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Abstract—While media reports frequently highlight the
exciting aspects of the cyber security field, many cyber security
tasks are quite tedious and repetitive. At the same time,
however, strong pattern recognition, deductive reasoning, and
inference skills are required, as well as a high degree of
situational awareness. As a direct consequence, the field of
cyber security is replete with potential opportunities to apply
data analytics, machine learning, computer aided testing, and
other advanced approaches to reduce the frustration of cyber
security operators by easing key challenges. In fact, given a
typical range of cyber attack surfaces, leveraging these
machine-enhanced analysis and decision approaches in
conjunction with a robust defense-in-depth posture is a crucial
step towards achieving sustained, predictable performance
across typical cyber security tasks and promotes cyber
resilience. This paper will both outline details for a near-term
research effort and explore a variety of key opportunities to
exploit these approaches with the objective of raising
awareness, providing initial guidance to aid potential adopters,
and developing effective strategies to incorporate them into
existing cyber security constructs.
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I. INTRODUCTION

It is well known that cyber security defense is a very
challenging task [1]. One significant contributor to this
defensive complexity is the inherently dynamic nature of the
cyber environment. Client workstations, servers, other
computers and devices, operating systems, and software
become obsolete in a timescale of years and must be
replaced with newer models or versions. Frequently,
organizations will undergo transformations in size, focus, or
organization that result from business mergers, growth, or
decline and cause dramatic changes in the enterprise network
composition. Because of any of these types of changes,
organizations are constantly assembling unique new
networks or modifying existing networks. Members may
join, depart, shift to different sub-units, or change roles
within the organization. In addition, network users
themselves can be sources of great variability and can

frequently frustrate cyber security operations by taking short-
cuts for security measures or actively resisting inconvenient
policy controls. Finally, external dynamics contribute to the
defensive challenge: Criminals and other cyber attackers are
perpetually scanning, searching, and finding new
vulnerabilities to exploit, building new tools, developing new
approaches to disguise their tracks, and refining their
techniques to achieve their objectives.

Beyond the internal and external dynamic factors
described above, paradigm-shifting technological changes
are dramatically altering the cyber landscape, introducing
innovations and improvements but potentially
simultaneously increasing the attack surfaces and
vulnerabilities within them [5]. The rapid evolution of new
technologies, both hardware and software varieties, and
increasing integration levels suggest that the challenges of
cyber security will continue to grow for the foreseeable
future [2]. For example, increasing Internet of Things (IoT)
capabilities will incorporate new types of devices into the
internet-accessible realm, thereby increasing attack surfaces
and possibly exposing new types of vulnerabilities due to
new Application Programming Interfaces (APIs) associated
with new classes of devices. Thus, the addition of these
technologies can increase the internal defensive complexity.
Resourceful attackers may very well be able to find ways to
exploit the increasing connectivity to access these new
devices for their purposes.

While there are efforts to build in security into designs
and even standards [3], frequently, security lags novel
capabilities, sometimes to a significant degree. The
dynamics, persistent advancement of malicious actors, and
revolutionary technological change combine to elevate
defensive complexities facing cyber security operators. As
many defensive tasks are tedious and repetitive in nature,
such fertile grounds will incubate the growth of errors. To
counter this state of affairs, many cyber security innovators
are leveraging data analytics, computer-aided testing, and
machine learning to enhance or even replace human operator
activities.

The remainder of this paper is organized as follows:
Section II discusses the role of machine learning and other
automated decision support tools in cyber security and
presents applications. Subsequently, Section III explores
how data analytics encompasses a crucial part for both
supporting the function of these techniques and the decisions
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of cyber security operators. Then, Section IV delves into the
benefits of leveraging computer-aided testing for the benefit
of a wide variety of cyber security activities. Finally, the
paper reviews and emphasizes key points in Section V, the
conclusion.

