
Cyber Security Using Bayesian Attack Path Analysis

Remish Leonard Minz, Sanjana Pai Nagarmat, Ramesh Rakesh

Research & Development
Hitachi India Ltd.
Bangalore, India

Email: {remish.minz, sanjana, ramesh.rakesh}
@hitachi.co.in

Yoshiaki Isobe

Research & Development
Hitachi Ltd.

Yokohama, Japan
Email: yoshiaki.isobe.en

@hitachi.com

Abstract—Network security is gaining huge attention in today’s
world. Attack path analysis provides a comprehensive view
of the attack surface for a network infrastructure, thereby
assisting decision makers to choose better network protection
strategies. Other than several deterministic methods to model
the attack graphs, the uncertainty of attacks on the network
infrastructure encourages probabilistic modeling which makes the
Bayesian network a suitable model to represent the attack graph
and to analyze the attack paths. Existing research focuses on
representing the network topology into a Bayesian network model
and uses a state-of-the-art algorithm to calculate the attack paths.
However, practical issues concerning their scalability largely
remain unaddressed. In this paper, we provide an efficient
modeling mechanism for analyzing the attack paths in the net-
work infrastructure using the Bayesian network. Our approach
covers vulnerability identification, collection and mapping, semi-
automatic attack graph creation and attack path visualization. In
addition to this, we list the bottlenecks in the existing approaches
and address some limitations in the existing Bayesian libraries.
The details on how we have implemented our approach and
conducted the attack path analysis on an enterprise network
infrastructure are covered in this paper.

Keywords–cybersecurity; Bayesian network; attack path analy-
sis; Weka; Py-BBN.

I. INTRODUCTION

Recent cyber-attacks have made headlines due to their
enormous impact on business [1]. This has drawn considerable
attention to cybersecurity research. Organizations are using
considerable resources to protect their network infrastructure.
One methodology to protect the network infrastructure is to
analyze all the possible paths in a network that an attack can
take from an Internet-facing device of the network topology to
a target device in the network. This methodology is called the
attack path analysis. The representation of the network topol-
ogy into the graph structure on which analysis is performed is
called the attack graph [2]. Figure 1 shows an example network
topology along with its attack graph. The network topology is
shown on the left of the figure and the corresponding attack
graph is shown on the right. Vulnerabilities in the devices are
represented as nodes v1, ..., v9 in the attack graph. All the paths
from the Gateway to any other device in the graph represent
attack paths that an attacker can take. Attack paths can be
modeled in a deterministic manner to include fine-grain details
of the network components as discussed in [2][3]. However,
this approach blows up the attack graph making the attack path
analysis an NP-Hard problem. In addition to that, the modeling
approach misses to include the information about the attackers

skill, the device targeted by the attacker, the know-how of
the vulnerability used by the attacker to compromise the
device. Such an uncertain environment encourages attack path
analysis to be modeled in a probabilistic manner rather than
a deterministic way. Along with the probabilistic approach,
the graph structure of the network infrastructure makes the
Bayesian network a suitable tool to model the attack graph
and to perform attack path analysis.

Existing research on Bayesian network-based attack path
analysis [4] focuses mostly on representation techniques of the
network infrastructure. The security conditions of the network
and the vulnerabilities in network services are modeled as
nodes in the Bayesian network. Vulnerabilities in a device are
considered the parent node of the security conditions node.
These vulnerabilities are identified either by deploying agents
in the network devices or by scanning the open ports of devices
on which applications are executed. State of the art Junction
Tree algorithm is used in [5] for attack path analysis. The
network infrastructure used for attack path analysis in this
reference is a synthetic example.

Figure 1. Network topology and attack path

Literature formalizes the modeling of the attack path using
Bayesian semantics. However, some design and implementa-
tion issues concerning network scalability remain unaddressed.
These include implementation concerns of modeling the attack
path, assuming the existence of vulnerabilities in the attack
graph, visualization as well as a need to qualitatively or
quantitatively measure the usefulness of the attack path to the
industry. The existing attack paths considered in the literature

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

are fine-grained causing the attack graph to eventually increase
in size. Moreover, the existing attack path analysis is done on
an example network topology, thus restricting the scale of the
network considered.

