
Vaccine: A Block Cipher Method for

Masking and Unmasking of Ciphertexts’ Features

Ray R. Hashemi

Amar Rasheed

Jeffrey Young

Department of Computer Science

Armstrong State University,

Savannah, GA, USA

e-mails: {rayhashemi, amarrasheed,

alanyoung7}@gmail.com

Azita A. Bahrami

IT Consultation

Savannah, GA, USA

e-mail: Azita.G.Bahrami@gmail.com

Abstract— A ciphertext inherits some properties of the
plaintext, which is considered as a source of vulnerability and,
therefore, it may be decrypted through a vigorous datamining
process. Masking the ciphertext is the solution to the problem.
In this paper, we have developed a new block cipher technique
named Vaccine for which the block size is random and each
block is further divided into segments of random size. Each
byte within a segment is instantiated using a dynamic multi-
instantiation approach, which means (i) the use of Vaccine
does not produce the same masked outcome for the same given
ciphertext and key and (ii) the options for masking different
occurrences of a byte is extremely high. Two sets (100
members in each) of 1K long plaintexts of natural (borrowed
from natural texts) and synthesized (randomly generated from
10 characters to increase the frequency of characters in the
plaintext) are built. For each plaintext, two ciphertexts are
generated using Advanced Encryption System (AES-128) and
Data Encryption Standard (DES) algorithms. Vaccine and two
well-known masking approaches of Cipher Block Chaining
(CBC), and Cipher Feedback (CFB) are applied separately on
each ciphertext. On average: (a) the Hamming distance
between masked and unmasked occurrences of a byte using
Vaccine is 0.72 bits higher than using the CBC, and CFB, and
(b) Vaccine throughput is also 3.4 times and 1.8 times higher
than the throughput for CBC and CFB, correspondingly, and
(c) Vaccine masking strength is 1.5% and 1.8% higher than the
masking strength for CBC and CFB, respectively.

 Keywords- Cyber Security; Masking and Unmasking
Ciphertext; Variable-Block Cipher Vaccination; Masking
Strength

I. INTRODUCTION

 Protecting sensitive electronic documents and

electronic messages from unintended eyes is a critical task.

Such protections are often provided by applying encryption.

However, the encrypted text (ciphertext) is often vulnerable

to datamining. For example, let us consider the plaintext

message of: “The center is under an imminent attack”. The

plaintext may be converted into the following ciphertext

using, for instance, a simple displacement encryption

algorithm: “xligirxvmwyrhivermqqmrirxexxego”. The

features of the plaintext are also inherited by the

ciphertext—a point of vulnerability.

 To explain it further, word “attack” is among the key
words related to security. The characteristics of the word
are: (i) length is six, (ii) the first and the fourth characters
are the same, and (iii) the second and the third characters
are the same. Using these characteristics, one can mine the
given ciphertext and isolate the subtext of “exxego” that
stands for “attack" which, in turn, may lead to decryption of
the entire message.
 More sophisticated encryption modes, such as CBC and
CFB [1][2][3] are not exempt from the inherited-features
problem. The Block cipher techniques that employ
CBC/CFB encryption mode to produce distinct ciphertexts
are vulnerable to information leakage. In the case of
CBC/CFB employing the same Initial text Vector (IV) with
the same encryption key for multiple encryption operations
could reveal information about the first block of plaintext,
and about any common prefix shared by two plaintext
messages. In CBC mode, the IV must, in addition, be
unpredictable at encryption time; in particular, the
(previously) common practice of re-using the last ciphertext
block of a message as the IV for the next message is
insecure (for example, this method was used by SSL 2.0). If
an attacker knows the IV (or the previous block of
ciphertext) before he specifies the next plaintext, he can
check his guess about plaintext of some block that was
encrypted with the same key before (this is known as the
TLS CBC IV attack) [4].
 The logical solution for inherited-features problem is to
mask the ciphertext using a masking mechanism that is
dynamic and supports a high degree of multi-instantiations
for each byte. A dynamic masking mechanism does not
produce the same masked outcome for the same given
ciphertext and the same key. The high degree of multi-
instantiation masking mechanism replaces the n occurrences
of a given byte in the ciphertext with m new bytes such that
m is either equal to n or extremely close to n. The literature
addresses many of these masking techniques [5][6].
 Our goal is to introduce a masking mechanism named
Vaccine that can mask the inherited features of a ciphertext
in the eye of a data miner while providing for
transformation of masked ciphertext into its original form,
when needed. Vaccine will be dynamic and support a high

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

(a)

 p1 p2

(i) Flip

𝑝 1

(ii)
Circular

Swap

 p1 p2 p3 p4 p5 p6 p7 p8

(i) Flip

𝑝 1𝑝 3 𝑝 6𝑝 7

 (ii) Circular

Swap

(b)

degree of multi-instantiations for each byte of data, and has
the following three unique traits, which makes it a powerful
masking mechanism: It (1) divides the ciphertext into
random size blocks, (2) divides each block into random size
segments, and (3) every byte within each segment is
randomly instantiated into another byte. All three traits are
major departures from the norm of masking mechanisms.
 The rest of the paper is organized as follows. The
Previous Works is the subject of Section 2. The
Methodology is presented in Section 3. The Empirical
Results are discussed in Section 4. The Conclusions and
Future Research are covered in Section 5.

