CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

PCache: Permutation-based Cache to Counter
Eviction-based Cache-based Side-Channel Attacks

Muhammad Asim Mukhtar

Department of Electrical Engineering
Information Technology University
Lahore, Pakistan
Email: asim.mukhtar @itu.edu.pk

Abstract—Eviction-based cache-based Side-Channel Attacks
(SCAs) are continuously increasing confidentiality issues in com-
puting systems. To mitigate these attacks, randomization-based
countermeasures have raised interest because these have the
potential to achieve strong security and high performance while
retaining the cache features such as high-associativity and operate
without the involvement of system software. However, existing
countermeasures are proved to be less secure because of the
small eviction set size or weak indexing functions used in them.
To cope with this issue, we propose a novel randomization-based
architecture, called PCache, which introduces hidden members in
the eviction sets to enlarge their size, which makes it difficult for
an attacker to launch eviction-based cache-based SCAs. PCache
replaces cache lines in multiple steps by passing through different
permutation functions, which consider bits of tag and index part
of the memory address in the replacement process and result
in strong indexing function. Experimental evaluations show that
PCache provides high security. For a 10MB cache, an attacker
needs 2 years to find the eviction set and can launch eviction-based
cache-based SCAs with only 28% confidence level. Moreover,
PCache performance overhead is only 1.6% at maximum as
compared to classical set-associative caches.

Keywords—Cache-based side-channel attacks; Randomization;
Prime+Probe attack.

I. INTRODUCTION

Caches are the main component of a computer that con-
tributes significantly to performance and purposefully each
aspect of them is designed to achieve maximum performance.
However, performance-based designs raise confidentiality is-
sues. These designs enable cache-based Side-Channel Attacks
(SCAs) such that a process can extract the memory access-
patterns that indirectly reflect the secrets of co-running pro-
cesses [1]-[4].

Various cache-based SCAs have been proposed. The promi-
nent one is eviction-based cache-based side-channel attack,
where an attacker intentionally fills cache lines with the
memory blocks, called eviction set, so that eviction triggers
on victim accesses. Recent research works have shown that
these attacks can recover keys of cryptographic algorithms
[1]-[4], detect user keystrokes [5], and combining with other
side-channel can read unauthorized address space of system
software or applications [6] [7]. Moreover, these attacks can
exploit widely used architectures especially Intel and ARM,
and can also extract the secret information of application
executing in hardware-assisted trusted execution environments
like Intel-SGX and ARM-TrustZone [8].

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

Muhammad Khurram Bhatti

Department of Computer Engineering
Information Technology University
Lahore, Pakistan
Email: khurram.bhatti @itu.edu.pk

Guy Gogniat

Lab-STICC Laboratory, CNRS
Université Bretagne Sud
Lorient, France
Email: guy.gogniat@univ-ubs.fr

Numerous countermeasures have been proposed these re-
cent years, which can broadly be categorized into partition-
ing and randomization approaches. Partitioning-based tech-
niques [9]-[11], which statically divide the cache into mul-
tiple non-interference domains, provide strong security but
degrade performance, which is the main purpose of caches.
Randomization-based techniques [12]-[14], which make evic-
tion set confidential by random memory-to-cache mapping,
provide better performance but lead to weak security. Recent
research works showed that the eviction set can be revealed
using the Prime-Prune-Probe attack in a practically feasible
time [15] [16]. However, we observe that the randomization-
based techniques can provide security by making eviction
set large and introducing new type of member called hidden
members, which are relocated as a result of accommodating
memory block in cache, making eviction process confusing for
the attacker. This greatly increases the effort of the attacker
such that the eviction-based cache SCAs become impractical.

The goal of this work is to reduce the limitation of
randomization-based techniques to improve security. We pro-
pose PCache an architecture that evicts a cache line via a series
of relocation using already stored content. This introduces
hidden members in an eviction set, which cannot be learned
using the Prime-Prune-Probe attack. Moreover, relocated mem-
bers explore all their possible cache locations where they can
reside in cache. These all cache locations become members
of eviction set, which exponentially increases the number
of members in eviction set. We show that PCache provides
strong security and high performance without reducing the
associativity and involvement of system software. Our main
contributions are:

e We propose PCache, which achieves strong security
against eviction-based cache-based SCAs by a novel
approach of making eviction set size large and intro-
ducing hidden members in the replacement process.

e We evaluate the security of PCache by estimating the
effort required by an attacker to learn the eviction set.

e We find new approaches that can be used to launch
eviction-based cache-based SCAs on PCache. These
are Exclude-Prime-Probe, which is an approach to
find the hidden members of the eviction set, and
Eviction Distribution Estimation, which is an approach
to launch eviction-based cache-based SCAs without
the need of learning hidden members of eviction set.

e We build PCache in Champsim simulator, which is a

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

trace-driven simulator, and compare the performance
of PCache with the set-associative cache using SPEC
CPU2017 benchmark.

