
Building A Collection of Labs for Teaching IoT Courses

Xing Liu
Dept. of Computer Science and Information Technology

Kwantlen Polytechnic University
Surrey, Canada
xing.liu@kpu.ca

Abstract—This paper introduces a collection of labs that can be
used for teaching Internet of Things (IoT) courses. An IoT
system consists of physical devices, the Internet, and the cloud.
The labs are designed to give students opportunity to
experiment with these three aspects of IoT. On the physical
devices side, the labs use a Raspberry Pi single board
computer, selected sensors and actuators. On the software side,
Python libraries are used for coding device interfaces and IoT
applications. Amazon Web Services (AWS) IoT is the cloud
platform used by the labs. A laptop computer with a Virtual
Network Computing (VNC) client installed serves as the
development platform which connects to the Raspberry Pi
computer via a local WiFi network. The Raspberry Pi
computer interacts with sensors and actuators and
communicates with the AWS IoT cloud service through the
Internet. The paper provides details on how the labs are
developed. Test results are presented to illustrate how the labs
work.

Keywords-Internet of Things; IoT; teaching; courses; labs.

I. INTRODUCTION

The Internet of Things (IoT) has gone through rapid
development in past few years. Numerous commercial
products have been developed. The technology is being
applied to many aspects of our life. In order to provide the
much needed workforce for both development and
applications of IoT technology, universities and technical
institutions have started teaching IoT courses in their
computer science, computer engineering, or information
technology curriculum [1]-[4].

In order to help students understand the technical
concepts of IoT, hands-on training is essential. Ideally, IoT
courses should be taught along with a series of labs.

Although IoT course samples are not difficult to find on
the Internet, detailed hands-on labs used in the courses are
rarely available. Therefore, it is the author’s intention to
share such information in this paper.

The paper summarizes the author’s experience in
developing labs for an IoT course. Detailed descriptions are
provided regarding setting up the lab platform, the use of
sensors and actuators and the AWS IoT cloud platform,
together with computer code snippets for the labs.

The paper is organized as follows. Section II gives an
introduction to the Internet of Things. Section III describes
the architecture of the system for the labs. Section IV

explains the details of the selected labs. Test results are
provided in Section V.

II. INTERNET OF THINGS

According IEEE [5], IoT is “a network that connects
uniquely identifiable things to the Internet. The things have
sensing/actuation and potential programmability capabilities.
Through the exploitation of unique identification and
sensing, information about the thing can be collected and the
state of the thing can be changed from anywhere, anytime,
by anything”.

Essentially, an IoT system has three components:
physical devices, which are also called the things, the
Internet, and the cloud. The simplified IoT model can be
represented using Figure 1.

Cloud

Internet

Devices

Figure 1. Simplified model of an IoT system

In order to provide students opportunities to understand

various aspects of IoT, properly designed labs of an IoT
course should cover these three components.

The learning objectives include having students
understand IoT operations from a system perspective and
gain hands-on skills in constructing IoT systems and
developing related software. After completing the labs,
students should understand what sensors and actuators are
and what they can do. Students should also be able to design
and build basic electronic interface circuits for sensors and
actuators. Students will understand the concepts of data
sampling, data collection and data transfer. Students will also
understand how physical devices should identify themselves
to cloud services and communicate with the services
securely. Students are expected to be able to set up AWS IoT
services to collect data from sensors and store the data in the
cloud. The labs should enable students to use other cloud
services to process data as well.

84Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

Preparing students for employment in the region is the
rationale of selecting AWS and AWS IoT as the cloud
platform for the labs.

III. SYSTEM DESCRIPTION

All labs are designed based on the system architecture as
shown in Figure 2. The system has a Raspberry Pi single
board computer, sensors, actuators, Internet connection, and
the cloud. The Raspberry Pi computer, sensors, and actuators
make a thing which is a physical device with computing
power. The thing can send its data to the cloud via the
Internet. A service in the cloud can interact with the thing via
the Internet as well. The laptop computer connected to the
Raspberry Pi serves as the development platform.

Figure 2. System architecture for running the labs

A. The Raspberry Pi Single Board Computer

The single board computer for the labs is a Raspberry Pi
3 model B with a 1.2GHz 64-bit quad-core ARMv8 CPU
and 1 GB of RAM. It has both wired and wireless network
interfaces. The wireless network interfaces include 802.11n
Wireless LAN and Bluetooth. The Raspberry Pi has a
powerful Input/Output interface called GPIO which stands
for “general purpose input output”, as well as a camera
interface. The “hard disk” of the Raspberry Pi is a SD card
which can have tens of gigabytes of memory. Although the
Raspberry Pi can have different types of operating systems,
its “official” operating system is called Raspbian, which is of
a Linux type. The Raspberry Pi can be programmed using
popular programming languages such as C, JavaScript, Java,
and Python. The collection of labs in this paper are based on
Python.