II. PREVIOUS WORKS

 Masking the features of a ciphertext that are either
inherited from the plaintext or generated by the encryption
scheme itself is the essential step in protecting a ciphertext.
The block cipher and stream cipher mode of operations
provides for such a step. We are specifically interested in
CBC [7][8][9] and CFB [10] as samples of the block cipher
and stream cipher mode of operations. They are to some
degree comparable to the proposed Vaccine.
 CBC divides the ciphertext into fixed–length blocks
and masks each block separately. The use of fixed-length
block demands padding for the last partial block of the
ciphertext, if the latter exist. The CBC avoids generating
the same ciphertext when the input text and key remain the
same by employing an Initial text Vector (IV). CFB
eliminates the need for possible padding of the last block
(that is considered vulnerability for CBC [11]) by assuming
the unit of transmission is 8-bits. However, CFB also uses
IV for the same purpose that it was used by CBC. In
contrast, Vaccine splits the ciphertext into the random size
blocks and then divides each block into segments of random
size. Masking each pair of segments is done by using a pair
of randomly generated patterns. As a result, Vaccine needs
neither padding nor IV. The randomness of the block size,
segment size, and patterns used for instantiation of a given
character are the major departure points of Vaccine from the
other block and stream cipher approaches.

 III. METHODOLOGY

 We first present our methodology for instantiation of a
byte, which contributes into dynamicity of Vaccine and then
introduce our methodology for building Vaccine. The
details of the two methodologies are the subjects of the
following two subsections.

A. Instantiation

 Instantiation is the replacement of a byte, c, by another
one, c’, such that c’ is created by some modifications in c.
To perform the instantiation, we present our two methods of
Self-substitution and Mixed-Substitution. Through these
methods, a number of parameters are introduced that are
referred to as the masking parameters. At the end of this
subsection, we present the masking parameters as a profile
for the patterns suggested by the substitution methods.

 1) Self-Substitution: Consider byte 10011101 and let us

(i) pick two bits in positions p1 and p2 such that p1  p2, (ii)
flip the bit in position p1, and (iii) swap its place with the bit
in position p2—Two-Bit-One-Flip-Circular-Swap technique.
 It is clear that the pairs (p1=1, p2=7) and (p1=7, p2=1)
create different instances for the byte. Therefore, the order
of p1 and p2 is important. The number of possible ways
selecting a pair (p1, p2) from the byte is 7*8=56, which
means a byte may be instantiated by 56 possible different
ways using Two-Bit-One-Flip-Circular Swap technique.
The technique name may be generalized as K-R-Bit-M-Flip-
Circular-Swap. For the above example K=2 and M=1, as
shown in Figure 1. (We introduce the parameter R shortly.)
 One may pick 3-bits (K=3) to instantiate the byte. Let
us assume 3 bits randomly selected that are located in the
positions p1, p2, and p3. There are many ways that M-Flip-
Circular-Swap technique can be applied:

a. (One-Flip-Circular-Swap) Flip one of the three bits and
then make a circular swap among p1, p2, and p3.

b. (Two-Flip-Circular-Swap) Flip two out of the three bits
and then apply circular swapping.

c. (Three-Flip-Circular-Swap) Flip all three bits and then
apply circular swapping.

The number of possible combinations grows to 5040.

Figure 1. K-Bit-M-Flip-Circular-Swap Technique: (a) K=2 and M=1 and

(b) K=8 and M=4

 Using K-R-Bit-M-Flip-Circular-Swap for all possible
values of K (K=2 to 8) and M (M=1 to K-1) generates the
total of (X=1,643,448) possible substitutes for a given byte.
If either K or M is equal to zero then, the self-substitution
has not been enforced and in this case X=1 (the byte itself).
Now, we explain the role of parameter, R (where, R is a
byte long).
 Let us refer to the case of K=2 and M=1 one more time
that is able to facilitate the generation of 56 possible number
of instantiations of a given byte using all the possible pairs

of (p1=, p2=). That is, the two positions of p1 and p2 could

have any value from 1 to 8 as long as p1p2. What if one is
only interested in those instantiations resulting from the

pairs of (p1=3, p2=), which by definition also includes

instantiations resulting from the pairs of (p1=, p2=3). The
chosen value (bit) of interest for p1 is a value from 1 to 8
that is expressed by setting the bit of interest in R. The
number of bits that are set to “1” in R is always equal to M.
For our example, R=“00000100”.