Section II presents the background and related work.
Section III presents the PCache architecture and operation.
Section IV discusses the security perspective of PCache and
new approaches to attack PCache. Sections V and VI present
the experimental evaluation of security and performance, re-
spectively. Section VII concludes the work.

II. BACKGROUND AND RELATED WORK
A. Conventional Cache

Caches are a type of memory that is faster and smaller
than the main memory. Caches buffer the memory blocks for
the near future so that if the processor demands those blocks,
they will be bring from cache rather than the main memory,
resulting in reduced memory access latency. A basic storage
cell of cache is called the cache line, and a group of cache
lines is called a cache set. The cache line typically stores
contiguous 64 bytes of main memory, which we call a memory
block. Each memory block maps to one cache set but can be
placed in any cache line in the cache set. The memory blocks
that map to the same cache set are the conflicting blocks and
cause replacement in case of cache set in full. The memory
address is divided into three parts: offset, index and tag. The
offset indicates the byte in the cache line. The index indicates
the cache set where memory block can be stored. The tag
differentiates the identity of one memory block from others in
a cache set.

B. Eviction-Based Cache-Based SCAs

Numerous eviction-based cache-based SCAs have been
proposed [1]-[4]. Using these attacks, an attacker finds the
cache locations (lines or sets) that are shared with a victim’s
program, which usually has control flow dependency with
secret information. Then, the attacker initializes these cache
locations of its interested state (by evicting or flushing them).
These cache locations will be changed if the victim accesses
them. For example, in Prime+Probe attack [1], the attacker fills
cache-sets by its memory lines and observes evictions of these
cache-sets after the victim’s execution. Evict+Reload [2] is
same as Prime+Probe attack except it could be launched in case
of attacker and victim share memory lines. Flush+Reload [3]
is similar to Evict+Reload except the attacker initializes cache
state by flushing cache-sets instead of evicting cache-sets. The
Flush+Flush [4] attack is a variant of Flush+Reload attack that
attacker perceives the state of cache-sets by measuring time
required to flush these cache lines instead time required to
access these cache lines.

C. Secure Cache Architectures

A range of countermeasures against cache-based SCAs
have been proposed by modifying the cache architecture [9]
[12]-[14] [17]. All of these countermeasures either parti-
tion the cache capacity or randomize the memory-to-cache
mapping. The disadvantages of partitioning-based counter-
measures are that these require invasive changes in soft-
ware and degrade performance because of under-utilization
of cache. Randomization-based countermeasure appears to
be more promising. The state-of-the-art on randomization-
based countermeasures are RPCache [12], NewCache [17],

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

CEASER [14] and ScatterCache [13]. RPCache and NewCache
randomize the mapping of memory lines to cache sets using
permutation tables. The drawback of these countermeasures is
that they require storage-intensive permutation tables, which
limits the cache scalability. CESAR has proposed the concept
of encrypting the memory-to-cache mapping using DES. The
main drawback of CEASER is that it uses a set-associative
cache that limits the encrypted space, which can be learned
by an adversary in a few seconds [16]. Moreover, CEASER
proposed key remapping to overcome the learning issue but
this approach incurs performance degradation. ScatterCache
uses hashing over skew-associative caches to randomize the
memory-to-cache mapping. ScatterCache has extended the
time to learn the mapping by an adversary. However, Scat-
terCache is proved to be less resilient to eviction-based cache-
based SCAs [15].

