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Abstract—The notion of enhancing resiliency for electrical 
grids has become a priority for engineers and researchers 
within the past few years. Unforeseen natural disasters (e.g., 
lightning strikes, geomagnetic storms, floods, etc.) can cause 
devastating damage to electrical grid infrastructures. While 
disasters may strike with no warning, prototypical weather 
events can indeed be forecast. However, anticipating and 
quantifying the impact of weather events is a challenging task 
due to its stochasticity. In this paper, a weather monitoring 
system paradigm, as part of a lateral sensor system, is 
proposed. Lateral sensors for the electrical grid, such as by 
way of a hyper-locale set of weather sensors equipped with 
edge analytics and artificial intelligence, provide incredible 
insight, via various parameters, such as air temperature, 
barometric pressure, humidity, precipitation, solar radiation, 
and wind. These lateral sensor parameters can provide 
indicators regarding impending storms, which could impact 
power lines (e.g., via lightning strikes, downed trees, etc.) and 
cause communications interference. Spider radar plots 
concurrently reflecting both weather sensor data and grid 
sensor data have proven useful, as weather data can serve to 
provide contextual reference for the associated grid sensor 
telemetry data. Moreover, this involved lateral sensor utilizes 
a deep learning module, which is based upon a Generative 
Adversarial [Neural] Network (GAN). The results of this study 
demonstrate that the implementation of lateral sensors based 
upon a deep learning module can result in enhanced contextual 
awareness.  
 
Keywords—electrical grid; lateral sensor; weather monitoring 
system; hyper-locale sensors; 3D-printed technology; artificial 
intelligence; generative adversarial neural network.  

I. INTRODUCTION 
Resilience enhancements of electrical grids have become 

a priority for regulatory agencies around the world. Among 
other causes, extreme weather events, such as storms and 
lightning strikes, are considered to be some of the main 
causes of electrical disturbances worldwide [1]. In 
Indonesia, for example, the state utility company, 
Perusahaan Listrik Negara (PLN), has suffered major 
financial losses due to storms and downed trees [2]. These 
events are known as High-Impact Low-Probability (HILP) 
events, as the frequencies of occurrence are relatively low, 
but the impact is extremely high [3]. 

Over the past couple of years, critical infrastructure 
resilience initiatives have tended to focus upon power grid 
resilience efforts. Resilience, for these cases, is described as 
the ability of a power system to anticipate, adapt, and 
recover from disruption events. Resilience efforts are aimed 
at either preventing or mitigating the damage from outages 
and/or reducing outage durations.   

The notion of electrical grid resilience has risen to 
become a critical issue for Indonesia. Millions of 
households (especially in remote area) suffer from unstable 
connections, unpredictable power surges, and frequent 
blackouts. To exacerbate these described problems, utilities 
have introduced heightened instability into the involved 
electrical systems by accelerating the usage of intermittent 
energy sources; while renewable energy does indeed create 
new opportunities as pertains to meeting demand, it is also 
accompanied by various technical challenges, as pertains to 
maintaining electrical grid stability. The adoption of 
renewable energy segues to a paradigm wherein the 
electrical grid network tends to become more decentralized. 
This complicates the “sense and respond” paradigm, as the 
“sensing” must now be more carefully synchronized, 
communicated, analyzed, and correlated. 

A robust “sense and respond” paradigm is central for a 
reliable and stable electrical grid. First, with regards to 
“sensing” or monitoring, a variety of high-resolution 
telemetry sensor technologies play an important role in 
detecting, collecting, and providing that data for correlation. 
To complement these high resolution telemetry sensors, 
lateral sensors, which can ingest, process, and relay accurate 
information, such as key meteorological data, is of great 
import to electrical grid analysis.  

The notion of a quality assurance/quality control function 
for lateral sensors to further contextualize and verify the 
telemetry data of high-resolution sensors at substations is 
proposed in this paper. Lateral sensors for the electrical grid, 
such as hyper-locale weather sensors, can provide 
incredible insight via parameters, such as air temperature, 
barometric pressure, humidity precipitation, solar radiation, 
and wind. These lateral sensor parameters can provide 
indicators and warnings as to impending storms, which 
could cause communications interference and impact power 
lines. Deployed lateral sensors, which include a weather 
monitoring system, have utilized a modified Generative 
Adversarial [Neural] Network (GAN) Deep Learning (DL) 
module. Spider radar plots reflecting both weather sensor 
data and grid sensor data concurrently have proven useful, 
as weather data can serve to provide contextual reference 
for the grid sensor telemetry data.  

