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Abstract—In this paper we discuss a solution to detect data 

leaks in an intelligent and furtive way through a real time 

analysis of the user’s behaviour while handling classified 

information. Data is based on experiences with real world use 

cases and a variety of data preparation and data analysis 

techniques have been tried. Results show the feasibility of the 

approach, but also the necessity to correlate with other security 

events to improve the precision. 
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I.  INTRODUCTION  

The evolution of technology and Information Systems 
has opened a phenomenal new world of possibilities for 
companies and organizations all over the globe, more 
dependent on data then ever. As an example, the advent of 
the Internet and development of distributed systems brought 
about  the Cloud, which makes information accessible 
wherever the user is and whenever the user wants, as long as 
there is a connect to the service. However, this flexibility 
comes with some new threats related with the level of 
information exposure. Data leaks became one main concern 
a company can face. In the 2015 Cost of Data Breach Study: 
Global Analysis [1], which considers 350 companies in 11 
countries, it is stated that 3.79 million dollars is the average 
total cost of data breaches, with a 23% increase since 2013. 
This study also points out that 47% of data leak incidents 
reported by the enquired companies are related to insider 
attacks. 

To address data breaches, organizations have invested 
billions over the years mainly to secure their network 
perimeter with Firewalls and Intrusion Detection/Prevention 
systems, among other technologies. These solutions are by 
far insufficient, as corporate information keeps going out of 
the secure perimeter. As such, companies are now focusing 
on the concept of data-centric information protection [2]. 
RigthsWATCH [3], developed by Watchful Software, is an 
implementation of that concept. This type of system creates a 
protective bubble around data itself, implementing 
authorization rules defined by a given set of security policies. 
Besides, it also helps when a careless employee accidentally 
leaks information to the outside. However, as powerful and 
convenient it is, data-centric information protection is useless 
against a premeditated internal attack.  

For this reason, behaviour analysis becomes an important 
concept to fight data leaks. By taking logged information 
about user interaction with protected data, it should be 
possible to create a behavioural profile, which can be used as 
a base of comparison during future interactions. In this 
paper, a framework for data leak detection through user 
behavior analysis is proposed. The framework collects 
RightsWATCH users’ logs, crafting an individual 
behavioural profile from them. We then explored the 
capacity to distinguish between normal and abnormal 
behaviour. The research described here is part of the 
RightsWATCH development project. 

This paper is organized into six main sections, the first of 
which is this introduction. The second section discusses the 
state of the art regarding Intrusion Detection systems, 
focusing mainly on Anomaly Detection. The third section 
provides a more detailed view of the proposed framework’s 
architecture, and the fourth section describes the 
experimental environment. The fifth section discusses the 
obtained results, while the sixth and final section gathers the 
final conclusions and thoughts. 

 

II. STATE OF THE ART 

An intrusion detection system (IDS) is a tool capable of 
detecting possible security breaches on a system, by 
gathering and analysing security events. It can be designed to 
work with a wide range of information, such as logs from 
different sources (firewalls, OSs, etc.), application usage 
data, keyboard inputs, or network data packets. According to 
[4], an intrusion detection system should provide the 
following security functions: it has to monitor the computer 
or network, to detect possible threats and to respond to the 
possible intrusions. 

Axelsson [5] developed a generalized IDS model, which 
is shown in Fig. 1: solid arrows represent data/control flow, 
while dotted arrows indicate a possible intrusion response. 
Axelsson’s model is useful to describe the general, high level 
behaviour of an IDS, but a complete characterization and 
classification goes beyond this simple architecture, mainly 
due to the diverse technologies that can be implemented. Fig. 
2 presents a more complete classification [6]. 
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Figure 1. Generic model of an intrusion detection system. 

 

 
Figure 2. Characterization and classification of IDS. 

 
This classification considers only the functional attributes 

of intrusion detection systems. But there is a non-functional 
one that should also be considered, the usage frequency [7], 
which is useful to distinguish an IDS from a scanner used for 
security assessment - the usage frequency provides a fair 
distinction between the two.  

Each attribute has a very specific meaning, and is deeply 
related to the system purposes. 

A. Architecture 

The IDS architecture should be idealized considering 
three relevant factors: The source of the data to be analysed, 
the way tasks are being distributed and the processing 
components [6]. It is, as such, divided into two different 
categories: scope and location. Regarding its scope, an IDS 
can be host based (HIDS), network based (NIDS) or a 
hybrid system, comprising characteristics of both types. 

Host based intrusion detection systems collect and 
analyse data from a single host. The detection software 
installed on the host is commonly known as agent. It can 
monitor a wide range of activities, such as application logs, 
changes in the file system, system integrity, use of resources, 
user access and interaction with the system, among many 
others.  