II. ROLE OF MACHINE LEARNING

Numerous cyber security tasks can be eased and
accelerated by incorporation of pattern recognition and
machine learning approaches. In particular, many modern
cyber monitoring tools already incorporate machine learning
and enhanced visualization to provide insights that guide
and accelerate decision-making [1] [2]. Pattern recognition
is important capability for cyber security monitoring support
tools. For example, signature-based detection of malicious
activity often involves scrutinizing specific attributes of
packets, email, or other data for values of identifying
features that may match the corresponding values of
previously known feature set entry in a pre-loaded data set
captured from previous attacks of malicious actors. Thus,
signature-based methods are quite effective against
previously seen attacks but typically ineffective against
first-time attacks for which the feature set entries would not
yet be included in threat profiles. However, these
technologies play a vital role in a layered, defense-in-depth
system [11] [12].

To deal with first time events, other anomaly detection
tools would normally be utilized that learn about the
“normal,” non-anomalous patterns of behavior. Once the
defensive systems can recognize the patterns of activities
that comprise normal behaviors, then the leap is not so great
to be able to distinguish when a new event is an anomaly.
As an example, time is the feature dimension that would be
used to analyze user login behavior relative to employee
work patterns. Thus, once login data is captured in logs, it
would be straightforward to detect anomalous login times
for users that work regular business hours. Anomaly
detection can be challenging because there are many feature
dimensions across which an event could be deemed
anomalous, and there are many conditions and states of the
enterprise, network, and associated devices required to
properly characterize the normal activity patterns for each.

Another dimension for anomalous events might include
login Internet Protocol (IP) addresses. In companies with
brick and mortar work sites, login entries will be dominated
by internal IP addresses, perhaps followed by laptops used at
home, such that IP addresses associated with foreign origins
would easily fall outside the normal login entry patterns
enough that they would be detected as anomalies. Certain
dimensions (or categories of log or traffic data) should be
flagged high priority due to high risk associated with
malicious activities across the dimension; for example,
events that include downloads and uploads should be
scrutinized particularly carefully.

The reason that machine learning, which can fall a bit
short amidst many human dominated chores, can fit the bill
within a layered defense in that each component of a

defense-in-depth approach is only responsible to achieve
subset of goals. It is the integrated combination of layers and
components, each supplying their specific contributions to
the sum, that comprises the ultimate level of defensive
strength of the system. This includes machine learning
decision support subsystems and machine-aided tools, as
well as human operators. Hybrid tools that incorporate
pattern recognition, signature-based, and machine learning,
can dramatically enhance the performance of humans in
many of the tedious defensive tasks.

TABLE I. MACHINE-AIDED APROACHES TO ENHANCE

CYBERSECURITY OPERATOR AND SYSTEM PERFORMANCE

Approach
Alternative uses and cybersecurity

considerations

Machine-learning

Signature matching and anomalous
event detection. Classification of log
entries and packet traffic data.
Acceleration of asset management
tasks. Semi-intelligent adversary attack
agents for automated-testing activities.

Data analytics Pre-processing and ingestion of event
data records. Meta-data tagging of
event entries for rapid filter searches

Automated-testing Randomized agents capturing insider
and external threat actor behaviors,
pen-testing aids, and fuzz-type testing
tools for software and systems

Machine learning has a strong role to play in anomaly
detection. Pattern recognition techniques utilized for cyber
security applications may involve identification of patterns
that exist within a data set and then classifying both old and
new data items into those categories or classes of patterns.
Characterizing classes of normal traffic and classifying new
traffic into existing patterns are well within the capabilities
of machine learning algorithms, such that recognizing
anomalies that do not fit into any of the existing patterns is
possible.