This Section I provides an overview of the paper. The 
remainder of this paper is organized as follows. Section II 
reviews state of art methods and techniques pertaining to the 
subject matter. Section III discusses the benefits of lateral 
sensor monitoring (e.g., weather monitoring) for the 
electrical grid. Section IV delineates the facilitating 
elements of a lateral sensor system. Section V presents a 
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case study implementation and discusses the results from 
utilizing lateral sensors to complement the grid sensors at 
the terminal substation of an electrical grid. Finally, the 
conclusions are summarized in Section VI. 

II. STATE OF ART METHODS AND TECHNIQUES 
This section provides a review of different methods and 

techniques utilized for weather monitoring systems. 
Currently, Artificial Neural Network (ANN), Machine 
Learning (ML), and Internet of Things (IOT) are some state-
of-the-art concepts as pertains to weather monitoring 
systems. Along this vein, Lone and Chavan proposed a 
design and implementation of a Wireless Smart Intelligent 
Network System (WSINS) utilizing Artificial Intelligence 
(AI) for monitoring various weather parameters [4]. They 
designed and implemented wind speed and directional 
sensors to provide real-time data; weather parameters, such 
as temperature, humidity, wind speed, and wind direction 
were monitored and visualized, via oa dashboard, which 
could readily pinpoint faulty nodes. In a similar vein, 
Mochida et al. constructed a weather monitoring system 
based upon Natural Language in Machine Learning (NLML) 
to analyze distributed meteorological data [5]. For 
Mochida’s project, weather observation data was gathered 
with a 4K camera by Information Centric Networking (ICN) 
and utilized five weather-related parameters: temperature, 
wind speed, rainfall intensity, carbon dioxide concentration, 
and radiation dose. The experimental results demonstrated 
that the involved ML technique was able to classify 
meteorological data quite nicely, but it had difficulty in 
distinguishing whether the involved data had similar 
characteristics/features. Durrani et al. worked on a smart 
weather alert system for dwellers of distinct and disparate 
geographic areas utilizing a Non-linear Autoregressive 
Exogenous Neural Network (NARXNET) algorithm [6]. 
The solution presented was a smart weather station that not 
only monitored for weather-related data, but also predicted 
and generated instant alerts utilizing a combination of IOT 
and ML. The system deployed had a variety of monitoring 
sensors, such as temperature, humidity, rain, light intensity, 
pressure, wind speed, carbon monoxide, and air quality. 

In addition to the aforementioned, numerous state-of-
the-art techniques are presented within literature. In this 
paper, we present the notion of lateral sensors (that consist 
of 12 environmental monitoring sensors) conjoined with a 
deep learning module based upon a GAN so as to comprise 
an intelligent system. In this regard, we also leveraged 3D-
printing for the production of these state-of-the-art sensors 
and utilized an IOT platform to collect, visualize, and 
analyze real-time data generated from these sensors. For this 
paper, we provide one such example of a lateral sensor — 
an intelligent weather monitoring system, which was 
implemented to complement the high-resolution telemetry 
sensor of an electric power grid system; it turns out that the 
intelligent weather system can provide quality 
assurance/quality control indicators to validate the various 
substation panel readings and continuous streaming 
telemetry data collected by the deployed grid sensors.  

III. LATERAL SENSOR MONITORING FOR THE ELECTRIC 
POWER GRID  

Automatic weather stations are commonly utilized as 
weather monitoring systems. The technology for 
manufacturing traditional automatic weather stations is very 
mature. Weather stations consist of various sensors to 
transmit an accurate stream of data related to weather 
variables. The automatic weather station acquires 
meteorological elements, such as air pressure, temperature, 
humidity, wind direction, wind velocity, rainfall, 
evaporation capacity, sunlight, radiation, and ground 
temperature [7]. The advantages are numerous; however, 
the relatively high production cost and long production 
period, which are the conspicuous characteristics of the 
traditional automatic weather station, limits the utilization 
of the traditional automatic weather station for the electrical 
grid ecosystem, particularly in developing countries. 
Consequently, the traditional automatic weather station may 
not be as ideally suited for the purposes of modern power 
system monitoring and analysis in many areas of the Indo-
Asia Pacific [8]. 

The described limitations of the traditional automatic 
weather sensor can be overcome by a more scalable and 
extensible approach, such as offered, via 3D-printed 
weather sensors. The 3D-printed weather sensor has several 
advantages, such as inexpensive production costs, a size that 
is not too large, a relatively easy ongoing maintenance 
process, and the ability to update the sensor design so as to 
produce even better sensors as time progresses. Hence, 3D-
printed sensors represent a solution set that can overcome 
the difficulty of providing a swarm of hyper-locale (detailed, 
accurate, and locally contextualized) weather sensors for an 
area.  