B. Sensors

Sensors make the main component of an IoT system.
They are used to measure environment parameters such as
temperature, humidity, motion, light intensity etc, just to
name a few. The labs of this paper use sensors that are
readily available on the market and are of low cost, such as
the DHT11 temperature/humidity sensor. Students are
encouraged to obtain sensor kits designed for IoT
applications as well. These kits not only have a variety of
sensors, but also electronic components for building circuits,
such as breadboards, wires, and resistors.

C. Actuators

Actuators in IoT systems generate movements, rotations,
or other actions. The actuator used by the labs of this paper is
a DC servo motor. The servo motor generates movements so
that students understand what “actuation” means. The labs of
this paper use a micro servo motor called SG90.

D. Camera

The camera used in the selected labs is a Raspberry Pi
Camera with a Sony Exmor IMX219 Sensor and a resolution
of 8 mega pixels. It has a fixed focus lens. The camera
connects to the Raspberry Pi via an interface called Mobile
Industry Processor Interface Camera Serial Interface Type 2
(MIPI CSI-2). The camera can be used to take still pictures
or record video.

E. The Cloud

The labs use AWS IoT as its cloud service. AWS IoT is a
popular Amazon web service for IoT applications. Physical
devices connected with AWS IoT can interact with each
other and with other AWS cloud services. Sensor data can be
stored in the AWS cloud and can be analyzed there.

The main components of AWS IoT are: 1). A device
gateway which enables physical devices to securely
communicate with AWS IoT; 2). A message broker that
helps devices and AWS IoT applications to publish and
receive messages using the Message Queuing Telemetry
Transport (MQTT) protocol; 3). A Rules Engine that
provides message processing and integration capabilities, as
well as to republish messages to other subscribers; 4). A
Registry that allows users to register devices and their
attributes; 5). A Device Shadow that is used to store and
retrieve device state information; 6). A Device Provisioning
Service that maintains device entries in the registry,
certificates which devices use to authenticate with AWS IoT,
and policies which determine what operations a device can
perform in AWS IoT. The reason for choosing AWS IoT is
to have students learn a popular industrial cloud service
which is particularly useful for industry in the region.

IV. DETAILS OF SELECTED LABS AND TEST RESULTS

The labs are designed in such a way that students will
learn the practical skills of the thing side first. These are the
labs for driving sensors and actuators locally through the
Raspberry Pi without an Internet connection. The students
learn the basics of sensors and actuators, I/O interfaces, and
how to interact with them through the Raspberry Pi. After
the students have become familiar with the local thing side,
additional labs will give them the opportunity to connect the
thing to the cloud, experiment with sending data to the cloud
and receiving instructions from the cloud. Further labs will
enable students to learn data processing using other AWS
cloud services such as machine learning.

A. Set Up the Raspberry Pi

Assembling a newly purchased Raspberry Pi is
straightforward. One caution is that heat sinks should be
installed to avoid overheat so students should not omit this
step. Usually a new Raspberry Pi comes with the operating

Raspberry

Pi
Single
Board

Computer

Sensors

Actuators

Cloud
Service

Laptop Computer

85Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

system Raspbian pre-installed. If not, Raspbian can be
downloaded from the official Raspberry Pi website [6] and
can be installed using software tools that work with SD
cards.

It is recommended to install the Raspbian OS with a
desktop-type GUI so that the user can connect to AWS IoT
later via the web browser of Raspbian.

However, Raspberry Pi is “headless”, meaning there is
no monitor or even a LCD screen connected initially. The
most convenient way to use a Raspberry Pi is for it to share
the monitor, keyboard and mouse with a laptop computer.
However, separate keyboard and mouse are still needed to
set up the Raspberry Pi the first time in order to enter
initialization information, such as the SSID and password of
a wireless network and to enable VNC on the Raspberry Pi.

 Installing the software applications PuTTY, Angry IP
Scanner, RealVNC, SDFormatter on the laptop computer
before setting up the Raspberry Pi is very useful. The laptop
computer only has to be on the same WiFi network as the
Raspberry Pi in order to use RealVNC to connect to the
Raspberry Pi.

In order to run Python programs on a Raspberry Pi, the
Python engine has to be available. The way to verify that
Python is installed properly on the Raspberry Pi is by typing
the command “python” on a Raspbian command terminal
and run a line of Python code such as print "Hello,
World!".