The remaining part of this paper is organized as follows.
Section II discusses the related work in the attack path analysis.
Section III describes the details of the technical background
which covers the attack path analysis, Bayesian modeling of
the attack graph, vulnerability identification, and Bayesian
attack path calculation. Section IV describes our approach of
Bayesian graph modeling, vulnerability collection, Bayesian
attack path calculation and visualization of the attack paths.
Section V shows the evaluation of our approach. Section VI
describes the conclusion of our approach and we end this paper
by acknowledging our collaborating organizations.

II. RELATED WORK

Early work on attack graph modeling can be found in
[2][3]. They address the problem of early practice of manual
attack graph generation by the Red Teams. Sheyner et al. [2]
claim that automating generation of attack graph is exhaustive
and succinct. Exhaustive means that the attack graph represents
all possible attacks and succinct means that the attack path
contains only those state which lies in the actual path of
the attacker’s goal. The network is modeled in a finite state
machine and a model checker tool is used to automatically
generate all the possible attack paths. The approach taken
in it is symbolic model checking. A similar but scalable
approach is taken by Ammann et al. [3]. In this approach
again, model checking is used to automatically generate all
the possible attack paths. They introduce an assumption on the
attacker’s behavior. The assumption states that the privilege of
the attacker is monotonic in the target network as the attack
progresses. This makes the modeling and analysis of attack
path less complex. However, model checking approaches suffer
from blow up of attack path and do not scale. Recent work in
[4][5] uses a probabilistic approach. Both agree that inherent
nondeterminism encourages the Bayesian network to be an
ideal fit for modeling attack graphs. Frigault et al. [4] focus
on modeling a static network infrastructure into a Bayesian
network. They have come up with methodologies to model
the vulnerabilities in the Bayesian network and ways to handle
cycles in it. Further, they also discuss the scenario where the
network infrastructure is dynamic. Munoz-Gonzalez et al. [5]
discuss various exact inference techniques in the Bayesian
network. They talk about, the Variable Elimination technique,
Belief Propagation technique, and the Junction Tree technique.
Here also, they discuss both static and dynamic network infras-
tructures. Vulnerability collection is another area of research
where [6] evaluates several vulnerability scanning tools and
shows that there is a lot of scope to improve the accuracy of
the detection of vulnerabilities in both agent-based detection
and port scan. A semi-automated way is tried by [7] to address
this problem.

III. TECHNICAL DETAILS

A. Attack path analysis
An attack path is a trail of vulnerabilities and devices

formed from a sequence of attacks an attacker needs to perform
on a given network topology, to explore and reach a target
device. In the case of the network topology shown in Figure 1,
if the attacker intends to target the application server, first, he

needs to compromise the Gateway, as it is the only device
in the network which can be accessed from the Internet. The
attacker does this by exploring the presence of vulnerabilities
v1 and v2 and exploiting any one of them to get into Gateway.
Once the attacker has gained access to the Gateway, he needs to
explore the next level of reachable devices in this network and
find a way to gain access on those devices. In this example, it
is the Firewall. In a similar fashion, the attacker moves step by
step to reach the target device. At each step, the attacker needs
to know the set of reachable devices in the next level. Once he
gains access on a device, he runs a scan to list the reachable
devices. After gaining the information of the reachable devices,
the attacker finds the vulnerabilities in those devices. One
of these vulnerabilities is exploited to gain access to one of
the next reachable devices. Referring to the attack graph in
Figure 1, an attacker having access to the Gateway can attack
the Firewall by exploiting either of the two vulnerabilities v3 or
v4. Thus, an example of an attack path will be [Attacker]→ v2
→ [Gateway Server]→ v3→ [Firewall]→ v8→ [Application
Server].

To protect the network infrastructure, a security operator
needs to identify the vulnerabilities present in it. Once the
vulnerabilities are identified, the list of vulnerabilities has
to be mapped on the services and devices in the network.
This comprehensive view also termed the attack graph [2][3]
helps the operator understand the possible attack paths in the
network. The attack graph is a standard way to express all
the possible attacks from one external facing device in the
network to the other potential target devices in the network.
However, since information on aspects, such as the expertise
of the attacker, vulnerability being exploited by the attacker
to gain access to the next device, objective or target device
of the attacker, etc. is unknown, a probabilistic approach to
modeling the attack graph seems appropriate. Frigault et al. [4]
and Munoz-Gonzalez et al. [5], apply the Bayesian network to
model the attack graph and analyze the attack paths.