For the case study put forth in this paper, the notion of 
3D-printed weather sensors was demonstrated. The notion 
of a lateral sensor can be said to be very different from the 
prototypical weather sensor, which is currently widely used 
throughout the world. One of the things that distinguish the 
lateral sensor from the prototypical weather sensor is that 
the indicators captured by the lateral sensor are more 
complex and detailed; the concomitant technical challenge 
is that of processing as much of that data as possible at the 
edge (i.e., edge analytics) so as to minimize the amount of 
data being transmitted, via various Internet of Things (IOT) 
technologies. After all, there are limits to the amount of data 
that the available communications technologies can move.  

Furthermore, the lateral sensor (whose further value-
added proposition is that it is time synchronized) can be 
connected directly with other time-synchronized telemetry 
sensors, such as the Phasor Measurement Unit (PMU), 
which utilizes a Global Positioning System (GPS)-based 
clock to obtain real-time electrical grid data and leverages a 
GAN-based  system  for analysis. Overall, the lateral sensor 
has the ability to directly analyze data and send the analysis 
results, via a communications network, to be fused with 
other data, such as electrical grid data, at a reach-back 
concentrator located at an operations center or  monitoring 
system center. 
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IV. FACILITATING ELEMENTS OF LATERAL SENSOR SYSTEM 
The lateral sensor system is specialized in that it 

leverages GPS-based timestamping and edge analytics; in 
this way it sends both extra data (the timestamp) and as well 
as reduces the data sent (due to the processing and filtering 
of data at the sensor), via the involved communications 
network. The notion of WSN, AI (e.g., deep learning 
module based upon GAN technique), and IOT as a system 
is well exemplified by the utilization of various components, 
which will be described below.  

A. ThingSpeak IoT Platform 
ThingSpeak is an open source Internet of Things (IoT) 

platform and Application Programming Interface (API), 
which enables the collection, visualization, and analysis of 
real-time data from sensors or actuators utilizing the 
HyperText Transfer Protocol (HTTP) protocol. The data 
collection utilizes the Representational State Transfer 
(REST) API or Message Queuing Telemetry Transport 
(MQTT). The involved data analysis and visualization 
component was MATrix LABoratory (MATLAB), a multi-
paradigm numerical computing environment and 
programming language developed by MathWorks.  
ThingSpeak is the open IOT platform that accompanies 
MATLAB. The main component of ThingSpeak is its 
channel, which stores data sent from various devices. The 
ThingSpeak channel consists of data fields, location fields, 
and status fields. ThingSpeak enables user to analyze and 
visualize retrieved data using MATLAB. Figure 1 below 
delineates the ThingSpeak framework. 

 

 
 

Figure 1. ThingSpeak Framework 
 
For this particular case study, ThingSpeak was dependent 
upon each sensor being equipped with a cellular Subscriber 
Identity Module (SIM) card for the required internet 
connection related to the data collection piece; ideally, the 
sensor is connected to the internet, via wifi, but if there is 
no wifi in that area, then the choice of connectivity, via the 
sim card, is recommended.  

Typically, a lateral sensor node is comprised of four basic 
components: (1) a sensing unit, (2) a processing unit, (3) a 
transceiver unit, and (4) a power unit. A lateral sensor node 
may also have application dependent additional constituent 
elements, such as location ascertainment, as in this case. 
Sensing units are further subdivided into two units: (1) 

sensors, and (2) analog to digital converters (ADCs). 
Similar to the entire system, of which the PMU is one 
constituent component, the analog signals produced by the 
sensors (based upon the observed phenomenon) are 
converted into digital signals by the ADC. For the described 
case of the lateral sensor, the processing unit at the sensor 
(i.e., edge analytics) processes the data. Data loggers, which 
are positioned in front of the processing unit, are electronic 
devices capable of recording data from sensors and 
constitute a major component of the telemetry system [9]. A 
data logger works with sensors to convert physical 
phenomena into electronic signals, and then convert these 
signals into binary data to be further analyzed by the 
processing unit [10]. 

 Lateral sensors may have slighting more complex 
building components, but 3D printed lateral sensors are 
lighter and easier to assemble. One example of 3D printed 
lateral sensors, which have just been assembled, can be seen 
in Figure 2. 

 

 
 

Figure 2. The 3D-Printed Lateral Sensor 
 
The lateral sensor is capable of more robust sensor 

capture, and the resulting data is more accurate and precise. 
The overall system consists of a variety of sensors for 
weather monitoring as pertains to complementing grid 
monitoring sensors (see Table I).  