It is necessary to run all of the following commands to
install or upgrade Python drivers on the Raspberry Pi before
developing and running programs written in Python:

sudo apt-get update
sudo apt-get install python-dev python-pip
sudo pip install --upgrade distribute
sudo pip install ipython
sudo pip install --upgrade RPi.GPIO

Among the list of commands above, python-pip is a

package management system used to install and manage
software packages written in Python. ipython (Interactive
Python) is a command shell. RPi.GPIO is the GPIO pin
driver API, which is usually already included in Raspbian.

B. Drive A LED

Being able to light up a LED is essential for the labs
because LEDs can be used conveniently as indicators of
various activities in the IoT system. A LED can help detect if
a circuit or a pin of an output port on the Raspberry Pi is
working or if a sensor is triggered.

The circuit diagram for the LED lab is shown in Figure 3
where GPIO Pin 17 is used to drive the LED.

Figure 3. Circuit for driving a LED

Key Python code snippets for the LED lab is shown in
Figure 4.

Figure 4. Python code for the LED lab

In Figure 4, Line 1 imports the Python GPIO driver. Line

2 specifies the GPIO pin mode because there are two options
for numbering the GPIO pins. The GPIO.BCM option above
means that the pins are referenced by the "Broadcom SOC
Channel" numbering system. In this option, the pin numbers
have the prefix "GPIO". The other option is GPIO.BOARD
which specifies the pin numbers based on the numbers
printed on the circuit board such as “01”, “02”, and “40”.
Line 4 sets up the led_pin for output. Line 5 turns the
LED on and Line 6 turns the LED off. Students can write
their own code to have the LED on for certain amount of
time and at different intervals to create interesting display
patterns.

C. Read A Pushbutton

Reading a pushbutton as shown in Figure 5 can be useful
when a user wants to interact with the IoT system via a “real
button” instead of a virtual button displayed on a graphical
user interface. The circuit program is shown in the Figure 5.

Figure 5. Circuit for reading a pushbutton

Key Python code snippets for the pushbutton lab is

shown in Figure 6.

Figure 6. Python code for the pushbutton lab

In Figure 6, similar to the LED lab, the Python GPIO

driver is imported and the pin mode is set to GPIO.BCM. In

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
led_pin=17
GPIO.setup(led_pin, GPIO.OUT)
GPIO.output(led_pin, GPIO.HIGH)
GPIO.output(led_pin, GPIO.LOW)

import RPi.GPIO as GPIO

push_pin=5
GPIO.setmode(GPIO.BCM)
GPIO.setup(push_pin, GPIO.IN,
 pull_up_down=GPIO.PUD_DOWN)

GPIO.add_event_detect(push_pin,
 GPIO.RISING, bouncetime=200)

def on_push_down(channel):
 print("Pushbutton is pressed.")

GPIO.add_event_callback(push_pin,
 callback=on_push_down)

Raspberry GPIO pin 17
 Pi

 Ground

LED

Raspberry 3.3V

 Pi
 GPIO pin 5

Push

Button

200 ohm
Resistor

86Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

Line 6, pull_up_down=GPIO.PUD_DOWN means that a
value of GPIO.HIGH will be read by Python code when the
button is pressed (because the circuit between the +3.3V pin
and the GPIO pin 5 is closed). Line 8 means that the
push_pin is set for rising edge detection and it will ignore
further edges for 200ms to compensate for switch bounces.
The last line registers the Python function on_push_down
as a callback function, which means function
on_push_button will execute after the pushbutton is
pressed. A pushbutton press can be used to simulate any
action that will trigger an event.

D. Read A Temperature Sensor and A Humidity Sensor

Measuring environmental parameters such as temperature
and humidity is common for IoT applications. There are
many types of temperature and humidity sensors available on
the market. A popular sensor named DHT11 can measure
both temperature and humidity. The circuit for using the
DHT11 sensor is shown in Figure 7.

The DHT11 temperature/humidity sensor has three wires.
The wire in the middle of the connector is the data wire. The
other two wires are for power and the ground.

Figure 7. Circuit for the temperature/humidity measurement lab

Writing the Python code from the ground up to talk to the

DHT11 sensor is complex because the code has to handle
digital pulses and their encodings. However, a Python driver
that makes application development much easier has been
written and is available for download [7].

Two files should be downloaded from the above site:
dht11.py and dht11_example.py. With the help of
the dht11.py driver module, the key Python code for
reading data from the DHT11 sensor can be made very
simple and is shown in Figure 8.