Agents are developed to monitor servers, hosts, or even 
applications services. Due to the variety of implementations, 
de Boer and Pels consider four different main HIDS 
categories in [8]: Filesystem monitors, logfile analysers, 
connection analysers and kernel monitors.   

The NIDS collects and analyses data from a network and 
usually focuses on the TCP/IP protocol. Data packets are 
sniffed through sensors positioned on “mission critical” 
spots. Sensors can be of two types [9]: appliance and 
software only. 

In [9], the author describes some of the events detected 
by most of the NIDS: Application/Transport/Network layer 
reconnaissance and attacks, unexpected application services 
and policy violations. 

The “location” in Fig. 2 refers to the placing of all the 
different modules that compose the IDS, comprising three 
types: centralized, where there is only one system (the 
manager) responsible for event analysis, detection, 
classification and system reaction; hierarchical, where more 
than one manager can exist; distributed, where there are 
several managers as well, but the data analysis and 
processing can also be done by any other component.  

B. Post-detection 

After detecting an intrusion, an IDS can perform either 
actively (if it reacts by its own), or passively (if it acts as a 
decision support system, by triggering alarms and/or 
notifications for the administrator). 

C. Detection Method 

Depending on the chosen methodology for analysing the 

audit data, IDSs can be categorized as knowledge based 

and/or behaviour based. Knowledge based IDSs are 

commonly referred to as misuse or signature detection 

systems, focused on attacks information, while behaviour 

based intrusion detection systems are usually known as 

anomaly detection systems (ADS), focused on information 

about the system behaviour [7]. The fusion of these 

detection methods into a hybrid system is possible. 

An ADS is based on the premise that security breaches 

can be detected by monitoring audit data and searching for 

abnormal patterns of system usage, as Denning stated in 

[10]. The system starts by learning the general profile that 

describes a subject’s normal behavior – learning phase. 

Then, during normal work, the same features are captured 

and a profile is deduced in a similar way – detection phase. 

The working profile is then compared to the stored one 

searching for deviations, and if they occur, and are above a 

given threshold, the activity is considered a possible 

intrusion [5]. Note that the subject in this context refers to 

any resource capable of access and operate the information 

system, typically a user, or a process on behalf of a user. 

Although the concept is fairly straightforward, the actual 

division between anomalies and normal data is quite 

challenging, generating frequently a high number of false 

positives, which is the main drawback of this approach. 

Anomaly detection is the approach chosen for the 

problem at hands, mainly because there are no known 

patterns of possible attacks – and that seems very difficult to 

define. Looking for possible techniques to adopt in this 

case, the most commonly used are statistical methods 

[11][12] and data mining methods [13][14], the latter 
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usually dividing into classification or clustering [15][16], 

although other methods were also studied - expert systems 

[10][17][18], computer immunology [19], user intention 

identification [20][21], and a few other approaches, 

including combinations of different methods [11]. 

Following a clear tendency in the field, the scientific 

research potential and the authors’ experience, classification 

was the technique selected for this work. 

Classification commonly follows one of three 

approaches: Supervised, semi-supervised and unsupervised 

learning. These techniques are implemented under the 

assumption that a proper classifier, which can distinguish 

between normal and anomalous data, can be trained within 

the feature space available [22]. The model obtained 

through training can be one of two types: one-class and 

multi-class. In the first case, the training dataset has only 

one class label and the model consists of a discriminative 

boundary around the normal (labeled) instances, treating 

everything out of that boundary as anomalous. Multi-class 

methods are used when the training dataset has labels 

defining more than one normal class and, for each class, 

there will be a classifier. Some variants of this method 

associate a confidence level with the prediction made. The 

characteristics of the project under consideration points to 

one-class classification. 

III. THE FRAMEWORK’S ARCHITECTURE 

RightsWATCH logs every user’s daily operation with 
protected data. The main challenge here is to discover which 
logs correspond to normal and abnormal activity – at first 
because there is no formal definition of what is normal and 
abnormal – and/or which features, among a large dataset, are 
relevant to catch dangerous activity. As already referred, the 
proposed anomaly detection framework follows a one-class 
classification model, which will be trained by a controlled 
dataset generated by regular user interaction (free of 
abnormal behaviour). 