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

 The pairs represented by (p1=v, p2=) are the set of
seven pairs of {(p1=v, p2=1), . . ., (p1=v, p2=8)}. The seven
pairs are named the primary set for the primary signature of

(p1=v, p2=). The (p1=*, p2=v), which is a tweaked version

of (p1=, p2=v) is the Complementary signature of (p1=v,

p2=) and stands for the other set of seven pairs {(p1=8,
p2=v), . . ., (p1=1, p2=v)}. These seven pairs make the
complementary set for (p1=*, p2=v). (Values of p1, in the
complementary set, are in reverse order of values of p2 in
the primary set.)
 The primary and complementary sets also referred to as
the primary sub-pattern and complementary sub-pattern,
respectively. The two sub-patterns collectively make a
pattern and (K=2, M=1, R=“00000100”) is the pattern’s
profile.
 The profile of (K=4, M=3, R=“00001011”) means four
bits are chosen from the byte out of which three bits (M=3)
in positions 1, 2, and 4 are the positions of interest (p1=1,
p2=2, p3=4.) Therefore, the primary signature and the
Complementary signatures are, respectively, defined as

(p1=1, p2=2, p3=4, p4=) and (p1= *, p2=2, p3=4, p4=1). It is
clear that M cannot be equal to K, because, when M= K, the
primary and complementary sets are the same and they have
only one member.
 When none of the bits in R is set to “1”, it means R has
not been enforced. In this case, we have one pattern.
However, to apply Vaccine, we need to determine the
primary and complementary sets for this pattern, which is
provided by default value of R (i.e., R with its M least
significant bits set to “1”.)

 2) Mixed-Substitution: In a nutshell, the instantiation
of the given byte, c, and each key byte are done separately.
One of the instantiated key bytes is selected as the key
image and the final instance of c is generated by XORing
the key image and the instantiated c. The details are cited
below.
 Application of self-substitution with masking
parameters of (K, M, and R) on a given byte generates the
primary and the complementary sub-patterns of (𝑢𝑝

1 . . . 𝑢𝑝
𝑛)

and (𝑢𝑐
𝑚 . . . 𝑢𝑐

1). The subscripts p and c stand for these two
sub-patterns and there are n and m members in the p and c
sub-patterns, respectively. The key byte Bj is instantiated
into another byte using the self-substitution with masking
parameters of (Kj, Mj, and Rj, for j=1 to 4). Application of
self-substitution on the individual four bytes of the key (B1 .
. . B4) generates the primary and the complementary sub-
pattern for each byte as follows:

(𝑢𝑝
1𝐵1 . . . 𝑢𝑝

𝑛1𝐵1) and (𝑢𝑐
𝑚1𝐵1 . . . 𝑢𝑐

1𝐵1),

(𝑢𝑝
1𝐵2 . . . 𝑢𝑝

𝑛2𝐵2) and (𝑢𝑐
𝑚2𝐵2 . . . 𝑢𝑐

1𝐵2),

(𝑢𝑝
1𝐵3 . . . 𝑢𝑝

𝑛3𝐵3) and (𝑢𝑐
𝑚3𝐵3 . . . 𝑢𝑐

1𝐵3), and

(𝑢𝑝
1𝐵4 . . . 𝑢𝑝

𝑛4𝐵4) and (𝑢𝑐
𝑚4𝐵4 . . . 𝑢𝑐

1𝐵4).
 A byte, say c1, using the first member of the primary
sub-pattern, 𝑢𝑝

1 , is instantiated to c1’. The first byte of key,

B1, using its first member of the primary sub-pattern, 𝑢𝑝
1𝐵1 ,

is instantiated to B1’. The other three bytes are also
instantiated into B2’, B3’, and B4’ using their first member of

the primary sub-patterns, 𝑢𝑝
1𝐵2 , 𝑢𝑝

1𝐵3 , 𝑎𝑛𝑑 𝑢𝑝
1𝐵4, respectively.

The Hamming distance of HD(c’, Bj’), for j=1 to 4, are
measured and B’=Argmax[HD(c’, Bj’), for j=1 to 4] is the
key image. In the case that there are ties, the priority is
given to the instantiated byte of B1, B2, B3, and B4 (and in
that order.) The final substitution for c1 is:

c1’’=(c1’  B’) (1)
 The next byte, c2, within a given segment of ciphertext
is instantiated to c2’ using 𝑢𝑝

2 , and key bytes of B1, B2, B3,

and B4 are instantiated to B1’, B2’, B3’, and B4’

using𝑢𝑝
2𝐵1 , 𝑢𝑝

2𝐵2 , 𝑢𝑝
2𝐵3 , 𝑎𝑛𝑑 𝑢𝑝

2𝐵4 , respectively.