Figure 8. Python code for the temperature and humidity sensor lab

Some tests were performed in a residential home.
Temperature and humidity data from the DHT11 sensor were
recorded by taking a screenshot of a Raspbian terminal
window in which the Python program prints its output. Test
run results are shown in Figure 9.

Figure 9. Test results for the DHT11 temperature and humidity sensor

E. Control A Servo Motor

The labs of this paper use the micro servo motor SG90.
Although Raspberry Pi has pin GPIO18 designated for
producing pulse width modulation (PWM) pulses, other pins
can be used to drive the servo motor SG90 as well.

It takes 20ms of the pulse width for the SG90 to travel
through its full rotational range. By design, when the pulse
width of the PWM signal is 1 millisecond (ms), the position
of the servo motor is at its very LEFT side. The duty cycle of
this position is (1ms/20ms) x 100 = 5%. For pulse widths of
1.5ms and 2ms, the servo motor is at its MIDDLE position
with a duty cycle of 7.5% and at its far RIGHT position with
a duty cycle of 10%.

The circuit for the servo motor lab is shown in Figure 10.

Figure 10. Servo motor control circuit

Key Python code for driving the servo motor is shown in
Figure 11.

Figure 11. Key Python code for servo motor control

import RPi.GPIO as GPIO
import dht11

GPIO.setmode(GPIO.BCM)

instance = dht11.DHT11(pin=26)
result = instance.read()
if result.is_valid():
 print("Temperature: %d" % result.temperature)
 print("Humidity: %d %%" % result.humidity)

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

pwm = GPIO.PWM(18,50)

pwm.start(5) #Start at 0 degrees
time.sleep(1)

pwm.ChangeDutyCycle(7.5) #turn to 90 degrees
time.sleep(1)

pwm.ChangeDutyCycle(10) # turn to 180 degrees

Raspberry 5V
 Pi GPIO Pin 12
 Ground

 Micro
 5V Servo
 PWM Motor
 Ground SG 90

Raspberry 5V
 Pi GPIO Pin 17
 Ground

 Temperature
 Vcc and
 Data Humidity
 Ground Sensor

DHT11

87Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

In Figure 11, GPIO.PWM(18,50)sets GPIO Pin 18 to
output square wave pulses with 50 Hz of frequency. The two
key Python functions are start and ChangeDutyCycle,
which are used to position and rotate the shaft of the servo
motor.

F. Control A Camera

The camera named Raspberry Pi Camera is the “official”
camera to be used with Raspberry Pi. With this camera users
can take still pictures, apply image effects and record video.
Caution has to be exercised when installing the camera on
the Raspberry Pi. Users have to make sure that the blue side
of the ribbon cable face the Ethernet port and the silver side
face the HDMI port. The camera has to be enabled under the
configuration of Raspberry Pi as well. Another important set-
up step is to enable VNC streaming of live images from the
camera to the laptop computer. Otherwise no image displays
can be seen on the screen of the laptop computer. This can be
done by opening a terminal window on the Raspberry Pi,
type command “vncserver”, navigate to “Menu” then
“Options” followed by “Troubleshooting”, and select
“Enable experimental direct capture mode”. Figure 12 shows
what a streamed image looks like on the screen of a laptop
computer.

Figure 12. Pi camera captured image streamed to a laptop computer

In order to run Python code to control the camera, the

Python module PiCamera has to be imported. Important
functions are start_preview, stop_preview, and
capture which is used to capture an image and
start_recording which is used to record a video. Code
samples are shown in Figure 13. Videos recorded can be
viewed by running the command “omxplayer” followed
by the name of the video file.

Figure 13. Sample Python code for using the Pi camera

G. Communicate with the Cloud

The cloud service used in the labs is Amazon’s AWS
IoT. In order to develop Python code running on the
Raspberry Pi that can communicate with AWS IoT, a
software development kit (SDK) has to be downloaded and
installed on the Raspberry Pi. The SDK file can be
downloaded from Amazon’s website [8].

The SDK file should be unzipped and the user has to run
the command “sudo python setup.py install” to
install the SDK to a proper folder in the Raspberry Pi.

The SDK comes with several sample files which can be
used as the starting point for development.

In order for the Raspberry Pi to communicate with AWS
IoT, an identity of it named a “Thing” has to be created in
AWS IoT. A set of security certificates have to be created
and associated with the “Thing”. These certificates have to
be downloaded onto the Raspberry Pi which will use them to
identify itself to AWS IoT when connecting. Policies have to
be created to specify what the “Thing” is allowed to do in
AWS IoT as well.