The proposed architectural design of the framework is 
depicted in Fig. 3 and a brief explanation of each component 
is given next. The Reader module is responsible for reading 
and preparing the input data. The raw data have to be 
previously selected by the developer and this information is 
embedded into the code, including formal interface rules. 
This way, the framework can be easily adapted to accept 
other data sources. The Reader is divided into two 
submodules. The first one is called Preprocessor, whose 
main function is to take raw data and prepare the desired 
features according to the classifier format requirements. 
Several logs are not in an adequate format, appearing as 
categorical or descriptive data. When dealing with 
categorical data, it is required to break it into n features, 
where n is the number of existent cases – a technique known 
as one-hot encoding. 

The Preprocessor output feeds the second submodule, 
the DatasetBuilder, whose main function is to build the final 
dataset. This dataset aims to represent the user’s behaviour, 
while preserving the user’s privacy by completely 

transforming the data into something that cannot be tracked 
back to its original state - the dataset is fully composed of 
numeric values, whose relationship to the real data is 
completely eliminated. 

 
Figure 3. Architectural design of the framework. 

 
In Fig. 3 there is a second source of logs labeled as AD 

RMS logs (Active Directory Rights Management Services). 
It corresponds to an infrastructure provided by Microsoft, 
which gathers all the server and client technologies to 
support information protection through the use of rights 
management in an organization. RightsWATCH uses this 
technology, but the associated logs are not used, for now - 
the dashed and greyed arrow line indicates that. 

The Dataset provider by the Reader module will be the 
input for the ClassifierBuilder module. This module analyses 
the data and creates a model of the user’s behaviour. This 
model, or classifier, will be used as a reference for future 
comparisons. To perform this task, a classification algorithm 
is needed. Support Vector Machines (SVM) was the chosen 
one for the task, by wrapping the libsvm library provided, by 
Chang and Lin [23]. This library packs the standard SVM 
algorithm along with the most relevant variations, such as 
one-class SVM and SVM for regression. Another version of 
the library, available in the website, also packs the Support 
Vector Data Description (SVDD) algorithm. The reason for 
choosing this library has to do with the fact that since its 
inception in 2001, libsvm was successfully integrated and 
used in similar problems (the full list is available on libsvm’s 
website), appearing as one of the most promising approaches 
to the classification problem. 

To perform the detection, two different SVM algorithms 
were investigated, although one of them to a much greater 
extent than the other (the standard binary SVM classification 
algorithm was also used in a set of preliminary tests). As 
referred above, these algorithms are the one-class 
classification algorithm and the SVDD. This second 
algorithm was only considered in the final stages of the 
investigation, mostly for performance comparison. Both of 
these relate to semi-supervised learning, and are the only 
SVM options available for this problem. 

The secondary function of the ClassifierBuilder module 
is, in the validation stage and following a conservative 
approach, to test different variations of the detection method, 
as described in the next section. 
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The final model will be stored and used by the 
AnomalyDetection module, which is divided into three 
submodules: Detector, Classifier and AlarmManager. The 
first submodule is responsible for getting logs from users in 
real-time, extract the features and prepare. After, the 
Classifier submodule evaluates the entry using the classifier 
obtained by the ClassifierBuilder module and produces a 
score result, which is outputted to the AlarmManager 
submodule. This submodule will react to the result, issuing 
an alarm to the administrator with the corresponding threat 
level. Shall it be the case of a false alarm, the administrator 
can mark the event as benign, which will also trigger an 
update of the classifier with the new information, to avoid 
similar mistakes in the future. 

IV. DATASET CREATION AND FRAMEWORK 

DEVELOPMENT 

RightsWATCH and the ADS framework discussed in 
this paper were developed at Watchful Software’s office, 
facilitating the integration and assuring all the technical 
support necessary. All the testing was performed there, with 
data logs captured from 4 collaborators during 1 day (only 4 
were chosen since only those exhibit what can be considered 
a typical work interaction with RightsWATCH). The 
available number of logs for user 1, user 2, user 3 and user 4 
are, respectively, 5714, 3120, 2514 and 2365.  

The logging information, initially stored in a dedicated 
database, is copied to a new table, called LogTraining (see 
Fig. 4), to keep original logs intact. Next we will describe in 
more detail the dataset creation, which, as already 
mentioned, raised several problems. 

A. Dataset Creation 

To data mining researchers, real world industrial 
databases can be considered one of their worst nightmares, 
and the reason is simple: real data is, most of the times, dirty 
and cluttered, and databases are not prepared at all for data 
mining. As this turned out to be the case, RightsWATCH 
logging table demanded for a preparation and cleansing 
process. The resulting table has thirty-eight dimensions 
(excluding primary key), filled with numerical, categorical 
and binary data. The table’s structure, along with other new 
tables, is depicted in Fig. 4.  