 B’=Argmax[HD(c’, Bj’), for j=1 to 4] and c2’’=(c2’
B’). The process continues until the segment of the
ciphertext is exhausted. The bytes of the next sub-list and
the key bytes are instantiated using the complementary sub-
patterns. Therefore, the sub-patterns are alternatively used
for consecutive segments of the ciphertext.
 Using the mixed substitution, the number of possible
combinations for each key byte is equal to X and for the key
of four bytes is X

4
 (>1.19*10

31
 combinations.) Reader

needs to be reminded that the four-byte key may be
expanded to the length of N bytes for which the outcome of
XOR is one of the X

N+1
 possible

combinations. For N=16

(128-bit key) The XOR is one of the X
17

 possible
combinations (>4.65*10

105
.)

 3) Patterns’ Profile: Considering both self and mixed
substitutions, the masking parameters grow to fifteen: (K,
M, and R) for the instantiation of a byte of segment and (Kj,
Mj, and Rj, for j=1 to 4) for instantiation of the four bytes of
the key. Therefore, a pattern profile includes the fifteen
parameters, which are accommodated by a 96-bit long
binary string as described below.
 Since the possible values for each of the parameters K
and Kj is nine (0 through 8), the value of each parameter can
be accommodated by 4 bits (the total of 20 bits). The
parameters M and Mj have eight possible values (1 through
8) and each parameter can be accommodated by 3 bits (the
total of 15 bits). The parameters R and Rj need eight bits
each (the total of 40 bits). In addition, we use sixteen bits as
the Flag bits and another five bits as the Preference bits.

 The flag bits represent a decimal number () in the
range of (0: 65,535). Let us assume that the length of the
ciphertext that is ready to be masked is Lct. Three bytes of
f1, f2, and f3 of the ciphertext are flagged which are in

locations: 1= , 2= Lct/2+/2, and 3=Lct - , where,  is
calculated using formula (2)

 ={
 ∆ 𝑀𝑜𝑑 𝐿𝑐𝑡 , ∆ > 𝐿𝑐𝑡
𝐿𝑐𝑡 𝑀𝑜𝑑 ∆, ∆  𝐿𝑐𝑡

 (2)

The flagged bytes will not be masked during the vaccination
process and they collectively make the native byte of

F=(f1f2f3). Since the length of the ciphertext and the
length of its masked version remain the same there is no
need for including the length of the ciphertext in the profile.
The question of why the flagged bytes are of interest will be
answered shortly.
 The purpose of preference bits is to build a model
which is influenced by both the key and flagged bytes. The

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

model is used to create variable length blocks and segments.
To build the model, a desired byte number (z) of the key is
identified by the four least significant bits of the preference
bits. That is, one can select any byte from a a maximum of
16-byte long key. (If a longer than 16-byte key is used, the
number of bits for the preference bits needs to be increased.)
The key is treated as circular and the two pairs of bytes of
A1=(z+1||z) and A2=(z+2||z-1) are selected from key. A new

pair of bytes of A3=A1A2(F||F) is built. If the most
significant bit of the preference bits is set to zero then,

model is A3; otherwise, the model is a1a2, where, a1 and a2
are the pair of bytes in A3.
 Let us assume that there are two similar ciphertexts of
CT1 and CT2 and we are using the same key and the same
profile to mask the two ciphertexts, separately, using
Vaccine. As long as one of the three flagged bytes in CT1
and CT2 is different the native bytes and, therefore, the
models of the two ciphertexts are different and so their
masked versions. This is one of the major advantages of
Vaccine.
 To summarize, the number of bits needed for the
pattern profile is 96 bits (or 24 hex digits.) Dissection of a
pattern profile is shown in Figure 2. The 24 hex digits
representing the pattern profile along with eight hex digits
representing the key may be sent to the receiver in advance
or they may hide in the masked ciphertext itself:

a. In a predefined location/locations,
b. In location/locations determined by the internal

representation of the key following some formula(s), or
c. A mixture of (a) and (b).

Figure 2. Dissection of the pattern’s Profile of Interest

B. Vaccine

 Vaccine is a variable-block cipher methodology
capable of masking and unmasking a ciphertext. The details
of masking and unmasking of Vaccine are presented in the
following next two subsections.

 1) Masking of the Ciphertext: Vaccine as a masking
mechanism is able to mask the features of a ciphertext in the
eye of a text miner. Vaccine: (1) divides the ciphertext into
random size blocks, (2) each block, in turn, is divided into a

number of segments such that the length of each segment is
random, and (3) every byte within each segment is
randomly instantiated to another byte using self and mixed
substitutions. The masking process is presented shortly and
it is encapsulated in algorithm Mask shown in Figure 3.
 The algorithm is made up of four sections. In section
one, (Step 1 of the algorithm) the profile is dissected to
extract masking parameters and they, in turn, generate
primary and complementary sub-patterns for five
patterns:(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝

0 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐
0), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝

𝐵1 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐
𝐵1),

(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝐵2 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐

𝐵2), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝐵3, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐

𝐵3), and

(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝐵4

 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐
𝐵4) used for masking the chosen byte

of the ciphertext and the four key bytes, respectively. The
array of pt with five elements keeps track of those primary
and complementary sub-patterns of the five patterns that are
in use. The model is also extracted in this step.