D. Prime-Prune-Probe Attack

In this section, we present the Prime-Prune-Probe at-
tack [15], which is used to learn the eviction set of recent
randomization-based countermeasures, i.e. CEASER and Scat-
terCache. We explain this attack as we use it to show the
security of our countermeasure. In Prime-Prune-Probe attack,
the attacker chooses group, say it g, of addresses at random
and fills the cache with g addresses. Then, attacker prunes
the self-collision by again accessing the group addresses and
removing the address from group g on observing longer access
latency, which means it is evicted as a result of a collision
with other members of groups. After pruning, g group contains
fewer addresses, say it ¢’. The attacker then calls the victim
program to execute, which may evict cache lines filled with
g’ addresses. Then, the attacker observes eviction, and if it
finds eviction of ¢’ address from cache line as a result of
victim accesses, it considers evicted address as a member of
the eviction set. The attacker repeats the Prime-Prune-Probe
attack until it learns all members of the eviction set.

III. PCACHE: PERMUTATION BASED CACHE

PCache achieves security against eviction-based cache-
based SCAs by making large eviction set to deprive attackers
of initializing cache lines with the required confidence, and it
introduces cache lines in replacement process that relocate in
the cache to achieve indirect eviction of another cache line,
increasing the effort of the attacker to find relocating cache
lines.

The objective of PCache is to mitigate eviction-based
cache-based SCAs that share cache lines such as Prime+Probe
and Evict+Reload attacks. We consider that an attacker has
access to user-level privilege instructions except cache man-
agement related instructions such as ¢l flush and prefetchtzx.
Because of no access to ¢l flush instruction, Flush+Flush and
Flush+Reload attacks cannot be launched. Moreover, physical
attacks are not considered in the threat model of PCache. In
addition to achieving security, we also focus to retain the
fundamental design features of cache such as transparent to
the user and less reliance on system software.

Structurally, each way in PCache is indexed by different
permutation functions. Permutation functions compute the val-
ues using incoming address to find cache locations in each way.
PCache operates differently on hit and miss operation. On hit,
incoming address goes through all permutation functions and

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

completes in single lookup to all ways. However, on miss,
ways of PCache are seen as multiple groups and incoming
address goes through permutation functions of first group only,
as shown in Figure 1.

On event of cache miss, the replacement process completes
in multiple steps and requires multiple lookups to ways. To
understand the miss operation, we use an example, given in
Figure 1, which shows PCache having 6 lines and 6 ways.
Alphabets A-Z indicate the address stored in cache line and
PF indicates the permutation function of each way. G1 and
G2 indicate the groups of cache-ways, each group contains
3 cache-ways. V' is the incoming address that triggers the
process of replacement, which completes in multiple steps.
First, incoming address V' goes through permutation functions
of G1 and replaces one cache-line at random from G1. let us
assume the replaced cache line is C. Instead of evicting C,
the replaced cache line C' is moved to next group G2. let us
assume the second replacement is P. Lastly, the replaced cache
line in G2, which is P, will be evicted. In this example, there
are only two groups, therefore, only one relocation happened,
that is, from G1 to G2. In the case of more than two groups,
the process of relocation continues until last group and evicts
cache line from it.

0
m
o
H
o
H

AR
o]
s AR
AOEORD
s FER)

Line 4
Line 5 |:|
Line 6 |:| |:| |:| A
W0 Wi W2 W4 Evicted

9}
N

Gl

Figure 1. PCache having 6 ways, 6 lines and 2 groups. PF: Permutation
function, Wx: Ways

While explaining the PCache operation, we have discussed
only one path (V — C and C' — P) of relocations but
other paths are also possible, as in each group one cache
line is selected at random. Figure 2 shows all possible paths
represented in tree diagram. The numbers 0-5 indicate the
permutation functions used to index the ways. Alphabets A-
P indicate the address stored in cache-lines selected by each
permutation function. In the replacement process, there are two
types of members. First, members that get evicted by incoming
address, which are shown at the last level in Figure 2, we
call them evicting members. Second, members that relocated
to other cache lines as a result of accommodating incoming
address, we call them hidden members. Note that, all cache
lines belonging to path need to be filled to cause eviction of a
specific line in PCache. In the perspective of security, hidden
members are unknown to the attacker, and finding these require
great effort. We discuss in detail the security perspective in
Section IV. Note that, we refer PCache ways and groups
configuration as ways/groups, for example, PCache given in
Figure 1 refers as 6/2 Pcache.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

O Cache line

Permutation
Function

Hidden
Members

Evicting | ¥ ¥ Y 'Y ¥ v v ¥ 'w'
Members

Figure 2. Cache-lines involved in replacement process represented in tree
diagram.

