part of this new research direction, we assume that MAS
are a valid approach to analyze highly decentralized systems
as depicted above: They inherently allow for a representation
of local knowledge and rule sets, even learned one, such as a
limited view on local grid state and local control options [35].
It has already been shown that a combination with cyber-
physical energy system simulation is feasible and beneficial
to analyze the distributed behavior of the system, even for
socio-technical system views [36]. Thus, we use MAS to
represent and explore the effect of cooperative malicious actors.
In this case, cooperative means that the agents act cooperatively
within their defined group of malicious or unplanned malicious,
simply economically rational, agents. The attackers share a
reward function, which can be as easy as the amount of money
gained from the market, but also be complex and encompass
aspects of all domains. In any case, the reward function remains
transparent to each attacker and does not convey any domain
knowledge to the agents, but is defined solely at the discretion
of the experimenter.

In the presented concept, the overall MAS encompasses all
three domains. Individual agents represent different actors in
one of the domains. E.g., in a scenario, in which the attacker
MAS controls three assets in the power grid, has one entry
point to the ICT network, and appears with one bidder on the
market, the MAS is comprised of five agents. An example for
sensor and actuator mappings is presented in Table I.
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TABLE I. EXEMPLARY ARL ATTACKER MAS THAT CAN PARTICI-
PATE IN A REACTIVE POWER MARKET

Agent Asset Sensors Actuators

a1 PV Unit Voltage1, Max. Active
Power2

Active Power2,
Reactive Power3

a2 EV
Charger

Voltage1, Active
Power2

Active Power2,
Reactive Power3

a3 Load Voltage1, Active
Power2, Reactive
Power3

Active Power2

a4 Market Reactive Power
Commitment (relative)3

Reactive Power Offer
(relative)3

a5 ICT Interface Utilization2 Manipulate Sensor
Value (Apply Noise)3

1Box
{
(0.85), (1.15)

}
, 2Box

{
(0.0), (1.0)

}
, 3Box

{
(−1.0), (1.0)

}

In order to develop an overall strategy, the attackers need
to coordinate among themselves without a central command-
&-control instance. Snapshot algorithms [37] will be used to
enable the agents to interchange their local sensor data to gain
knowledge of the global state. In this case, global state means
the entirety of all sensors that the ARL agents have access to.
Learning agents that perform decision making based on shared
knowledge can then learn optimal cooperative decision making
based on that knowledge. With this research direction, we thrive
for the development of a domain-encompassing coordination
protocol to address this holistic approach to CPS analysis.

While malicious cooperation cannot be deduced directly from
regulatory or observability loopholes, beneficial cooperative
behavior is analyzed as well: the defender aims to stabilize the
system and prevent malicious attacks.

In our research approach, we therefore combine these
agent types to act in shared environments. Thus, we hope
to identify ruleset, ICT, and market designs that minimize
attack possibilities and stabilize the overall system. In future
work, we will define and work out the resulting multi-layer
attack coordination and defense framework.

IV. EXPERIMENT PROCESS

As Figure 2 illustrates, the overall experiment process
incorporates four major steps: First, a domain independent
description of the CPS and its interfaces is required. The
definition of such a description is called CPS Abstract Ontology
(CPS-AO) in the context of the presented research direction.
The main purpose of the CPS-AO is the definition of network
topological variables and the mapping of the ARL agents’ sen-
sors and actuators to entities in the environment. Additionally,
the CPS-AO defines which variables can be changed during the
experiments and the valid value ranges. Furthermore, the CPS-
AO takes this topology information to build up experiments. For
this purposes, CPS-AO employs techniques from the domain of
Design of Experiments (DoE) [38] to select only configurations
that provide the strongest significance. An example for a CPS-
AO configuration file can be seen in Figure 3.

Furthermore, the CPS-AO serves as an input for the so-
called experiment generator (CPS-EG). While the CPS-AO is
a domain-independent and abstract description of the system,

the CPS-EG instantiates the experiment descriptions for the
actual simulation, assigns values to factors, and builds execution
scripts.

All so generated concrete experiments are executed by an
experiment executor (CPS-EE) in the target environment. This
provides the actual interface between the agent structure and the
simulation environment. In order to enable changes, the created
intermediate results will be saved so that smaller changes are
possible without having to go through the entire process again.
During the execution of the experiments, the states of the
simulation, as well as the actions of the agents and the market
results are stored and thus made available for a later weak point
analysis, which will be described in the following section.