Figure 3. Algorithm Mask

Algorithm Mask

Input: A 32–bit key, a pattern’s profile of 96-bit, and a

ciphertext, CT.
Output: Delivering IC as the masking version of CT.

Method:

 Step1- //Dissection of the profile and initializations
 Dissection delivers primary and secondary sub-patterns of

five patterns (𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
0

, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐
0), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝

𝐵1
,

𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐
𝐵1), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝

𝐵2
, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐

𝐵2), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝐵3

,

𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐
𝐵3), and (𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝

𝐵4
, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑐

𝐵4).

 ←Model obtained by using Preference bits, Flag bits,

and key;
 IC ← “”; C ← CT;

pt[5]← 0;//pt gives turn to the primary (pt[]=0) and

complementary (pt[] =1) sub-patterns of the five
patterns for initializing the CurrentP [5];

Step 2-Repeat until C is exhausted

a- Get the set of decimal numbers from  in ascending
order: D ={d1, d2, . . . dy-1, dy};

 Get the next random size block,

 n,=Substr(C, 0, dy);
b- CL = 0; //Current location in C

c- Repeat for i =1 to y-1

 //Divide n into y-1 segments;

si = Substr(n, CL, di - CL);

CL = CL+ di;

CurrentP[m]=𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝𝑡
𝑚 //for m =0 to 4;

d- Repeat for each byte, cj, in si

 d1- If (cj is a flagged byte) Then continue;

d2- If (CurrentP[0] is exhausted)

 Then CurrentP[0] = 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝𝑡
0 ;

 d3- cj’ = Flip cj bits using CurrentP[0];

 d4- cj’ = Circularly swap proper cj bits using
CurrentP[0];

d5- σ = Select(cj’, CurentP[1],

CurrentP[2],CurrentP[3],CurrentP[4]);

d6- a = cj’  σ;

d7- IC←IC || a;

End;

 pt[]++; pt[] ← pt[] mode 2;

 End;

 e- Remove block n from C;

 f- Apply one-bit-left-rotation on ;

End;

End;

Profile: (8800510043228408000021C0)16

(10001000000000000101000100000000010000110010

001010000100000010000000000000000000001000011

1000000)2

A 4-byte Key: (ABC9023D)16

 10001 0000000000001010 0010 000 00000100

Preference bits Flag bits K=2 M=1 R=3

 0011 001 00010100 0000 000 00000000

 K1=3 M1=2 R1 =3 & 5 K3=0 M3=1 R3=0

 0010 000 00100000 0100 001 11000000

 K2=2 M2=1 R2 = 6 K4=4 M4=2 R4=7 & 8

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

 The second section (Step 2.a of the algorithm)

identifies a random size block prescribed by —the model.
The identification process is done by creating y binary

numbers using . The i-th binary number starts from the

least significant bit of the  and ends at the bit with the i-th

value of “1” in . The binary numbers are converted into
decimal numbers and sorted in ascending order, {d1, d2, . . .

dy-1, dy}. The block, n=Substr(C, 0, dy), where C is initially
a copy of the cipher text.
 The third section (Step 2.c of the algorithm) divides

block n into a number of random size segments. The size

and the number of segments are dictated by  internal

representation. Block n has y segments: { s0 . . .sy-1}.
 The segment si starts from the first byte after the
segment si-1 (the location is preserved in variable CL) and
contains λi=di+1 – di bytes. The number of segments and
their lengths are not the same for different blocks.

 To get the next block of the ciphertext, the block n is

removed from C (Step 2.e) and  is changed by having a
one-bit-left-rotation (Step 2.f). Using the above process

along with new , the next block with a different size is
identified. This process continues until C is exhausted. It
is clear that the lengths of blocks are not necessarily the
same. In fact, the lengths of blocks are random. It needs to

be mentioned that length of the block i and i+8 are the

same when  is one byte long. When  is two bytes long,

the length of the block i and i+16 are the same. And a block
on average is 32,768 bytes long. As a result, the ciphertext,
on average, must be longer than 491,520 bytes before the
blocks’ lengths are repeated.