 
TABLE I 

REPRESENTATIVE SENSORS OF A LATERAL SENSOR SYSTEM 

No. Sensor Description 

1 Ozone sensor O3 detector that measures 
ozone concentration 

2 Carbon Monoxide 
sensor 

Detects the presence of CO 
gas 

3 Hydrogen Sulfide 
sensor 

Gas sensor for the 
measurement of H2S 

4 Volatile Organic 
Compounds sensor 

Electrochemical sensor to 
monitor exhaust gases  

5 Particulate Matter 
sensor 

Monitors PM10 (particulate 
matter that has a diameter of 

less than 10 micrometers) 
and PM2.5 (particulate 
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No. Sensor Description 

matter that has a diameter of 
less than 2.5 micrometers) 

concentrations 

6 Meteorological sensor Measures climate and 
weather 

7 Nitrogen Oxide sensor NOx sensor for smog and 
acid rain detection 

8 Carbon Dioxide sensor Measures CO2 gas 

9 Sulfur Dioxide sensor Measure SO2 gas 

10 

Non-Methane 
Hydrocarbons 

Compounds Gas Series 
Sensor 

Measures NMHC GSS  

11 Noise sensor 
Sound sensor to analyze the 
surrounding ambient sounds 
within the audible frequency 

12 Air Pressure sensor Measures air pressure 

 

B. Wireless Sensor Network (WSN) 
The advantages of a Wireless Sensor Network (WS are 

that it is easy to maintain, utilizes less energy, and has high 
transmission distances [11]. The major elements of WSN 
are the sensor nodes and the base stations. Sensor nodes 
represent the sensing layer of a WSN and generate 
information (e.g., parameters) in the form of electrical 
signals. These signals are sent through the involved network 
system to base stations, which are the central processing and 
controlling units within the WSN [12]. 

Most of the sensor network routing techniques and 
sensing tasks require knowledge of location with high 
accuracy. It is common that a sensor node has a location 
ascertainment system [13]. 

C. Deep learning module 
In this paper, the weather monitoring system of the lateral 

sensor utilized a deep learning module based upon a 
modified GAN technique. Deep learning techniques are 
well suited for handling large amounts of data and 
computationally intensive processes [14]. The word “deep” 
refers to the large number of hidden layers that comprise the 
neural network. One of deep learning techniques is GAN. 
GAN involves an unsupervised learning task in deep 
learning that automatically discovers and learns the patterns 
of input data. GAN frames the problem with two sub-
models: the generator model 𝐺𝐺(𝑧𝑧)  that creates random 
synthetic outputs and the discriminator model 𝐷𝐷(𝑥𝑥)  that 
tries to determine whether information is true (generated 
from the domain) or false (generated). In other words, GAN 
learns to choose samples from a special distribution (i.e., 
“generative”) by setting up a competition (i.e., 
“adversarial”). 

Formally, GAN is a structured probabilistic model with 
latent variables 𝑧𝑧 and observed variables 𝑥𝑥. The generator 
𝐺𝐺(𝑧𝑧)  takes an input 𝑧𝑧  from probability distribution 𝑝𝑝(𝑧𝑧), 

and the generated data is then fed back into the discriminator 
network 𝐷𝐷(𝑥𝑥). The discriminator network takes input from 
either the real data or from the generator’s generated data 
and tries to predict whether the input is real or generated. It 
takes an input 𝑥𝑥  from real data distribution 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) and 
then solves a binary classification problem giving an output 
in the scalar range 0 to 1 [15]. The function of the 
discriminator is optimized so as to assign the correct labels 
to both the training data as well as the data produced by the 
generator while the generator itself is trained to minimize 
and segue to the correct assignment of the discriminator [16]. 
For training, both generator and discriminator networks 
utilize the cost function. An exemplar GAN framework is 
shown in Figure 3 below, and the formulation of GAN is 
expressed in Equation (1) below.  

 
 𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑉𝑉[𝐷𝐷,𝐺𝐺] = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log𝐷𝐷(𝑥𝑥)] + 
                               𝐸𝐸𝑥𝑥~𝑃𝑃𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))]                  (1) 
 
where 𝑥𝑥 is the training data, 𝑧𝑧 is the generated sample, pdata 
is the probability distribution of the training sample, and pz 
is the probability distribution of generated sample. 
 