The most prominent problem is that thirty-five of the 
thirty-eight dimensions have missing values, blank spaces or 
null values, which affect every table record. Apart from this, 
there are inconsistencies between data, as well as 
information that should have been inserted into a different 
table cluttered in one single column. The logs containing 
email addresses that users chose as recipients in emails, are 
an example of the cluttered set of information – for each 
record, a user can have something like 
email1;email2;...;emailn for n “to” recipients.  

The solution for these problems was quite 
straightforward. The missing values were substituted by 
actual default values, the inconsistent values were removed 
and the cluttered information was reorganised into different 
tables. 

 
Figure 4. Database structure. 

 
There are other features deserving particular attention, 

given their relevance and the amount of perturbation they 
may impose, namely: log_path and log_previous_path, 
contain a directory path of a protected file – since shared 
directories are avoided, this features may have an excessive 
weight in classification; rule id, that logs the id of a policy 
rule triggered by the user, appeared with some imprecisions 
due to system limitations encountered at the time. To 
perceive better their influence we decide to perform data 
analyses removing each and both from the complete dataset. 

For the initial features selection and extraction stages, 
WEKA (Waikato Environment for Knowledge Analysis) 
was used, to assess the influence of each feature over the 
dataset. WEKA is a well-known machine learning tool 
wildly used for this type of data analysis and it includes 
libsvm. For each user’s data we consider other users’ data 
attacks (examples of bad behavior). Following regular 
recommendations, we perform a 10-cross validation 
operation (WEKA randomly divide the dataset in 10 
subsamples, keeping one for model validation and the others 
for training; the process is repeated 10 times so that all 
subsamples are used for validation, in each time). The same 
process was performed with the original dataset and the ones 
obtained by removing the problematic features, as referred 
above. The results achieved are presented in tables I, II and 
III. Overall, the accuracy is not very high, which demands 
for more research. 

With these results, it became obvious that a more formal 
way to assess feature quality was needed, which was done 
with PCA (Principal Components Analysis), a data analysis 
technique also included in WEKA. 

PCA was run over the same dataset variants and it 
revealed that there are no outstanding features. There are, of 
course, features with larger coefficients (weight values) 
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associated to them than others, but adjacent coefficients are 
close in value. 
Table I. CLASSIFICATION ACCURACY RESULTS FOR THE FIRST VERSION 

OF THE DATASETS WITHOUT THE PATH FEATURES. 

 
Table II. CLASSIFICATION ACCURACY RESULTS FOR THE VERSION OF 

THE DATASETS WITHOUT THE RULE ID FEATURE AND STILL WITHOUT 

THE PATH FEATURES. 

 
Table III. CLASSIFICATION ACCURACY RESULTS FOR THE FIRST VERSION 

OF THE DATASETS WITH THE PATH FEATURES. 

 
 

Contrary to what was expected, the path features do show 
some classification potential. On the other hand, the email 
features did introduce noise in the dataset, as expected. Also, 
the full set of email related features correspond to 
approximately thirty-six percent of the whole dataset.  

In all PCA executions, the correlation between features 
was fairly poor. Except from the obvious correlations (for 
instance, the mark email action type feature is always heavily 
correlated with the Microsoft Outlook plugin feature), most 
of the features have shown low correlation values between 
each other.  

Regarding the results, the only action decided was 
towards the recipient email addresses. As it became clear, 
their presence in the dataset is a prelude of an erroneous 
classifier. But simply discarding the emails seems a waste of 
possibly useful data. As such, a more conservative solution 
was adopted, performing the division of the recipient emails 
into their respective local and domain parts. The local part is 
discarded, while the domain is retained as a feature. Of 
course, this way it is not possible to distinguish, for example, 
if a user is sending one hundred emails to one hundred 
different Gmail addresses, or one hundred emails to the same 
Gmail address. Still, it is better than blinding the classifier 
with noise or not having any recipient email address 
information at all. 

Finally, and to conclude this section, the features 
produced by PCA or, in other words, the principal 
components, are often used in place of the original features.  

B. Framework Conception 

The development of the ADS framework started with the 
Reader module and data transformation. The categorical 
feature that is not one-hot encoded is the log_client_time. It 
was rendered by two new features, day_of_the_week and 
time_of_the_day. Both features are numeric – 
day_of_the_week goes from zero (Sunday) to six (Saturday). 
It is important to note that day_of_the_week was only added 
later and, by that time, time of the day was also modified 
(these changes are explained in full detail on the next 
section). 

Two modifications regarding user names had to be 
implemented, by privacy reasons. The first one was ignoring 
the log_user field - it is not associated with any type of 
behavior; the second one occurs at runtime, and it is the 
removal of the user’s name from every directory path, 
whenever it is present. For instance, for a path such as 
“Users\John\Sales Report.docx”, the final result is just 
“Users\Sales Report.docx”.  