B. Modeling network topology to Bayesian graph
The Bayesian belief network is a probabilistic graphical

model that represents a set of variables and their conditional
dependencies via a Directed Acyclic Graph (DAG). The net-
work components and the vulnerabilities are modeled as nodes
while the edges represent how they are related to each other.
Each node in the graph defines a causal relationship of itself
with its parents. The step by step attack scenario shows how
vulnerabilities have a causal relation among themselves. This
makes the Bayesian network a suitable choice for analyzing
the attack path. The causal relationship between a node and
its parents is encoded in the conditional probability table.
Frigault et al. [4] and Munoz-Gonzalez et al. [5], model
Bayesian network by considering the attack graph like the
one shown in Figure 1. They consider security conditions,
where the conditional probability table is constructed using
the vulnerability scores provided by the National Vulnerability
Database (NVD) [8]. However, instead of devices in the
attack graph, there are security conditions. The scores used
in modeling the conditional probability table for the security
conditions are set to 1.

The semantics of the Bayesian model conveys that, for
a vulnerability node to get exploited, all its parent’s security
conditions must be true. Additionally, for a security condition
to be true, any one of its parent vulnerability should be true.

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

Figure 2. Conditional Probability Table: Conjunction

Figure 3. Conditional Probability Table: Disjunction

They call these two semantics as conjunction and disjunction.
Figure 2 and Figure 3 show the conjunctive and the disjunctive
causal relation between a node and its parents respectively. The
disjunctive causal relation is shown for a security condition
SC1 and the conjunctive causal relation is shown for a vulner-
ability V1. The conditional probability of the vulnerability V1
is 0.73. Each row in the conditional probability table shows
the probability of the node being true given its parents. As an
example, the second row in the table shown in Figure 2 shows
variables SC1, SC2, and SC3 are assigned values 0, 0 and 1
respectively. Based on this assignment of the random variables
SC1, SC2 and SC3, the probability of child variable V1=0,
denoted by V10 is 1 and the probability of V1=1 denoted by
V11 is 0. Being conjunction causal relation the exploitability
score of 0.73 is used only in the case when all three variables
SC1, SC2, and SC3 are assigned values 1, 1 and 1. In all other
cases, the probability of V1 getting attacked is zero. Similarly,
this probability distribution is called the prior probability
which represents just the child-parent relationship. However,
we need to know how an arbitrary target node is related to
the root node in the attack graph. It shows how difficult it is
to exploit the target node given that the root node is already
compromised. Calculation of marginal probability does the
same. Given an observation that a node (observed node) in
the network is already compromised, we get the probability of
the node (target node) getting exploited in the path from the
observed node to the target node. This probability distribution
of each node is called posterior probability.

C. Vulnerability Information
Assuming we have a list of vulnerabilities, we create a

mapping between the vulnerabilities and services running in

the network that contain these vulnerabilities. Vulnerabilities
are found by matching the names of the software applications
installed in the network devices against a list of vulnerable
software in the NVD. This database of vulnerabilities is
crowdsourced and maintained by the National Institute of
Standards and Technology (NIST). Each reported vulnera-
bility is examined by a team of experts and added to the
database with relevant details. The details include an ID for
the vulnerability, Description, Vulnerability Score, References,
Technical details, Common Weakness Enumeration (CWE)
and Common Platform Enumeration (CPE). An example of
a vulnerability ID is CVE-2017-1300. Here CVE stands for
Common Vulnerability Enumeration. CPE contains a machine-
readable format of the reported vulnerable software appli-
cation. This machine-readable format is called Well-Formed
CPE Name (WFN). A CPE entry consists of colon sepa-
rated values. An example CPE representing Microsoft Internet
Explorer 8.0.6001 Beta is wfn[part=”a”, vendor=”microsoft”,
product=”internet explorer”, version=8.0.6001, update=beta].
The Unique Resource Identifier (URI) for the above WFN
is cpe:/a:microsoft:internet explorer:8.0.6001:beta. The names
of the services or the software application executing in the
network devices need to be matched with the product attribute
of WFN.