For this classification and anomalous data detection task,
a combination of signature-based systems, expert systems,
supervised, unsupervised, and semi-supervised learning
approaches may be advantageous to address the various
challenges posed by different components of the data [7].
One of the objectives of this research was to examine the
efficacy of applying a combination of classification
approaches to categorize packet traffic data and log data.
Previous work with clustering [13] [15] demonstrated some
success in community detection. For these methods, feature
set selection and determination of the number of classes are
key steps to develop a successful classification tool. If
feature sets are well chosen, clustering methods may be able
to learn the numbers of basic types and the feature-based
characteristics of the basic types of data with minimal human
assistance, and then collect traffic or log entry statistics
based upon those groupings.

Then, once group statistics are accumulated, it becomes
possible to consider detection of anomalous data points that
do not fit into any of the previously learned groupings. In
this manner, anomaly detection systems can be constructed
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that classify data or messages into normal categories if they
fit, and items that fall outside of the regular categories may
be deemed anomalous or suspicious, potentially triggering
some sort of alert, perhaps even associating a concern level
for the degree of anomaly. Thus, these sorts of machine
learning tools can support identification of traffic types,
detection of anomalies and alerting for monitoring.

III. DATA ANALYTICS

Data analytics are crucial to the success of most machine
learning approaches as well as human-led cyber security
defensive operations. Data analytics includes pre-
processing to clean and prepare the data, capturing essential
auxiliary data that maximize the usefulness of data,
ingesting the data into an extensible infrastructure, and
analysis to squeeze the most insight possible from the data.

One of the often-overlooked aspects is the post-data-
collection labeling or metadata tagging, which may involve
detailed parsing of the data element. Using a network
packet as an example, some typical fields that might require
parsing include the time field, the protocol type, the source
and destination IP addresses (if any), packet length, status
fields, among other fields. This labeling step is vitally
important to maximize the usefulness and efficacy of
subsequent analysis stages. For packet traffic data, this step
may require some special guidance to provide network
subnet structure to group packet traffic by subnet since the
detailed subnet structure would not necessarily be clear
from the traffic itself, either implicitly or explicitly.
Creating and populating a database with the dataset and the
metadata tags of interest to facilitate further analysis,
ensures the correct fields and values are available for rapidly
searching data sets for samples of interest and associating
data points that match in specified metadata attributes.

Another key objective of data analytics is computation of
critical statistics that aid in preliminary decision-making and
assist in selection of optimal approaches. A wide variety of
statistics might be computed for network traffic that could
include the relative composition of network traffic by
protocol, subnet distribution of traffic across the enterprise
network, IP addresses statistics, activity timing statistics,
and many more. Once these statistics are computed, they
can be utilized as additional dimensions for machine
learning activities or for human decision-making.

IV. COMPUTER AIDED TESTING

The value of computer- assisted testing cannot be
overstated in cyber security. While poor testing approaches
can lead to outcomes that are worse than no testing, many
testing efforts do not require a tremendous amount of
intelligence to be successful but require thoroughness and
are necessarily quite tedious, stretching the boundaries of
human patience. By its very nature, computer-aided testing
is comprehensive, methodical, and yet, can also incorporate
randomness, and so this one of the key reasons why
computers can fill this testing niche remarkably well.

Computer-assisted testing that includes randomized
parameters is crucial because engineers frequently make
assumptions during the development process, and, as these
assumptions accumulate, the aggregative effect can be very
hard to track and lead to inconsistencies. Thus, randomized
testing approaches will occasionally violate these
assumptions, causing tests to fail, by selecting test vectors
within the engineers’ “blind spot”.

An obvious application for computer-aided testing that is
used in software engineering and also applicable to cyber
security defense is fuzzing or fuzz testing of software
applications [8]. This sort of testing can help find website
errors, database issues, and other application bugs.
Similarly, a hybrid of fuzz and Monte Carlo testing can be
used to aid validation of tools [9]. Recently, we developed
an algorithm for calculating network complexity of virtual
cyber ranges [10], but one key remaining task was
validation of the algorithm. Using guided random-parameter
point testing and by comparing the network complexity
scores to subject matter expert expectations, we were able to
make rapid improvements because the random value-
generated models frequently represented attribute value
permutations that fell outside our design assumptions.