After the preprocessing, the Reader module has to build 
the datasets. The ratio is 70% of the total data for training, 
and the remaining 30% for testing (following the 
recommendations given in libsvm documentation). The 
datasets are created in a sequential fashion – first the training 
set, and then the test set. This order has to be maintained, as 
the features of the test set will depend on the training set. In 
other words, the test set will only have features that are also 
available in the training set, (any new feature is excluded). 
This condition is needed since categorical features are 
divided into sets of new features through one-hot encoding, 
and there will be cases where some of these features will 
exist on the test set but not on the training set. 

Next, at heart of the ClassifierBuilder module, we use 
libsvm, as already referred. It also has methods to test and 
cross-validate data, and since it performs a very time 
consuming task, it implements some inner and heavy loops 
in a paralyzed way using OpenMP (Open Multi-Processing).  

Apart from its main classification function, the 
ClassifierBuilder also implements new methods for 
performance measurement and classifier quality assessment. 
Essentially, the classification results regarding false/true 
positives/negatives are used to build a confusion matrix, and 
then combined together to compute the precision and recall 
values. These indicators evaluate different aspects of the 
classifier. Precision, or positive predictive value, is obtained 
with the division of true positives by the sum of all the 
examples that were considered positive (i.e., true positives 
and false positives) and represents the accuracy. It can be 
though as a numerical representation of the model’s 
exactness. Conversely, recall or sensitivity is calculated by 
dividing true positives by the sum of true positives with false 
negatives, which can be seen as the model ability to classify 
observations from a class as cases from that actual class. It 
can be understood as the classifier’s completeness. Both 
values vary between zero and one – zero being the worst 
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case, and one the best case. Low precision can be a sign of a 
large number of false positives, and low recall can mean that 
the classifier is detecting too many false negatives. As such, 
the ideal is to have both values as closer to one as possible. 
Both measures are used to determine the F1 score, which can 
be interpreted as the weighted average of precision and 
recall, and its computation is achieved through the harmonic 
mean (F1 score = 2 · (precision·recall)/(precision+recall)). 
F1 score also varies between zero and one, with similar 
interpretation. These performance indicators are commonly 
used with anomaly detection solutions. 

Finally, the ClassifierBuilder, was designed to test the 
two SVM algorithms, as stated before, and using all the four 
kernels available in libsvm - linear, RBF, polynomial and 
sigmoid kernels. This is achieved through a loop that 
performs a grid search over the algorithm parameters – C for 
SVDD and ν for one-class – and kernel parameter γ (except, 
of course, for the linear kernel, that does not use γ). Besides, 
the algorithm also performs a k-fold cross validation over the 
dataset (as explained before), looking for the best classifier 
provided by each kernel. The results of the four classifiers 
are then evaluated, and stored along with the parameters 
used. Since this is done for each user, it is not viable to 
actually use this in a real world environment (besides, the 
grid search takes too much time). Still, this configuration 
will be maintained at the prototype level for research 
purposes.  

 

V. RESULTS 

For the testing methodology, it was decided to follow 

nearly the procedure suggested by libsvm authors, the 

difference being that all the available kernels are used. 

Two very similar training datasets were used for each 

user, built from the same logs, which means that in total 

every user will have two classifiers. The difference between 

the two datasets is a subset of features – those features that 

are completely unique to each user, namely hostname and 

user email addresses, were removed from one dataset. Note 

that in a regular situation, these features would be vital in 

the dataset - for instance, it is possible to use the hostname 

to cover the anomalous cases where the user account is used 

on an unknown machine. In this case, as most of the test sets 

were composed by data from other users, labeled as 

anomalous behaviors, the presence of that information 

would introduce a strong bias on the results. For similar 

reasons, the username feature was completely excluded 

from both datasets as well. 

For this testing phase, the default values for the one-

class classification parameters - 0.5 to ν and 1/features to γ – 

were used. For the polynomial kernel we keep the default 

parameter value. Dataset A is the complete one, and dataset 

B is the one without unique features. The values for 

precision, recall and F1 scores were computed only for the 

attacks with all the available test data, and are available on 

tables IV and V (for visualisation purposes, every decimal 

value was rounded from six to two decimal places). 