D. Bayesian network based attack path analysis
There are several algorithms to calculate the posterior

probability p(X i = x) from an attack graph having conditional
probabilities for each node. Where X i is a random variable
in the Bayesian network. Belief Propagation and Variable
Elimination are the algorithms used for calculating posterior
probability for a target node. If X is the set of all random
variables in the Bayesian network, |X| = n and Y = X −X i
then posterior probability p(X i = x) is given by,

p(X i = x) =
∑
Y

p(Y) =
∑
Y

n∏
k=1

p(Xk | Xkp)

where Xkp is the parent nodes of node Xk. Calculation
of posterior probability is an NP-Hard problem. Both Be-
lief Propagation and Variable Elimination provide posterior
probabilities for one target security condition. However, these
two methods have to be executed for each target device to
get all the possible attack paths. On the other hand, the
Junction Tree algorithm provides a posterior probability for
each target device. The Junction Tree algorithm is a method
used in machine learning to extract marginalization in general
graphs. It performs Belief Propagation (A message-passing
algorithm for performing inference on graphical models, such
as Bayesian networks. It calculates the marginal distribution
for each unobserved node, conditional on any observed node)
on a modified graph called the Junction Tree (In machine
learning, tree decompositions are called Junction Trees, Clique
Trees, or Join Trees). The steps performed by the Junction
Tree algorithm on an attack graph with conditional probability
tables for each node are as follows.

1) Graph Moralization
2) Introduction of Evidence
3) Graph Triangulation
4) Junction Tree Creation
5) Belief Propagation
The underlying functionality of this algorithm is summa-

rized in the below steps:

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

1) Graph Moralization: If the graph is directed, then
moralize it to make it undirected. A moral graph
is used to find the equivalent undirected form of a
DAG. An example is shown in the figure below. The
moralized counterpart of a DAG is formed by adding
edges between all the pairs of nodes that have a
common child followed by making all edges in the
graph undirected. An example of Graph Moralization
is shown in Figure 4.

Figure 4. Graph Moralization

In the above graph, we convert the directed edges
to undirected edges. Further, node 1 and 3 have
a common child, node 2. Thus, in the equivalent
moralized graph we introduce an undirected edge
between the two parents node 1 and 3.

2) Introduction of Evidence: The second step is set-
ting variables to their observed value. This shows
the current event which has occurred. The posterior
probability is conditioned on this observed random
variable. These variables are also said to be clamped
to their value. In case of attack path analysis, the root
node of the graph is set as evidence.

Figure 5. Graph Triangulation

3) Graph Triangulation: Triangulate the graph to make it
chordal. The third step is to ensure that the graphs are
made chordal if they aren’t already chordal. A chordal
graph is one in which all the cycles of four or more
vertices have a chord, which is an edge that is not a
part of the cycle instead connects two vertices of the
cycle (A graph in which a cycle of length 4 and above
must not exist) An example for graph triangulation is
shown in Figure 5.
This graph can be triangulated in many ways. This
will result in adding more edges to the initial graph,
in such a way that the output will be a chordal graph.
Edge (e14) is introduced such that the cycles of 4 or
more vertices in the graph have a chord. Here, the
cycle is formed by the node set {1, 3, 4, 5}.

4) Junction Tree Creation: Construct a Junction tree
from the triangulated graph. The next step is to
construct the Junction tree. To do so, we use the graph
from the previous step and form its corresponding
clique graph. Cliques are a subset of vertices of an
undirected graph such that every two distinct vertices

are adjacent and its induced subgraph is complete. An
example of cliques in a triangulated graph is shown
in Figure 6.

Figure 6. Cliques of Triangulated Graph

In this graph, there are three cliques {1,4,5}, {1,3,4}
and {1,2,3}. Additionally, separator sets are sets of
common nodes between the adjacent cliques. The
total number of separator sets for a graph with n
vertices is (n - 1). Therefore, in this case with 3
cliques, there are 2 separator sets {1,4} and {1,3}
as shown in Figure 7.

Figure 7. Junction Tree

5) Belief Propagation: Propagate the probabilities along
the Junction tree using Belief Propagation algorithm,
conditioned on all observed nodes. Marginal Proba-
bility for each unobserved node in the Junction Tree
is calculated.

Junction Tree algorithm is used in [5] to calculate posterior
probabilities which are further used for attack path analysis.

IV. APPROACH
A. Modeling Network topology to Bayesian graph

We performed attack path analysis and identified that the
purpose of the analysis is to help an organization take an
efficient approach to safeguard their network topology. This
boils down to installing patches for the vulnerable software
application or services in the right order. To fulfil this re-
quirement, modeling the network devices as attack graph
nodes is sufficient, compared to modeling the network services
as attack graph nodes. This is because during the patching
process, an entire device is patched at a time, mitigating
all detected vulnerabilities in that device. This coarse-grained
model provides an efficient and concise representation of the
network topology. Therefore, to model the Bayesian attack
graph from the given network topology, we first draw the
network topology and make all the vulnerabilities in a device
its parents. This is shown in the attack graph in Figure 1.
The conditional probability tables for both vulnerabilities and
devices are disjunctive. This is shown in Figure 8 and Figure 9.
In the next subsection, we provide a semi-automatic method for
the attack graph creation by manually specifying the topology
and automatically collecting vulnerabilities.