Figure 4. Algorithm Select

 The fourth section (Step 2.d of the algorithm) delivers
the masked version of the ciphertext, byte by byte, for a
given segment. Flagged bytes are not masked (Step 2.d1).
If the number of bytes in the segment si is greater than the
cardinality of the pattern then, the pattern repeats itself
(Step 2.d2). Each byte, cj, of the segments si (for i=1 to y-1)
are masked by applying (i) the relevant member of the
current sub-pattern on byte cj (Step 2.d3 and 2.d4), (ii)
identifying the key image (Step 2.d5), by invoking the
Algorithm Select (Figure 4), (iii) create cj’, the masked
version of the cj, by XORing the outcome of process (i) and

process (ii), (Step 2.d6), and (iv) concatenate the masked
version of the cj, to string of IC which ultimately becomes
the inoculated version of the inputted ciphertext (Step 2.d7).

 2) Unmasking of the Ciphertext: For unmasking a
masked ciphertext, those steps that were taken during the
masking process are applied in reverse order. Therefore, the
Algorithm Mask with a minor change in step 2.d can be
used for unmasking. We show only the changes to Step d of
Figure 3 in Figure 5.

Figure 5. The modified part of the Algorithm Mask

IV. EMPIRICAL RESULTS

 To measure the effectiveness of the proposed Vaccine,
we compare its performance with the performance of the
well-established masking algorithms of CBC and CFB. The
behavior of Vaccine was observed using three separate
profiles of simple, moderate, and complex. These
observations are named VACs, VACm, and VACc.
 Two plaintext templates of natural and synthetic were
chosen and 100 plaintexts were generated for each template.
Each plaintext following the first template was selected
from a natural document made up of the lower and upper
case alphabets and the 10 digits—total of 62 unique
symbols. Each plaintext following the second template was
randomly synthesized using the10 symbols set of {A, b, C,
L, x, y, 0, 4, 6, 9}. The goal was to synthesize plaintexts
with high occurrences of a small set of symbols. Each
plaintext created under both templates was 1K bytes long.
 For each plaintext, two ciphertexts of Ca and Cd were
generated using Advanced Encryption System (AES-128)
and Data Encryption Standard (DES) algorithms
[12][13][14]. The masking approaches of CBC, CFB,
VACs, VACm, and VACc were applied separately on Ca and
Cd generating the masked ciphertexts of:

 {𝐶𝑎
𝑐𝑏𝑐 , 𝐶𝑎

𝑐𝑓𝑏
, 𝐶𝑎

𝑣𝑎𝑐𝑠 , 𝐶𝑎
𝑣𝑎𝑐𝑚 , 𝐶𝑎

𝑣𝑎𝑐𝑐} and

 {𝐶𝑑
𝑐𝑏𝑐 , 𝐶𝑑

𝑐𝑓𝑏
, 𝐶𝑑

𝑣𝑎𝑐𝑠 , 𝐶𝑑
𝑣𝑎𝑐𝑚 , 𝐶𝑑

𝑣𝑎𝑐𝑐}.

 When CFB applied on Ca and Cd the key lengths were
64-bit and 128-bit, respectively, and IV chosen from a
natural document. (The least significant 64 bits of the 128-
bit key was used as the key when CFB was applied on Ca.
The key used by VACs, VACm, and VACc was also
borrowed from the least significant 32 bits of the 128-bit
key used for CFB.)
 Let us consider the first set of masked ciphertexts

 {𝐶𝑎
𝑐𝑏𝑐, 𝐶𝑎

𝑐𝑓𝑏
, 𝐶𝑎

𝑣𝑎𝑐𝑠 , 𝐶𝑎
𝑣𝑎𝑐𝑚 , 𝐶𝑎

𝑣𝑎𝑐𝑐} generated from Ca. The
following steps are used to compare the effectiveness of the
proposed Vaccine with CBC and CFB. (The same steps are

d- Repeat for each byte, cj’, in si

d1- If (cj is a flagged byte) Then continue;

d2- If (CurrentP[0] is exhausted) Then CurrentP[0] = 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝𝑡
0 ;

d3- σ = Select(cj’, CurentP[1], CurrentP[2], CurrentP[3], CurrentP[4];

d4-  = cj’  σ;

d5-  = Circularly swap bits of  using CurrentP[0];

d6-  = Flip a bits using CurrentP[0];

d7- UM←UM||; //UM is the unmasked ciphertext;

End;

Algorithm Select

Input: A byte (c), Key, and four patterns for the four key bytes.
Output: key image, k.