Let the focus be on dataset A results. The number of 

final features per user vary - 1781, 819, 377 and 761 for 

users 1, 2, 3 and 4, respectively. As it was expected, most of 

the classifiers that were trained with full featured datasets 

were heavily influenced by the unique features. Otherwise, 

it would be virtually impossible for any classifier to achieve 

a classification accuracy of 100%, as it happens in so many 

cases. However, note that this is a good thing, considering 

the true nature of the problem: the idea is not to have the 

classifier distinguishing between users, but instead having it 

identifying anomalous behaviour of the same user and, from 

that point of view, the classifier ability to decide that an 

example is anomalous if the hostname or the email address 

that the user wields are different from the usual, is very 

important. Regardless, it seems that most of the classifiers 

whilst easily recognising other users, struggle to recognise 

the user itself. A particularly noteworthy case of this is User 

2. As a clear case of the closed world assumption point of 

view discussed earlier, this user has got the lowest score 

when tested against itself no matter the kernel used and, as a 

consequence, had the lowest F1 score too, given the low 

recall results. Also, notice that regardless of the 

unrealistically high classification values that this user 

achieved with the test dataset that comprises every user, the 

F1 score values resist this tendency and provide for a more 

grounded analysis, which ends up proving the advantage of 

using such a metric. As for the kernels, the RBF kernel 

achieved the overall worst results, while both linear and 

sigmoid kernels appear to perform better in this case. 

The results are slightly different for dataset B. With a 

minimal decrease in features, the importance of the missing 

features becomes evident, as the overall results are much 

lower in quality. With this dataset, the classifiers had trouble 

both in distinguishing between behaviors and in recognising 

the target user. In addition, these results also prove that the 

default SVM parameters are, in this case, far from optimal. 

Finally, the kernels exhibit similar results between them, 

with the linear kernel slightly outstanding itself from the 

rest, always with the highest F1 score for all users. Note that 

in contrast with dataset A, the recall values for dataset B 

were always higher than the corresponding precision - not 

due to an increase in recall values, but instead because of a 

drastic decrease in precision.  

After testing the kernels, the next challenge is to search 

for the best (ν, γ) combination, through cross-validation. To 

do that, the same 70%-30% division was made for each 

user. The training sets were used in a 10-fold cross 

validation, for a grid search on twelve values for ν and 

fifteen values for γ (again, following libsvm’s 

documentation recommendations). In the end, the best 

performing parameters combination for each dataset is 

stored, and then used to create new classification models. 

Then, each model is tested. The resulting performance 

metrics are presented on tables VI and VII. 

At a first glance, and judging by the accuracy values, it 

seemed that these parameters would push the framework 

22Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems



into producing overly permissive classifiers. This has to do 

with the way that one-class SVM works: tampering with the 

ν parameter has a direct impact on the number of 

observations that are accepted - the lower the value, the 

more permissive the resulting classifier will be. 

Dataset A still demonstrates the importance of the user 

unique features. Also outstanding is the clear difference in 

the ability to correctly classify both anomalous and 

legitimate instances between the linear kernel and the 

remaining three. The quality of this kernel was already 

noticed before, but not to this extent. For every user, this 

kernel attained the best F1 score. In fact, the F1 scores for 

this kernel are, for every user, better than those reported in 

the results before the grid search. Although, it was the only 

kernel to achieve such feat, as the remaining F1 scores are 

mostly low. Finally, the recall values for this dataset were 

substantially higher than before, due to the classifier 

accepting more samples as normal ones (i.e., being more 

permissive).  

The results for dataset B turned out to be even worse 

than before. Without the unique features, and with such 

forgiving ν parameters, the classifiers declare a large part of 

the attacking users’ instances as legitimate. In this dataset, 

apparently, no kernel stands out from the others, and even 

with the high recall values, the F1 scores are simply 

unacceptable.  

At a first glance, this investigation could end here. The 

linear kernel achieved better results with dataset A, after the 

grid search. However, this does not prove that the linear 

classifier will do a good job detecting anomalies. In fact, 

without the unique features (dataset B), the classifier does 

not perform so well. What if the user himself leaked 

valuable information, from his usual machine, with his usual 

email? Thanks to the unique features, the classifier would 

likely detect the resulting log as legitimate. As such, it is not 

time to finish, but to stop for a while. Time to pause and 

think about the causes of the results obtained with dataset B. 

Was it the classification algorithm, or the data itself? It 

might have been both. 

The ν parameter controls how many observations get 

misclassified, and how many turn into support vectors. For 

instance, if the ν parameter is set to 0.1, it is guaranteed that 

at most 10% of the training instances will be misclassified, 

and at least 10% of them will become support vectors. 

Before the grid search, ν was the default libsvm value of 0.5. 