In Figure 8, as Firewall is the only parent of the vulner-
ability V5, the conditional probability table of V5 will have
two rows. One parent can take only two possible values, 0 or 1
corresponding to each row in the table. As shown in Figure 9,
conditional probability table of the Web server has four rows
due to two parents V5 and V6.

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

Figure 8. Conditional Probability Table: Vulnerability

Figure 9. Conditional Probability Table: Device

B. Vulnerability Collection
Attack path analysis requires topology information and

vulnerability information. Figure 1 shows a simple network
topology containing a Gateway server connected to the Internet
and a Firewall attached to two servers below it. Once we have
the topology information, we need to identify the vulnerability
information for each device in the network. In this example,
we collect software information for Gateway server, Firewall,
Web server and Application server. This can be collected
automatically, either by agent-based scripts or through port
scans. In case of agent-based scripts, a script is executed
on a privileged mode on each of the devices. This script
collects names of all the software installed in the corresponding
devices. It is an exhaustive list of installed software in the
device. Once the list of the software is known, vulnerabilities
associated with this software list are identified automatically.
Since this approach provides an exhaustive list of software, the
number of vulnerabilities identified is more.

Agent-based scripts will work only in a network where the
operator has privileged access to each device. In the case of a
port scan, a network scanning tool is used to scan the ports of
each device. This scan provides information on all the open
ports and applications running on them. This method only lists
the applications currently being executing on an open port.
Unlike the former method, this method does not perform an
exhaustive check. However, it provides sufficient information
of the applications which can be accessed externally. Com-
pared to the agent-based approach, this approach is faster, as
it only needs a network command to scan a list of IPs. The list
of software names from each of the devices in the topology
is automatically matched against a list of vulnerable software
application reported in NVD in CPE format.

There is a standardization issue with the naming con-

vention of the software applications. This is a challenge
in automating vulnerability detection, as the product name
in the CPE does not match with the names of the in-
stalled application. For example, in case of Internet Ex-
plorer, the application name in Windows registry is ‘Inter-
net Explorer’. However, there are two different entries for
the same application (Internet Explorer) in the CPE dic-
tionary. These are cpe:2.3:a:microsoft:internet explorer:11:-
:*:*:*:*:*:* and cpe:2.3:a:microsoft:ie:5.5:*:*:*:*:*:*:*. with
product name ‘internet explorer‘ and ‘ie‘ respectively. In this
case, the application name does not match with any of the
product names. A semi-automated approach is provided in [7].
On the other hand, we use vulnerability scanning software,
Nessus [9] to address the challenge. Nessus reports vulnera-
bilities associated with the applications existing in the devices.
Figure 1 shows the detected vulnerabilities in the example
topology.

C. Bayesian attack path analysis
We use Weka’s [10] implementation of the Junction Tree

algorithm to automatically calculate the posterior probabilities
of the nodes for attack path analysis. Weka is a generic suite
of machine learning software based on JAVA. It provides
Application Programming Interface (API) to model and query
a Bayesian network. The methods addNode() and addArc()
of the EditableBayesNet Class are used to add nodes and
edges of the Bayesian network respectively. The prior prob-
abilities in the conditional probability table are set using
setDistribution() method of EditableBayesNet Class and the
marginal probabilities are retrieved using calcMargin() method
of MarginCalculator Class.

We have executed our approach on enterprise networks. A
simpler scaled down network is modeled and discussed here.
The topology of this simple network consists of one Firewall,
four switches and four servers as shown in Figure 10.

Figure 10. Topology of a sample enterprise network

The attack graph for the modeled network is shown in
Figure 11. In this graph, the attack paths are created based
on the existence of vulnerabilities in the devices. In the attack
graph, there is no path leading to Server1 due to the absence
of vulnerabilities in it. However, there are attack paths to other
remaining servers.