A. Permutation Function

Selection of indexing function is critical in terms of both
security and performance. In terms of security, it should not be
predictable and in terms of performance, it comes in the critical
path of memory access, therefore, it should be a low latency
circuit. As PCache evicts the cache lines before relocating
them multiple times, the attacker is limited to learn index
function using cache collisions because of no direct relation of
eviction between incoming and evicted cache lines. We have
used a simple permutation function as an indexing function.
This is better in terms of performance as it requires few gates
to implement and incurs low latency. We have designed per-
mutation functions to achieve the following objectives. First,
memory addresses select different cache lines in each group,
so that the member in one group does not conflict in other
groups. Second, we consider tag and index bits of memory
address to take part in the whole replacement process. As the
system software remaps the physical mapping of application
frequently, this changes the member of eviction set frequently
and makes it impractical for an attacker to execute eviction-
based cache-based SCAs.

IV. SECURITY PERSPECTIVE

Eviction-based cache-based SCAs have three phases. First,
attacker finds members of eviction sets. Second, attacker fills
cache with members of eviction sets, Third, attacker observes
state of eviction sets in cache. PCache makes each step of
attacker difficult. Because of hidden members in evicting sets,
attacker’s effort of learning eviction sets is greatly increased.
Because of large eviction sets, filling and observing eviction
sets becomes difficult while attack.

A. Finding Members of Eviction sets

Prime-Prune-Probe attack, which is an approach to learn
members of eviction sets in random memory-to-cache map-
ping, can find the evicting members of eviction sets only.
In case of PCache, this approach fails to learn the hidden
members in eviction sets. This is because most of the hidden
members does not evict as a result of victim access but relocate
to another way. Moreover, there are members that only become
a member of eviction set against interested victim address if
they are placed in a specific way. In other cache-ways, these
memory addresses may become a member of other eviction
set.

To launch eviction-based cache-based SCAs, we find that
attacker may adopt two approaches. First, the attacker tries

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

to learn hidden members indirectly by breaking the path
in replacement candidate tree, we call exclude-prime-probe.
Second, the attacker does not find hidden members but tries
to estimate the eviction distribution against all possible victim
accesses, we call eviction distribution estimation. We discuss
both approaches in the following sections.

1) Exclude-Prime-Probe Method: Eviction of cache lines
as a result of victim access indicates the presence of all hidden
members in the Pcache, which can be seen as a branch of the
tree. To launch eviction-based cache-based SCAs, the attacker
needs to know each member of the branch to cause eviction
on victim access. let us assume that the attacker has found
the evicting members using a ¢’, as discussed in Section
II-D. Then, to find hidden members, the attacker again places
memory addresses belonging to ¢’ in the PCache excluding
the randomly selected addresses from them, which attacker
expects that these may be the parents (or hidden members) of
evicting members. The number for excluded addresses depends
on the number of relocations, which defines how much parents
are of evicting members. After placing members again, the
attacker calls victim and observes the eviction of the evicting
members. Lastly, if any evicting member remains un-evicted
or its probability of eviction is small relative to all turns, the
attacker considers the excluded address of ¢’ as a parent of
it. We used this approach to find the hidden members of the
eviction set and estimate the attacker’s effort required to show
the security of PCache.

2) Eviction Distribution Estimation: Another approach that
the attacker can adopt is to estimate the evictions of each
location in the PCache against each victim’s access. For this,
the attacker randomly fills whole PCache and then allows the
interested victim program to access PCache, which causes
eviction of attacker’s filled cache lines. The attacker observes
these evictions and relates the cache lines having high eviction
probability with the interested victim access. The attacker has
to access as many times to ensure that all possible evicting
cache lines should be selected multiple times for eviction. The
number of access required by the attacker indicates the effort
required to learn eviction distribution. The number of memory
accesses can be modeled as coupon collector’s problem, which
gives the expected number of accesses (n4ccess) nNeeded such
that B portion of the evicting members of a replacement
tree is evicted. This can be obtained using E[ngccess] =
—Nem - In(1 — B), where as ne,, is the number of evicting
members in tree. For 32/4 PCache, which has 2!? evicting
members per tree, would require ~ 18.86k victim calls to
evict 8 = 99% of the eviction members of tree. This gives
the eviction estimation cache lines against one victim address.
However, for a successful attack, the attacker needs to know
against all vulnerable victim address space. For example, in
the case of AES, the attacker has to learn against all cache
lines belonging to AES tables, which are 128. Therefore,
the attacker needs 2.4 million victim calls to estimate the
eviction distribution. Moreover, in case of multiple accesses to
PCache, in Section V-B, we show that estimation of eviction
distribution become indistinguishable because of all cache
lines are selected for eviction and different victim memory
accesses evict the same cache lines.