This is a conservative value, which created classifiers 

incapable of correctly recognising a legitimate user by 

setting a high upper bound for the outlier ratio. Then, the 

grid search chose the parameters that allowed for the highest 

F1 scores. With such low ν values, the upper bound of 

outliers decreased, therefore letting more examples fall on 

the correct side of the hyperplane. On the other side, 

assuming too small outlier ratios, can easily allow 

anomalous instances to fall on the legitimate side of the 

hyperplane, which indeed happened. Of course, the γ 

parameter also influences everything as well. This 

parameter defines how far the influence of a single training 

example reaches: low values mean far and high values mean 

close. Before the grid search, the value was dictated by the 

number of features, which means that it varied, depending 

on the dataset, between ≈ 0.0006 and ≈ 0.001. After the grid 

search, most of the γ parameters achieved values that were 

higher, which in turn diminished the influence of the 

training instances. All of this leads to one thought: The grid 

search method might prove effective with two class 

problems, but the same might not apply to one-class 

classification, given the actual nature of the optimisation 

problem, when performing it with cross-validation. 

Taking this into consideration, a new grid search was 

performed: The classifiers were tested against data from 

both the user and the other users and, instead of returning 

the parameters with the highest F1 score, the algorithm was 

modified to output all the data it produces for each 

parameter combination, so that each of the 552 classifiers 

(12 for the linear kernel and 180 for each of the other 

kernels) could be individually examined. The perusal of the 

data confirmed the worst: with dataset B there were no cases 

where any of the classifiers managed to successfully 

separate anomalous from legitimate records. The classifiers 

mostly bounced between the two extremes - either 

classifying most of the cases as legitimate or as anomalous. 

When this is not the case, the classification accuracy values 

just revolve around the 50% mark, with very low standard 

deviation values. 

With these results, it was inevitable to think about the 

quality of the data. One of the first impressions that arose 

when contacting with the available data for the first time, 

during the data cleansing and data selection phases, was that 

it would be possible it be too fine grained for the SVM 

algorithm. The features are poorly correlated between them, 

and with the naked eye, at least, it is next to impossible to 

distinguish between examples, if we ignore users’ unique 

features. Although this granularity-level issue is not 

confirmed, the obtained results do allow to consider it as a 

reason for the classifiers poor quality. As such, it seems 

appropriate to rethink the way the dataset is built, and how 

the information is used. Hence, the next section describes 

the final dataset transformation. 

 

Table IIV. PERFORMANCE METRICS FOR DATASET A.
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Table V. PERFORMANCE METRICS FOR DATASET B

 

Table VI. PERFORMANCE METRICS FOR DATASET A AFTER GRID SEARCH. 

 

Table VII. PERFORMANCE METRICS FOR DATASET B AFTER GRID SEARCH.

A. Dataset Refactoring 

The current dataset is composed of point anomaly 

records. Following the reasoning explained before, the 

framework will now aggregate data points into larger sets, 

thus producing new features that, in essence, summarise the 

attribute values from every example that comprises the 

given aggregated set, this way creating a different, collective 

anomaly dataset.  

The log aggregation process was performed considering 

each set of logs that was generated in an hour. In other 

words, the set of logs generated in an hour became one 

collective log. The starting time was defined by the very 

first log. This time frame was chosen for two reasons. 

Firstly, it is feasible that a user generates more than one log 

in an hour. Secondly, it is still a small enough time frame to 

allow for mitigating measures in case of a data leak.  

With the aggregation, the number of available 

observations diminished significantly. Users 1, 2, 3 and 4 

now have, respectively, 1576, 1722, 469 and 1466 total 

observations. The number of features has also changed, as it 

was expected with the changes regarding the path features, 

not to mention the fact that the features themselves are 

different. Using the same distinction between datasets, 

dataset A now consists of 642, 355, 485 and 398 records for 

the four users (in that order), while dataset B contains 635, 

349, 482 and 394 records. Note that with this dataset, the 

training set of user 3 will have a number of features higher 

than the number of observations, which can reshape the 

final results.  

The testing process was the same one used before. The 

70%-30% division between training and test sets still 

remains, but note that this division was established only in 

the individual logs. A lot of work would be needed in order 

to apply this process to the new data, as it is created 

dynamically. Fortunately, with the division between the 

individual logs, the final ratio of the new data between 

training and test sets is roughly 80%-20% for users 1 and 3, 

and 75%-25% for users 2 and 4, which are still acceptable 

boundaries. Also, this will be an opportunity to test the 

impact of different division ratios between the data. 

Despite the expectative, results are not very different 

from those obtained before – for that reason we think it is 

not necessary to present them in new tables. Next we will 

discuss the small details that deserve some attention. 