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

In this example, in order to protect Server2 from external
attacks, a security manager can analyze the attack path and
then decide to mitigate the vulnerability in switch2. This
will break the attack path from the external facing Firewall
device. A security manager can further plan to patch the two
vulnerabilities associated with Server2 during off-peak hours
of the business. The vulnerabilities in the devices show either
the Plugin ID of the vulnerabilities from the Nessus Database
or the CVE ID from NVD.

Figure 11. Extended attack graph

During the modeling of the attack path with a larger num-
ber of nodes, we identified some issues in Weka. Particularly in
our case, when the number of vulnerabilities in the devices was
greater than 600, Weka failed to provide appropriate output
due to the underflow issue in the JAVA implementation. An
underflow situation occurs due to the multiplication of a large
number of probability values of the order of 10-4. Particularly,
this situation arises when in one level of the attack graph, any
device has a large number of child nodes or vulnerabilities.
This device along with its child nodes form one wide clique
during marginalization. In the Junction Tree algorithm, the
prior probability of each node in the clique is multiplied. This
led to the generation of Not a Number (NAN) exception in
JAVA. We addressed this underflow issue in Weka using a
standard approach. Since the change was made in the Weka
library, no larger datatype was adopted, neither the formula
was converted to the logarithm, due to associated side effects.
Rather, the variable collecting the product of a large number
of probability values was initialized with a large value in the
order of 10300.

Weka holds a General Public License (GPL) license, which
restricts the redistribution of the software without making it
opensource. We addressed this restriction by replacing Weka
with an alternate library, Py-BBN [11]. Py-BBN is an open-
source Python implementation of the Junction Tree algorithm,
whose implementation is similar to that of Weka. However,
during the integration of our application with Py-BBN, we

identified some issues in the generated attack path. Py-BBN
failed to generate the output in some cases while in few others,
it missed to include the leaf nodes or the terminal nodes in the
generated attack graph.

On debugging the Py-BBN library, we identified the cause
for the above issues and fixed the glitches in the underlying
code. Reporting these identified issues along with their fixes
in Weka and Py-BBN community for further improvement of
the libraries are under progress.

D. Visualization
Maximum benefit from an attack path analysis can be

achieved if a security manager can visualize the attack path and
make appropriate decisions for securing the network topology.
Thus, visualization plays an important role in the attack graph
modeling and attack path analysis. We show our attack path in
an Angular JS [12] based application, where the library used
for rendering the attack graph is Vis.js [13]. Figure 10 and Fig-
ure 11 show the topology and the extended attack graph for the
sample enterprise network respectively. However, the extended
attack graph shown in Figure 11 becomes highly cluttered if
the number of devices and the vulnerabilities associated with
them is large. Due to the scaling issue associated with Vis.js,
the browser times out on rendering attack graphs having nodes
beyond 1500. To overcome the cluttered representation, we
came up with a consolidated view of the attack graph as shown
in Figure 12. Both the attack graphs show the same attack
paths. However, all the vulnerabilities of a device are grouped
into three categories in the consolidated view. These categories
represented by red, yellow and grey colored vulnerability
icons indicate high, medium and low severities respectively.
Each vulnerability icon now shows the count of vulnerabilities
along with the sum (cost) of the marginal probabilities of the
vulnerabilities in that category.

V. EVALUATION

Despite several benefits of modeling the network topology
in a Bayesian network with either Weka or Py-BBN, there are
a few challenges that remain unaddressed. Effective modeling
of the network devices can only help in analyzing moderately
sized networks. However, larger networks still cannot be ana-
lyzed with libraries like Weka and Py-BBN. Figure 13 shows
how the average execution time changes with the number of
nodes in the attack graph. The average execution time roughly
grows in a linear manner with the number of nodes in the
graph. We do not include the edges in the evaluation as the
number of edges depends on the total number of vulnerabilities
in the attack graph. Precisely, the number of edges is twice the
number of vulnerabilities in the attack graph. As the number
of vulnerabilities in each device is random, calculating the
distribution is beyond the scope of this work. Further, we
assume the graph to be sparse. Vis.js, on the other hand,
has its own limitations in rendering graphs. Evaluation of its
performance is shown in Figure 14. When the number of nodes
reaches close to 500, the time taken to render the attack graph
is approximately 50 seconds. Standard browsers like Mozilla
and Chrome timeout after 28 seconds of execution.