B. Filling and Observing Complexity

Assuming that the attacker has learned the eviction sets, to
launch the attack, it needs to place learned memory addresses

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

in the cache at the right cache-way to get evicted on victim
access. As there is a random replacement policy, so the number
of accesses required to place a memory address in the right
way cannot be done in one access but multiple accesses.
The number of accesses required by the attacker to place in
an interesting cache way can be viewed as the bin-and-ball
problem and can be given using the following equation.
log(1 — confidence)

Naccess = (1)
log(1 —p)

Where ngecess 1S the number of accesses required by the
attacker to fill interested cache way, con fidence indicates the
probability by which event of filling can be fulfilled, and p
indicates the probability with which a memory address can
successfully be placed at the right location in PCache. p defines
the worst case and best case for the attacker, it can vary form
1/w (worst case) to 1 (best case), where w is the number
of ways. Worst case is case when attacker selects a memory
address that is a part of eviction set only if it is placed at one
specific cache way. Inversely, the best case is the case when
attacker selects a memory address that is a part of eviction
set irrelevant to cache ways. As attacker has no information
about that the memory address belongs to best or worst case,
practically attacker has to assume worst case for every address
to launch attack successfully with 99% confidence.

Depending on ngcess, the attacker has to fill all lines of
PCache that are involved in the replacement process, which is
shown in replacement candidate tree in Figure 2. We will use
the word tree to refer to the PCache in following discussion
for simplicity. To fill first level of tree, attacker has to access
Ngccess - W. This number of accesses will guarantee the filling
of first level of tree but which memory accesses are placed at
the right cache ways is unknown to the attacker. Therefore, on
next level attacker has to fill child of each memory address
accessed for filling of first level of tree. This exponentially
raises the number of memory accesses required on each level.
Total number of accesses for filling of cache belongs to one
replacement candidate tree can be given by

1
Tnaccess) = Z nfzccess ‘' (2
1=0

T'[naccess] 1s the total number of accesses required by the
attacker to attack, whose value varies depending on ngccess-
The attacker has to consider the worst-case to derive Ngecess
for a successful launch of eviction-based cache-based SCAs
but T'[naceess] becomes greater than cache capacity and limits
the attacker from filling the PCache with 99% confidence.
Figure 3 shows the maximum confidence level with which
the filling of PCache can be fulfilled in 32/4 PCache. This
shows that the attacker can fill PCache with maximum of 17%,
26% and 28% confidence level for IMB, SMB and 10MB,
respectively. Attacker can use Ngecess at maximum of 1 for
1MB and 2 for S8MB and 10MB PCache.

V. SECURITY EVALUATION

Security of PCache is based on the fact that members of
eviction sets greatly increase the effort of attacker. In this
section, we evaluated effort required by the attacker to find
evicting members using Prime-Prune-Probe method and hidden
members using Exclude-Prime-Probe method, discussed in
Sections II-D and IV-Al, and using Eviction Distribution
Estimation, discussed in Section IV-A2.

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

3.5e+05

— TlNacces:]
3.0e+05 Cofidence Level

1wome / f
2.5e405 T o280
2.0e+05

1.5e+405

T [Naceess]

1.0e+05

5.0e+04

0.08+00 T 0.1
1 1.5 2 25 3
Naccess

Figure 3. Confidence level required for filling of 32/4 PCache

A. Evaluation Using Prime-Prune-Probe and Exclude-Prime-
Probe Method

We have made a model of PCache using Python. In
experiment, we have taken the following assumptions. First, we
have assumed noise-free model that the attacker and victim are
running only. Second, we have filled the cache with attacker
addresses using random function. Third, we have randomly
selected the permutation function of each level. Lastly, we have
evaluated the attacker effort on 1MB, 8MB and 10MB cache
with 4 and 8 groups of ways.