One critical application area that could benefit from
computer assistance is penetration testing. Some areas
require human leadership, but computer-aided capabilities
can assist other areas, such as tools to scan the surrounding
network to enumerate devices and discern network structure
and services, as well as tools to help find and infiltrate user
accounts with weak passwords.

Like penetration testing, but with more requirements for
stealth, automated attack tools can be used in war-gaming to
challenge defensive teams or test tools. By measuring and
observing the characteristics of the normal usage patterns,
these tools could automatically enforce limits to ensure that
communication and control traffic remains below the
standard thresholding to avoid triggering cyber defensive
tools. These tools could learn by passively observing and/or
actively scanning its environment for vulnerabilities,
potential pathways, defensive activities of concern or
interest, and other exploitable opportunities that could yield
the desired access or information.

V. APPROACH DETAILS

The goal of this research effort is to gain insight into the
efficacy of utilizing elements from each of the sections
above to enhance and simplify the process of potentially
determining anomalous events, traffic composition,
groupings of interest, structure, and other attributes from
passive analysis of collected packet traffic data. It is our
hope that these results would enable operators to gain an
understanding of both the full scope of the possibilities and
limitations of this approach to accelerate detection of
anomalies, identification, asset management, and other
important cybersecurity functions. This multi-layer decision
support system will incorporate machine aided learning to
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derive insights from higher level data produced by a data
analytics platform that includes a variety of pattern
recognition capabilities and other automation support. The
remainder of this section will describe the experiment
design and the technical approach details underlying the
machine learning decision support methods.

TABLE II. PROPOSED ALTERNATIVES FOR EXPERIMENT DESIGNS

Candidate
Independent
Variables

Candidate
Dependent Variables

Candidate
Control
Variables

Number of clusters Cluster sets Network size
Packet traffic data set Packet time clusters Network structure
Source IP addresses IP clusters Feature

weightings
Target IP addresses Traffic composition

statistics
Feature vector

Protocols Host associations Data set size
Packet lengths
Packet times
Log entry data sets
Initial cluster centroids

Multiple alternatives for the higher-level experiment
design, required to achieve desired end goals to include
traffic characterization, anomaly detection,
identification/asset management, and related cybersecurity
objectives are outlined in table 2. Clearly, once the exact
details are specified, using this approach, a similar (subset)
table would be created for each desired experiment to enable
determination of the number of repetitions required for
statistics that satisfy desired hypotheses acceptance/rejection
thresholds and support determination of confidence levels.

Although there are some crucial pre-processing steps to
clean up and label data appropriately, in the interest of
focusing on the technical challenges, we will omit details
here and directly skip ahead to posit that clustering may
serve well as initial approach to achieve rudimentary
classification of the preprocessed data. First, we will share
the fundamentals of various clustering approaches. We will
represent packet traffic data or log entries by a graph, H,
consisting of vertices or nodes, X, that represent items of
interest and edges, F, that represent the connections between
the items of interest.

H = (X, F)

The edges that connect node pairs capture specific
associations of interest between the items, discerned in the
data. The graph could potentially be multi-partite because
the packet traffic or log data might identify the source and
target IP addresses. Devices are typically distributed
throughout the various subnets of the network, so there
could be an additional layer of mapping required between
the IP addresses and subnet nodes. A grouping Cm is
comprised of a cluster of nodes, orthogonal to every other
grouping, because no vertex exists in more than one
grouping.