Method:

a. Repeat for (w = 1 to 4)
If (CurrentP[w] is exhausted)

Then CurrentP[w] = 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝𝑡
𝑤 ;

End;
b. h ← -1;

c. Repeat for v= 1 to 4;

i. cv ← An instantiated version of KeyBytev using
related sub-pattern.

ii. If HD(c, cv) >h //HD is Hamming distance function

Then h = HD(c, cv); k = cv;
 End;

End;

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

also followed to compare the effectiveness of the proposed
Vaccine with CBC and CFB using the masked ciphertexts

of {𝐶𝑑
𝑐𝑏𝑐, 𝐶𝑑

𝑐𝑓𝑏
, 𝐶𝑑

𝑣𝑎𝑐𝑠 , 𝐶𝑑
𝑣𝑎𝑐𝑚 , 𝐶𝑑

𝑣𝑎𝑐𝑐}.)
a. Get the list of unique symbols that the plaintext is made

up of, List={1 . . . m }.

b. Get the frequency of symbol i, for i = 1 to m, and
calculate the average frequency of the symbols.

c. Repeating the next two steps for every symbol, i, in the
list.

d. Identify the locations for all the occurrences of the

symbol, i, in the plaintext, (ℓ
i
1 . . . ℓ

i
n).

e. Identify the bytes in the locations of (ℓ
i
1 . . . ℓ

i
n) within

the 𝐶𝑎
 and calculate the Hamming distance, hj, between

the two bytes in location ℓj, for j=1 to n, in the plaintext
and 𝐶𝑎

. The overall average of Hamming distance for

the symbol i is hi =Average(h1 . . . hn),
f. Concluding that the underline masking methodology

with the highest average values of the Hamming
distances have a superior performance.

 The outcome of applying the above steps on the

ciphertexts of {𝐶𝑎
𝑐𝑏𝑐 , 𝐶𝑎

𝑐𝑓𝑏
, 𝐶𝑎

𝑣𝑎𝑐𝑠 , 𝐶𝑎
𝑣𝑎𝑐𝑚 , 𝐶𝑎

𝑣𝑎𝑐𝑐} and

 {𝐶𝑑
𝑐𝑏𝑐, 𝐶𝑑

𝑐𝑓𝑏
, 𝐶𝑑

𝑣𝑎𝑐𝑠 , 𝐶𝑑
𝑣𝑎𝑐𝑚 , 𝐶𝑑

𝑣𝑎𝑐𝑐} are shown in Table 1.a

and Table 1.b. We have also used the system clock to
calculate the average throughput (in millisecond) for the
masking approaches of CBC, CFB, VACs, VACm, and
VACc and reported in Tables 2.a and 2.b.

TABLE I. AVERAGE OF HAMMING DISTANCES BETWEEN THE
TWO 100 PLAINTEXTS OF 1K BYTE LONG (GENERATED
BY TWO TEMPLATES) AND THEIR RELATED MASKED
CIPHERTEXTS: (A) ENCRYPTED BY AES AND (B)
ENCRYPTED BY DES

Tem.

Avg.

Symb.

Freq.

AES-128

CBC CFB128 VACs VACm VACc

Dist. Dist. Dist. Dist. Dist.

Syn. 103 3.568 3.570 4.415 4.373 4.411

Natu. 16.5 3.569 3.561 4.423 4.361 4.411

(a)

Tem.

Avg.

Symb.

Freq.

DES

CBC CFB64 VACs VACm VACc

Dist. Dist. Dist. Dist. Dist.

Syn. 103 3.527 3.526 4.182 4.153 4.223

Natu. 16.5 3.513 3.515 4.176 4.141 4.221

(b)

 In addition, a masking strength of  (0 <  < 1), is

introduced that is defined as =Ninst / Nocc, where Ninst is the
number of unique bytes in the masked ciphertext
representing the instantiations of the Nocc occurrences of

symbol i in the underlying plaintext of the masked
ciphertext. The masking strength for CBC, CFB, VACs,
VACm, and VACc are presented in Tables 3.a and 3.b.

V. CONCLUSIONS AND FUTURE RESEARCH

 The performance of the presented new cipher block
approach, Vaccine, for masking and unmasking of

ciphertexts seems superior to the performance of the well-
known masking approaches of CBC and CFB.

TABLE II. THROUGHPUT AVERAGE IN MILISECOND FOR THE
TWO 100 PLAINTEXTS OF 1K BYTE LONG (GENERATED
BY TWO TEMPLATES): (A) ENCRYPTED BY AES AND
(B) ENCRYPTED BY DES

Tem.

Avg

Symb.

Freq.

AES-128

CBC CFB128 VACs VACm VACc

TPut. TPut. TPut. TPut. TPut.

Syn. 103 4545 11111 25000 33334 20000

Natu. 16.5 12500 10000 16667 20000 12500

(a)

Tem.

Avg

Symb.

Freq.

DES

CBC CFB64 VACs VACm VACc

TPut. TPut. TPut. TPut. TPut.

Syn. 103 3846 11111 20000 25000 14286

Natu. 16.5 10000 10000 14286 20000 11111

(b)

TABLE III. AVERAGE MASKING STRENGTH FOR THE TWO 100
PLAINTEXTS OF 1K BYTE LONG (GENERATED BY TWO
TEMPLATES): (A) ENCRYPTED BY AES AND (B)
ENCRYPTED BY DES

Tem.