Dataset A exhibits the same high precision and low 

recall values, while dataset B displays the same drop in 

precision, while maintaining the recall values. Even the 

different kernels performed in an identical fashion. On the 

other hand, the variation between the F1 scores of both 

dataset types is not wide enough to allow for any kind of 

conclusion just yet. Since the default parameters were used, 

these results are not unexpected. 

The grid search for this dataset was slightly different 

from before. This time, every parameter combination was 

manually examined. Also, instead of performing the search 

through cross-validation, the algorithm tested each of the 

552 classifiers with the test sets that contain information 

about all users. This was done so that the obtained 

parameters were more adequate to the validation process. 

Indeed, in a normal situation, the parameters would be 

generated via cross-validation, as the data belonging to the 

user would be the only data used. However, it was already 
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seen that the classifiers are able to accept logs as being 

legitimate, and thus the purpose now is to search for 

parameters that can aid the classifiers into defining the best 

plane possible between both legitimate and anomalous 

instances. Concerning dataset A, the only thing to point is 

the superior performance of the polynomial kernel over all 

the others. This kernel managed to obtain good results even 

when the others wavered.  

Recall that the only reason for working on a completely 

different dataset had to do with dataset B disappointing 

results. As it turns out, the new dataset B error metric results 

are similar to the old ones - although, from a more 

optimistic point of view, when looking at both the 

classification and confusion matrices results, these 

classifiers performed clearly better, with no exception. In 

fact, these are good news, since there are still so many 

possible ways to perform the log aggregation that were not 

investigated. In other words, one (or more than one) of these 

other options might prove itself to be more successful. 

A curious pattern emerged with both datasets. With only 

two exceptions - users 1 and 3 always scored the top 

classification results. This is most certainly related to the 

data division between training and test sets. Recall that these 

two users are the ones with the 805-20% division – more 

data to train the classifier and less data to test it. As it is 

known, the more data there is, the more accurate should the 

classifier be. However, this same pattern is noted, although 

to a lesser extent, on dataset B classification result, which 

might suggest that there is more to it than the data division.  

Finally, a last attempt was made with the SVDD method, 

using the initial datasets, A and B. However, the obtained 

results were worst most of the times. Besides, it suggests 

that this algorithm has a stronger resistance to the unique 

features, as results from both datasets were quite similar. 

This is actually a good omen if we think in terms of 

generalisation capabilities. 

Now the only question remaining is whether the optimal 

parameters are able to improve the classifier’s accuracy or 

not. Similarly to what happened before, both datasets 

produced similar results, with dataset A’s classifiers 

sometimes underachieving when compared to those of 

dataset B, but most of the times surpassing them and, in 

some instances, by a large margin. With dataset A, the RBF 

kernel was always ahead of the other three, while this 

distinction was not so clear with dataset B, where it was 

even surpassed by the polynomial kernel on the tests with 

user 4. 

A noticeable aspect of the tests with this classification 

method is that, for each user, the C regularisation parameter 

is mostly constant throughout the different kernels, which 

leads to the belief that this regularisation parameter is 

stronger and more influential than the ν on the one-class 

classification method, which might be directly involved in 

this method’s resistance to the unique variables. In other 

words, it is possible that the classifiers produced by SVDD 

are more stable than the ones generated through the one-

class classification ν-SVM, but this result require more 

research. 

VI. CONCLUSIONS AND FUTURE WORK 

As the obtained results suggest, and even if they are less 

conclusive then expected, it is possible to define a user 

behaviour pattern based on the features generated by 

RightsWATCH, which can be used to identify possible data 

leaks linked to abnormal behaviour. Regardless, there is still 

so much more to do. With the knowledge about what has 

already been done and how, it becomes easy to define a high 

level roadmap for the framework. The first step is to test 

additional different options for log aggregation – tests for 

aggregating logs considering different time frames, 

considering a fixed number of logs and considering the use 

of a sliding window. If the classifier’s performance does not 

improve, it might be advisable to start testing with different 

classification methods, other than SVM. There is actually an 

alternative machine learning technique that worth to 

compare with SVM (the only reason why it was not tested 

already is because it would give birth to a whole new 

project). This technique is called online learning. Online or 

incremental (online learning and incremental learning are 

considered to be the same thing as often as they are not) 

machine learning is similar to the standard “offline” 

machine learning, with the difference that the model is 

updated after the initial training, as new data points arrive. 

This would allow the framework to continuously improve 

the classifier, even if the user changed is behavioural 

pattern. In a very interesting article, Laskov suggests a way 

to extend the already known one-class and SVDD 

classification methods to this learning method [24], but of 

course, there are many more implementation suggestions, 

considering both linear and non-linear kernels. 
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