X = UCm, Cm∩Cn = {}

Each item, x, can be assigned a feature vector, gx. Figure 1
depicts an example of a multi-dimensional feature vector.
Our objective is to use the feature vectors with a metric to
facilitate grouping of vertices into k clusters, although, for
some applications, the feature vector could be as basic a
notion as connectivity. Each element of the adjacency
matrix, B, represents a measure of the events that relate a
pair of IP addresses, forming connections between the
corresponding nodes in the graph formed by the
interconnections (or perhaps distance in the feature space)
between the devices in the network [14]. If the IP pairing
vectors that arise from the columns of the adjacency matrix
are compared with a proximity measure (for example: a
similarity measure) then connectivity patterns can be
compared between nodes with straightforward operations,
such as inner products.

Also, the similarity matrix, S, formed by computing inner
products of the adjacency matrix column vectors is another
useful concept:

� = ���

Thus, the higher valued elements of the similarity matrix
will reveal node pairs, represented by the adjacency matrix
column vectors, that have common patterns of connectivity.

For binary classification decisions, graph partitioning
approaches may be employed that leverage spectral
methods. To achieve larger numbers of classes, k-means,
modularity-informed spectral methods, or hybrid k-means
approaches [4][13]-[15] can be employed to compute
clustering. Lagrange multipliers may be used in conjunction
with these approaches to capture constraints for cluster
memberships as part of standard optimization procedures.

Figure 1. Example of a feature vector, gx, which could potentially include
other elements like target IP, protocol, and many more features.

We have obtained positive results with these methods [13]
[15] to improve performance of the clustering algorithms for
social community structure in cell phone data, so this study
will explore its utility revealing insights that arise from
potential groupings of traffic data or log entry items. As in
our previous research, we may adopt the silhouette metric
[13] [15] [16] to assess the degree of grouping structure in a
proposed clustering, in which the silhouette value of one
item or vertex, m, is specified
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silhouette(m)=(p(m)–r(m))/max{r(m), p(m)}

and r(m) represents an average dissimilarity between m and
the remaining items or nodes within that cluster and p(m) is
the minimum of the dissimilarities computed between m and
all other clusters. Node or item dissimilarity is computed as
the “distance” (e.g. Euclidean distance) between their
respective feature vectors.

Accumulating the insights from multiple classification
engines based on the outputs of the clustering processes, as
well as outputs (e.g. alerts) of the other defensive tools, a
multidimensional vector can be directed as an input to a
multi-layered neural network that will form the basis for
operator decision support. This research can explore the
efficacy of alternative neural network methods [7], such as
artificial neural networks, deep neural network,
convolutional neural networks, and others to provide
decision support in conjunction with the prior
clustering/anomaly detection subsystem. One potential
benefit of such an arrangement is that by working
simultaneously, along-side the operators, essentially under
continuous supervision, the neural net subsystems can
improve performance with each detection decision, even as
it offers suggestions to aid the operators in making their
final determination. In large enterprise systems with
multiple operators, this feedback loop may prove to
accelerate performance improvement.

VI. CONCLUSION AND FUTURE WORK

In this paper, we shared some cyber applications that can
benefit from computer aided enhancements, such as
machine learning, data analytics, and computer-aided
testing. Numerous tools are entering the market, which
incorporate these techniques, but it is challenging to
leverage these novel tool capabilities effectively without a
firm understanding of the underlying methods and the
assumptions upon which they are based. Furthermore, many
tools are ascribed far better performance in marketing
literature than is achievable in a typical environment. As a
result, there is rationale to develop internal tools and
conduct thorough testing and tuning optimization for both
internal and external tools of this kind. The testing and
tuning iterations should measure success and accumulate
statistics against common threat scenarios to ascertain
overall performance.

We hope to employ the approach described in Section V
to conduct a series of experiments to characterize the
statistics associated with test networks as a baseline and
then to study performance of enhanced systems that employ
selected tools in conjunction with machine learning
approaches outlined. The results should help shape new
approaches to provide decision-aids and other support to
cyber security operators that will help in providing insights
and countering the rising challenges associated with
enlarging attack surfaces that accompany the rapid evolving

cyber environment and dynamics of typical enterprise
networks.
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