Avg.

Symb.

Freq.

AES-128

CBC CFB128 VACs VACm VACc

    

Syn. 103 0.506 0.486 0.451 0.540 0.571

Natu. 16.5 0.882 0.878 0.845 0.890 0.889

(a)

Tem.

Avg.

Symb.

Freq.

DES

CBC CFB64 VACs VACm VACc

    

Syn. 103 0.501 0.494 0.490 0.564 0.570

Natu. 16.5 0.878 0.894 0.880 0.909 0.893

(b)

 The advantages of Vaccine over CBC and CFB are
numerated as follows:
a. The key and patterns’ profile may hide in the masked

ciphertext.
b. The block size for Vaccine is not fixed and it is selected

randomly.
c. Each block is divided into segments of random size.
d. The masking pattern changes from one byte to the next

in a given segment.
e. Masking a ciphertext using Vaccine demands mandatory

changes in the ciphertext. Therefore, the identity
transformation could not be provided through the
outcome of Vaccine. The simple proof is that the
Hamming weight is modified.

f. The results revealed that on average:
i. The Hamming distance between masked and

unmasked occurrences of a byte using Vaccine is
0.72 bits higher than using CBC and CFB.

ii. Vaccine throughput is 3.4 times and 1.8 times higher
than throughput for CBC and CFB.

iii. Vaccine masking strength is 1.5% and 1.8% higher
than masking strength for CBC and CFB.

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

iv. VACm masking strength is 3.6% and 3.7% higher
than masking strength for CBC and CFB. And VACc
masking strength is 3.9% and 4.2% higher than
masking strength for CBC and CFB.

 As the future research, building a new version of
Vaccine is in progress to make the throughput and the
masking strength of the methodology even higher. In
addition, the use of Vaccine in a parallel processing
environment also will be investigated. In addition, a
feasibility study for using Vaccine as an authentication
method is in progress.

REFERENCES

 [1] A. A. Rasheed, M. Cotter, B. Smith, D. Levan, and S. Phoha,
“Dynamically Reconfigurable AES Cryptographic Core for
Small, Power Limited Mobile Sensors", The 35th IEEE
International Performance Computing and Communication
Conference and Workshop, pp. 1-7, 2016.

[2] G. P. Saggese, A. Mazzeo, N. Mazzocca and A. G. M.
Strollo, “An FPGA-based performance analysis of the
unrolling, tiling, and pipelining of the AES algorithm”, LNCS
2778, pp. 292-302, 2003.

[3] N. Pramstaller and J. Wolkerstorfer, “A Universal and
Efficient AES Co-processor for Field Programmable Logic
Arrays”, Lecture Notes in Computer Science, Springer,
Vol.3203, pp. 565-574, 2004.

[4] B. Moeller. Security of CBC Cipher suites in SSL/TLS:
Problems and Countermeasures. [Online]. Available from:
https://www.openssl.org/~bodo/tls-cbc.txt

[5] W. Stallings, “Cryptography and Network Security:
Principles and Practice”, Pearson, 2014.

[6] C. A. Henk and V. Tilborg, “Fundamentals of Cryptology: “A
Professional Reference and Interactive Tutorial”, Springer
Science & Business Media, 2006.

[7] N. Feruson, B. Schneier, and T. Kohno, “Cryptography
Engineering: Design Principles and Practical Applications”,
Indianapolis: Wiley Publishing, Inc., pp. 63-64, 2010.

[8] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and L. W.
Tuchman, "Message Verification and Transmission Error
Detection by Block Chaining", US Patent 4074066, 1976.

[9] C. Kaufman, R. Perlman, and M. Speciner, “Network
Security”, 2nd ed., Upper Saddle River, NJ: Prentice Hall,
p. 319, 2002.

[10] National Institute of Standards and Technology
(NIST), Advanced Encryption Standard (AES), Federal
Information Processing Standards Publications 197
(FIPS197), Nov. 2001.

[11] S. Vaudenay, “Security Flaws Induced by CBC Padding —
Applications to SSL, IPSEC, WTLS....”, Lecture Notes in
Computer Science, Springer, vol. 2332, pp. 534-546, 2002.

[12] H. Kuo-Tsang, C. Jung-Hui, and S. Sung-Shiou, "A Novel
Structure with Dynamic Operation Mode for Symmetric-Key
Block Ciphers", International Journal of Network Security &
Its Applications, Vol. 5, No. 1, p. 19, 2013.

[13] H. Feistel, “Cryptography and Computer Privacy", Scientific
American, Vol. 228, No. 5, pp 15–23, 1973.

[14] F. Charot, and E. Yahya, and C. Wagner, “Efficient Modular-
Pipelined AES Implementation in Counter Mode on
ALTERA FPGA”, (FPL 2003), Lisbon, Portugal, pp. 282-
291, 2003.

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