 

 
 

Figure 3. Generative Adversarial Network (GAN) Framework  

V. WEATHER MONITORING SYSTEM BASED UPON A UNIQUE 
LATERAL SENSOR ARCHITECTURE 

The discussed PMU real-time monitoring system was 
instantiated to help provide early warning to power 
engineers when a fault in the electrical grid is detected. The 
proposed system utilizes lateral sensors, which leverage a 
WSN architecture, GPS-based timestamping, ThingSpeak, 
a GAN deep learning system, and spider radar plots for data 
visualization analytics.  The WSN is responsible for sending 
tsensor readings to the ThingSpeak cloud platform,  via an 
IOT gateway, for real-time monitoring and analysis 
purposes. The parameters monitored include air temperature, 
barometric pressure, humidity precipitation, solar radiation, 
and wind. The lateral sensor connected directly to PMU and 
its GPS-based receiver for synchronized timestamping. In 
turn, the GAN system discerned pattern of the timestamped 
data so as to perform event correlation. The ensuing analysis 
was visualized, via Spider Radar Plots reflecting both 
weather sensor data and grid sensor data concurrently. This 
was invaluable, as weather data nicely serves to provide 
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context reference for the grid sensor telemetry data. This is 
reflected in Figure 4 below.  

 

VI. IMPLEMENTATION OF LATERAL SENSORS 
This study discusses the implementation of a lateral 

sensor predicated upon a weather monitoring system that 
utilizes a deep learning module, which is a modified GANN 
technique. The weather monitoring stations were installed 
at five distinct and disparate points within a sports complex, 
which supports international sporting events. The described 
lateral sensor utilized 3D-printing technology for the 
production of certain components of the overall sensor suite.  

The 3D-printed lateral sensor was connected directly to a 
Global Positioning System (GPS)-based receiver so as to 
produce timestamps that could be correlated with the 
involved Phasor Measurement Unit (PMU) grid sensor that 
was utilized to detect disturbances within the electrical grid. 
The lateral sensor was equipped with a communications 
suite consisting of wifi and cellular capabilities.  

The lateral sensor was found to exhibit a significant 
increase in performance over the sensor it replaced. The 
previous sensor was categorized as a “Automatic 
Waterlogger Telemetry” sensor. Basically, the sensor 
measured three main items: temperature, groundwater lever, 
and rainfall. Unlike the lateral sensor, the previous sensor 
system utilized telephone lines to collect the sensor data. 
Consequently, if the land-based communications network 
were interrupted, data could not be collected optimally. The 
other weakness of the previous sensor was the inability to 
find underlying data patterns within the data it collected and 
organized (please refer to Figure 5). This is caused by the 
absence of an interval that is set automatically according to 
the category (please refer to Figure 6). 
 
 

 
Figure 5. No Pattern is Ascertained from the Previous Sensor 

 
 

 
Figure 6. Parallel Coordinate System of Previous Sensor 

 
 
After the installation of the lateral sensor, the data that 

was ultimately ingested, processed, analyzed, and correlated 
was much more accurate and had well-defined intervals as 
well as a deep learning module, which could readily analyze 
the data automatically and ascertain a specific pattern for 
each component (please refer to Figure 7). Overall, the 
lateral sensor detected more clusters than the previous 
sensor (please refer to Figure 8). 

 
 

Figure 7. Data Analysis from the Deep Learning Module  
 

 
 

Figure 8. Data Analysis from the Deep Learning Module  
 

VII. CONCLUSIONS AND FUTURE WORK 
The results of this study demonstrated that the 

implementation of lateral sensors based upon a deep 
learning module, predicated upon a GAN, can be more 
robust in terms of leveraging operational data than previous 
monitoring paradigms. The deep learning module was able 
to discern underlying patterns within the ingested data as to 
indicators of an impending storm, which could cause 
communications interference, power surges, and power 
outages. Moreover, the deep learning module-based 
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intelligent system was able to glean quite interesting trends 
for the particular locale where each particular sensor was 
located. It should be noted that the paucity of sensors in 
some areas and the far distances among the sensors posed 
some issues. 

A number of future works are being planned to increase 
the application and suitability of this study. For the future 
works, we will examine techniques to facilitate the fine-
tuning of lower resolution data. There is a wealth of 
algorithms for processing, among other things, remote 
sensing imagery. This can nicely complement and be 
correlated with the data from the lateral sensors described 
herein. In addition, to improve system performance, we can 
conduct a more comprehensive benchmarking of 
hybridizing techniques for processing IOT data and evaluate 
more advanced edge analytic paradigms for the lateral 
sensors. Moreover, Low Power Wide Area Network 
(LPWAN) technologies, such as ZigBee, Long Range Wide 
Area Network (LoRaWAN), and Narrow Band-Internet of 
Things (NB-IOT) can be utilized by the involved weather 
monitoring systems for a more robust communications 
network.  
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