We have measured the turns required to reveal 1000 hidden
members. Then, we have multiplied the number of total
addresses required by attacker with the average turns measured
using experiment. For time calculation, same setting is used
as in research work [15], which compromised security of
ScatterCache, that is, flush time 0.5ms, victim execution time
3ms, cache hit time 9.5ns and cache miss time 50ns.

TABLE I. TIME REQUIRED TO LEARN EVICTION SET IN 32/4 PCACHE.

Capacity Nye T Nyh Ty
(MB) k) (hours) (k) (hours)
1 301 0.39 113.03 613.6
8 411 1.04 919.52 12605.8
10 491 1.17 1150.68 18497.1

Results of experiment is shown in Table I. In this table
Nye and n,,, indicate the number of victim call against
one evicting and hidden member respectively, and T and
Ty indicate the time required to find evicting and hidden
members,respectively, in eviction set for ngecess = 2. Results
show that time required by the attacker to find hidden members
of one replacement candidate tree becomes difficult as cache
capacity is increased or the number of ways are increased
in a group. The attacker would need ~ 25 months (or 2
years) to learn eviction set against one memory address in
10MB cache with 32 ways and 4 groups. Even after learning
the whole eviction set attacker can launch attack with only
28% confidence. As permutation is tag dependent, the attacker
has to again find the hidden members once the physical
mapping is changed by operating system. Moreover, we have
assumed fixed permutation mapping, security can be improved
by making them configurable permutation functions so that
these functions should be changed once before time given in
Table I for specific cache configurations.

B. Evaluation Using Eviction Distribution Estimation

To estimate eviction distribution, we have executed exper-
iment as discussed in Section IV-A2 and extracted number of

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

evictions per each cache line in 8MB cache with 4 groups
per way by accessing memory accesses 18.86k times. Result
in Figure 4 shows the number of evictions per each cache
line against single memory access. This result shows that
the number of evictions per cache lines against one memory
addresses may be distinguishable.

4,000

B
=)

3,500

g
N

3,000

2,500

Ily\ll\

2,000

{0 T U T
=]
=

1,500

Cache Lines

|I IH\‘I‘

1,000

SUO019IAT JO Jaquin

500

Lo b by b b b b el
!

T T T -0
2 4 6 8101214161820 22 24 26 28 30
Cache Ways

o

Sy
qil

Figure 4. Number of Evictions per cache lines as a result of 18.86k accesses
using one victim memory address.

As evictions occur from the last group of PCache, so
probability of evicting same cache lines by different memory
addresses is high. This increases the difficulty for an attacker
if multiple memories are accessed by victim, which is practical
assumption that there are always multiple memory accesses by
program. We have extracted the eviction per cache lines using
100 memory addresses, which is shown in Figure 6. This result
shows that each cache line is selected at-least-once for eviction
and makes it impractical for an attacker to distinguish memory
addresses from Eviction Distribution Estimation.

VI. PERFORMANCE EVALUATION

We have performed microarchitectural simulation using
trace-based simulator ChampSim. Table II shows the configu-
ration used in our study. The L3 cache is SMB shared between
2 cores. For PCache, we have taken Permutation function
latency of 1 cycle.

We have used 20 SPEC CPU2017 benchmarks as work-
loads for performance evaluation. For each benchmark, we
have used a representative slice of 1 billion instructions and
built 19 groups of workload where each group contains 2
benchmarks. We have performed simulation until all workloads
in group finish executing 1 billion instructions. For measur-
ing aggregate performance, we have measured the weighted
speedup metric of proposed cache and normalized it to the
baseline.

TABLE II. BASELINE CONFIGURATION

Component Specification

Core 2 cores

L1 cache Private, 32kB, 8-way set-associative, split D/I
L2 cache Private, 256kB, 8-way set-associative

L3 cache Shared, 8MB, 32-way set-associative

or 32/4 PCache

Figure 5 shows the performance of 32/4 PCache with
random replacement policy. As performance is normalized to
the baseline, so bar higher than 100% is better. PCache with
LRU is competitive to set-associative cache with LRU policy
(or baseline) on most of the workloads. Moreover, results
in Figure 5 show that PCache also outperforms the baseline

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems

=}
&

%)

]
100

0
=

o
&

Norm. Performanc
© o
] (-]

o
=}

& &

Sl

F o 6
A

&
o

S & &

N
S PR RS
& & ‘a.(“ Qio W& & bee‘ <& \,r? & R.OS" ;‘}'+ 5
L4 F PR & S G
& T & $ ¥
& 06\ <

Figure 5. Normalized Performance of 8MB 32/4 PCache over SPEC CPU2017 workloads.