VI. CONCLUSION

In this work, we modeled each device of the network
infrastructure as a node in the attack graph for analysing the
overall security of the network. On the other hand, existing

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

Figure 12. Consolidated view of attack graph

Figure 13. Performance of Py-BBN

Figure 14. Performance of Vis.js

works model network services as nodes in the attack graph.
Based on our evaluation we conclude that device level of
modeling of the attack graph is both efficient and sufficient
for attack path analysis. We say so as the number of network
service is considerably greater than the number of devices in
the network. Further, in this work, we identified the challenge
in matching software application name with its corresponding
product name in the NVD feeds. The existing work on attack
path analysis does not discuss this issue. Benthin Sanguino et
al. [7] provide a semi-automated approach to address this prob-
lem. Inspired by this semi-automated approach, we consider
providing an automated approach to address this challenge in
our future work. However, in this current work of attack path
analysis, we use Nessus to address this challenge. We provide
a semi-automatic approach for creating an attack graph by
using device level modeling information and information on
vulnerabilities collected using Nessus. We have also pointed
out practical concerns affecting the scalability of the imple-
mentations of the Bayesian network. Scaling issue with Weka,
which led to NAN and implementation specific bugs in Py-
BBN were identified and fixed. We also plan to report the
issues, along with their fixes to the open source communities
for their further improvement. An attempt to evaluate the
performance of Vis.js library was also made in this paper.

ACKNOWLEDGEMENT
This research is in collaboration with CTI (Center for

Technology Innovation) Laboratory, Hitachi Ltd. Research and
Development group, Yoshida-cho, Totsuka Yokohama, Japan.

REFERENCES
[1] “National Cyber Security Center,” 2018, URL:

https://www.ncsc.gov.uk/topics/cyber-attacks [retrieved: November,
2018].

[2] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs,” in Pro-
ceedings 2002 IEEE Symposium on Security and Privacy May
12–15, 2002, Berkeley, CA, USA. IEEE, Explore Digital Li-
brary, May 2002, ISBN: 0-7695-1543-6, ISSN: 1081-6011, URL:
https://ieeexplore.ieee.org/document/1004377/.

[3] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based net-
work vulnerability analysis,” in Proceedings of the 9th ACM conference
on Computer and communication security(CCS’02) November 18–22,
2002, Washington, DC, USA. ACM, Nov. 2002, pp. 217–224, ISBN:
1-58113-612-9, URL: https://dl.acm.org/citation.cfm?id=586140.

[4] M. Frigault, L. Wang, S. Jajodia, and A. Singhal, “Measuring the
Overall Network Security by Combining CVSS Scores Based on
Attack Graphs and Bayesian Networks,” in Network Security Metrics.
Springer, Cham, Nov. 2017, chapter 1, pp. 1–23, in Network Security
Metrics, Springer, Cham, ISBN: 978-3-319-66505-4,.

[5] L. Munoz-Gonzalez, D. Sgandurra, M. Barrere, and E. Lupu, “Exact
Inference Techniques for the Analysis of Bayesian Attack Graphs,” in
IEEE Transactions on Dependable and Secure Computing. IEEE, 2017,
pp. 1–1, in IEEE Transactions on Dependable and Secure Computing,
ISSN: 1545-5971.

[6] H. Holm, T. Sommestad, and M. Persson, “A quantitative evaluation
of vulnerability scanning,” Information Management and Computer
Security, vol. 19, 2011, pp. 231–247, ISSN: 0968-5227.

[7] L. A. B. Sanguino and R. Uetz, “Software Vulnerability Analysis Using
CPE and CVE,” in arXiv May 15, 2017, Cornell University Library, NY,
USA. arXiv, May 2017, URL: https://arxiv.org/abs/1705.05347.

[8] “National Vulnerability Database,” 2018, URL:
https://www.nist.gov/programs-projects/national-vulnerability-database-
nvd [retrieved: September, 2018].

[9] “tenable: Nessus, Professional,” 2018, URL:
https://www.tenable.com/products/nessus/nessus-professional
[retrieved: September, 2018].

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

[10] “Weka,” 2018, URL: https://www.cs.waikato.ac.nz/ml/weka/ [retrieved:
November, 2018].

[11] “PyBBN,” 2018, URL: https://github.com/vangj/py-bbn [retrieved:
September, 2018].

[12] “AngularJS,” 2018, URL: https://angularjs.org/ [retrieved: November,
2018].

[13] “AngularJS - VisJS,” 2018, URL: https://github.com/visjs/angular-visjs
[retrieved: September, 2018].

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-683-5

CYBER 2018 : The Third International Conference on Cyber-Technologies and Cyber-Systems