In the Python code running on the Raspberry Pi, an
AWSIoTMQTTClient has to be created. This client will be
used to publish messages to the AWS IoT cloud service and
receive messages back from the AWS IoT cloud service via
a “Topic” set up in the AWS Simple Notification Service
(SNS).

Figure 14 shows the essential AWS IoT SDK functions
needed for the Raspberry Pi to connect to AWS IoT and
publish data to a topic in AWS SNS.

Figure 14. Key Python code for communicating with AWS IoT

Sensor data can be used to build a “payload” which is
published to AWS IoT. The AWS SNS service needs to
subscribe to the topic which the MQTT client running on the
Raspberry Pi publishes sensor data (payload) to. When data
is being published, AWS SNS will receive and display them
almost instantly. Users have the option to suspend the
reception of data as well.

Figure 15 is a screenshot that shows a Thing in AWS
IoT. This Thing is essentially a virtual representation of the

from AWSIoTPythonSDK.MQTTLib import
AWSIoTMQTTClient

myMQTTClient = AWSIoTMQTTClient("My Pi")

myMQTTClient.configureEndpoint("A3XXX.iot.e
u-west-1.amazonaws.com", 8883)

myMQTTClient.configureCredentials("/home/pi
/cert/RootCA.pem", "/home/pi/cert/xxxx-
private.pem.key", "/home/pi/cert/xxxxx-
certificate.pem.crt")

myMQTTClient.connect()
myMQTTClient.publish("my_topic",
"connected", 0)

payload = "sensor data"

myMQTTClient.publish("my_topic",payload,0)

from picamera import PiCamera
camera = PiCamera()
camera.start_preview()
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()
camera.start_preview()
camera.start_recording('/home/pi/video.h264')
sleep(10)
camera.stop_recording()
camera.stop_preview()

88Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

Raspberry Pi and its associated sensors in the AWS IoT
cloud.

Figure 15. Screenshot that shows a “Thing” in AWS IoT

The AWS SNS service provides controls for publishing

and subscribing to topics and a window for showing live
topic data. Figure 16 is a screenshot that shows sensor data
published by the DHT11 sensor via the Raspberry Pi and
received by AWS SNS on a topic named “MyPi2Topic”.

Figure 16. Screenshot showing sensor data received by AWS SNS

H. Labs under Development

Although the above set of labs have covered the three
aspects of IoT, i.e., physical devices, the Internet and the
cloud, some labs still need to be developed. For example,
labs for generating email notifications and text messages;

labs for controlling physical devices from the cloud; labs that
allow one device to control another device via the cloud.
Labs are also needed to teach students how to transfer large
amount of data such as images and videos to the AWS cloud
and store them there. These labs are still under development.

V. CONCLUSION

This paper has introduced a collection of labs that can be
used in teaching IoT courses. The labs give students
opportunities to learn different aspects of IoT ranging from
physical devices to the cloud. Details of the labs and key
Python code snippets are provided.

ACKNOWLEDGMENT

The author would like to express his gratitude for the
support provided by the Provost’s office of Kwantlen
Polytechnic University.

REFERENCES

[1] X. Liu and O. Baiocchi, “An IoT Course for A Computer

Science Graduate Program”, International Conference on:
Communication, Management and Information Technology
(ICCMIT’16), Cosenza, Italy, April 26-29, 2016.

[2] Ryerson University, “Course Series in The Internet of Things
(IoT)”, https://ce-
online.ryerson.ca/ce/calendar/default.aspx?id=5§ion=pro
gram&mode=program&sub=atd&cert=CSTIOT00. Accessed
on October 13, 2018.

[3] Northern Alberta Institute of Technology, “IOT/IOE
Certificate”, http://www.nait.ca/program_home_101497.htm.
Accessed on October 13, 2018.

[4] Kwantlen Polytechnic University, “INFO 4381: Internet of
Things and Applications”, http://www.kpu.ca/calendar/2018-
19/courses/info/index.html. Accessed on October 20, 2018.

[5] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition
of the Internet of Things (IoT)”, 27 May 2015, IEEE Internet
Initiative.
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Defi
nition_Internet_of_Things_Revision1_27MAY15.pdf.
Accessed on September 29, 2018.

[6] Raspberrypi.org, https://www.raspberrypi.org/downloads/.
Accessed on October 13, 2018.

[7] DHT11 Python library,
https://github.com/szazo/DHT11_Python. Accessed on
October 13, 2018. Accessed on October 13, 2018.

[8] AWS SDK, https://s3.amazonaws.com/aws-iot-device-sdk-
python/aws-iot-device-sdk-python-latest.zip. Accessed on
October 13, 2018.

89Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