4,000 S5==
] == 7,000
3,500 5 E ==
E = 6,000 E
3,000 3 =
" E = 3
@ 2500 3 E:g = 5,000 g
£~ 7 = =
- E =— 4,000 ©
© 2,000 3 = =3
< 3 £ = m
2 E = 3,000 £,
1,500 3 E
3] E = 2
] &
1,000 E 2000 9
1 |- == w
500 -§= = 1,000
1 B —-=

o

0246 81012141618202224 26 28 30
Cache Ways

Figure 6. Number of Evictions per cache lines as a result of 18.86k accesses
using 100 sequenced victim memory addresses.

of about 3% on lbm — gcc because of conflict misses are
reduced. However, PCache with random replacement policy
shows degradation as compared to baseline on some workloads
but a maximum of 1.6%, and performance loss is between
1.4% to 1.6%. Overall, the performance loss is only 0.002%
on average as compared to the set-associative cache over SPEC
CPU2017.

VII.

We have presented PCache, a cache design that provides
security against eviction-based cache-based SCAs by making
large eviction sets and introducing hidden members in the
replacement process. PCache divides the cache into multiple
groups and relocates a cache-line to multiple groups before
eviction. In each group, relocated line passes through different
permutation functions, resulting in difficulty for an attacker to
find these relocated lines (or hidden members) in practically
feasible time. Our evaluation shows that, for 10MB cache,
the attacker needs 2 years to learn eviction set against one
memory address. Moreover, a large eviction set and random
replacement policy limit the attacker to launch eviction-based
cache-based SCAs with only 28% confidence. Along with
strong security, PCache has low-performance overhead of
about 1.6% at maximum as compared to set-associative cache
with LRU policy. While we have analyzed PCache as last-
level-cache, this idea can also be extended on other shared
structures like Translation Lookaside Buffers, which are also
vulnerable to SCAs.

CONCLUSION AND FUTURE WORK

REFERENCES

[1] F Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE Symposium
on Security and Privacy, May 2015, pp. 605-622.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-818-1

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Ar-
mageddon: Cache attacks on mobile devices,” in 25th USENIX Security
Symposium, 2016, pp. 549-564.

Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 719-732.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
fast and stealthy cache attack,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2016, pp. 279-299.

D. Wang et al., “Unveiling your keystrokes: A cache-based side-channel
attack on graphics libraries.” in NDSS, 2019.

P. Kocher et al., “Spectre Attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019, pp.
1-19.

M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018,
pp. 973-990.

M. A. Mukhtar, M. K. Bhatti, and G. Gogniat, “Architectures for
Security: A comparative analysis of hardware security features in Intel
SGX and ARM TrustZone,” in 2019 2nd International Conference on
Communication, Computing and Digital systems (C-CODE), 2019, pp.
299-304.

T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
level protection against cache-based side channel attacks in the cloud,”
in Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12), 2012, pp. 189-204.

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative ex-
ecution processors,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2018, pp. 974-987.

F. Liu et al., “CATalyst: Defeating last-level cache side channel attacks
in cloud computing,” in 2016 HPCA, March 2016, pp. 406—418.

J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Deconstructing new
cache designs for thwarting software cache-based side channel attacks,”
in Proceedings of the 2Nd ACM Workshop on Computer Security
Architectures, ser. CSAW °08. ACM, 2008, pp. 25-34.

M. Werner et al., “ScatterCache: Thwarting cache attacks via cache
set randomization,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 675-692.

M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 51st IEEE MICRO, 2018, pp.
775-787.

A. Purnal and 1. Verbauwhede, “Advanced profiling for probabilistic
Prime+Probe attacks and covert channels in ScatterCache,” ArXiv, vol.
abs/1908.03383, 2019.

R. Bodduna et al., “Brutus: Refuting the security claims of the cache
timing randomization countermeasure proposed in CEASER,” IEEE
Computer Architecture Letters, vol. 19, no. 1, 2020, pp. 9-12.

F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache

architecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36,
no. 5, Sep. 2016, pp. 8-16.