V. POST-RUN ANALYSIS METHODOLOGY

The experimenter defines a set of invariants that describe the
environment’s overall health. After the executor has finished
the simulation run and health invariants were falsified, a post-
mortem analysis of the defeated system shall be conducted.
This CPS Vulnerability Analyzer (CPS-VA) conducts targeted
evaluation of the attacks across all domains, aiming to find the
smallest chain of stringent actions that defeated this system,
i.e. to identify the cross-domain attack-path or kill-chain. We
assume that the ARL MAS, in its exploration, conducts a lot
of negligible action before staging a successful attack. Hence,
identification of the minimal kill-chain is a separate analysis
task.

Another goal of the research project is the development of
the CPS-VA, which primarily aims to understand the produced
data. It operates on data from all nodes, i.e. data from sensors
and actuators. The transactions on the market, as well as states
from the ICT and the power grid are collected. Then, the CPS-
VA is designed to apply different analysis techniques on this
data to isolate the kill-chain. For understanding the path of
the kill-chain, predictive models and techniques are often not
the best choice [39]. Most of the time, causality methods are
more promising. Mueller, Memory, and Bartrem [40] use causal
discovery techniques to discover cyber kill-chains; therefore,
data is presented as a Causal Bayesian Network (CBN). Finding
the right methodology to explain the experiment’s outcome is
also part of the development of the CPS-VA and will start as
soon as first datasets are ready.

From the ICT security point of view, the task of the CPS-
VA is somehow similar to what threat detection tools are
designed for, but so far they only focus on ICT related
data. The behaviour of the ARL agents can be treated as
Advanced Persistent Threats (APT). APTs can be described
as sophisticated attack processes that are often strategically-
motivated and profit-focused [41]. Standard industry solutions
to detect APTs are so called Security Information and Event
Management (SIEM) systems. Such a system collects data from
a wide variety of security applications to detect suspicious
traffic and behaviour in ICT systems. To make use of this
information, SIEM systems use correlation rules [42] and rise
alarm in case of a anomaly detection. The CPS-VA provides
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?

Figure 2. Experiment process of the presented research approach

!CPSAO
cps : ! CPS # the system

eng ine : # e.g. mosaik
api : # how to instantiate
s e n s o r s : # list of UIDs
a c t u a t o r s : # list of UIDs

doe:
runs :
f a c t o r s : # DoE inputs
q u a l i t i e s : # DoE outputs
s t r a t e g y : # how to sample
# e.g. Latin Hypercube

ag en t s : # two or more
− ! Agent
# if more than one option
# is present in the agent’s
# definition, they will be
# considered for DoE

name: # convenience
s e n s o r s : # list of UIDs
a c t u a t o r s : # list of UIDs
s t r a t e g i e s : # how to win
rewards : #

− ! Agent # same as above

Figure 3. A minimal example for a CPS-AO file. Additional
parameters have been removed for the sake of brevity.

the opportunity to evaluate the idea of SIEM systems towards
new applications.

First, a reasonable model from all domains is used in
simulation to manually create simple correlation rules. This first
step evaluates which information from the domains is necessary
and how to create suitable correlation rules to generate basic

knowledge for the next steps. Second, a much higher amount
of relevant information for the SIEM is expected. In correlating
different experiment runs from a variety of different scenarios—
using, e.g., big data analytics [43]—, singular kill-chains can
be derived and, thus, the respective rules be created. We expect
that, starting with easy-to-observe critical states in the CPSs,
an isolation path beginning on the affected components in the
CPS can connect the critical states to market actors.

VI. CONCLUSION

Many CPS experience a broad addition of inputs, from self-
driving capabilities over user inputs and IoT technologies to
a broad market adoption in the case of power systems. The
emergence of complex CPSs cannot be covered by traditional
modelling and analysis techniques that can address only specific
aspects of the overall system. In this paper, we proposed the
concept for an application of distributed artificial intelligence
as a self-adaptive analysis tool that is able to analyze the
interdependencies between domains in CPS, covering the whole
system. It eschews pre-configured domain knowledge, instead
exploring the CPS domains for emergent risk situations and
exploitable loopholes in codices, with a special focus on rational
market actors that exploit the system while still following the
rules of market.

In the future, we will demonstrate the feasibility of a cross-
domain distributed analysis, documenting the experimentation
system, the coordinating MAS-based exploration tool, as well
as the analysis tool. With the latter, we aim to extract a reduced
chain of actions leading to a cross-system exploitation, thereby
isolating attack vectors and loopholes in codices. Furthermore,
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we expect the use of polymorphic agents to lead to new insights
in the field of RL. The ARL agent interaction with the ICT,
which forms a central piece of the concept, will give new
valuable insights of the ICT’s critical role in modern CPSs.
This will enhance research towards new security tools for
modern critical infrastructures.

Currently, the implementation of this framework is not yet
made available to the public; however, we expect this to happen
in the coming weeks. We will then publish detailed comparisons
to other approaches and make the respective data available for
reproducing our results.
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