
Intelligent Data Leak Detection Through Behavioural Analysis

Ricardo Costeira

Informatics Department

University of Minho

Braga, Portugal

e-mail: rcosteira79@gmail.com

Henrique Santos

Information Systems Department

University of Minho

Guimarães, Portugal

e-mail: hsantos@dsi.uminho.pt

Abstract—In this paper we discuss a solution to detect data

leaks in an intelligent and furtive way through a real time

analysis of the user’s behaviour while handling classified

information. Data is based on experiences with real world use

cases and a variety of data preparation and data analysis

techniques have been tried. Results show the feasibility of the

approach, but also the necessity to correlate with other security

events to improve the precision.

Keywords-Anomaly Detection; Machine Learning; Data

Mining; Support Vector Machines.

I. INTRODUCTION

The evolution of technology and Information Systems
has opened a phenomenal new world of possibilities for
companies and organizations all over the globe, more
dependent on data then ever. As an example, the advent of
the Internet and development of distributed systems brought
about the Cloud, which makes information accessible
wherever the user is and whenever the user wants, as long as
there is a connect to the service. However, this flexibility
comes with some new threats related with the level of
information exposure. Data leaks became one main concern
a company can face. In the 2015 Cost of Data Breach Study:
Global Analysis [1], which considers 350 companies in 11
countries, it is stated that 3.79 million dollars is the average
total cost of data breaches, with a 23% increase since 2013.
This study also points out that 47% of data leak incidents
reported by the enquired companies are related to insider
attacks.

To address data breaches, organizations have invested
billions over the years mainly to secure their network
perimeter with Firewalls and Intrusion Detection/Prevention
systems, among other technologies. These solutions are by
far insufficient, as corporate information keeps going out of
the secure perimeter. As such, companies are now focusing
on the concept of data-centric information protection [2].
RigthsWATCH [3], developed by Watchful Software, is an
implementation of that concept. This type of system creates a
protective bubble around data itself, implementing
authorization rules defined by a given set of security policies.
Besides, it also helps when a careless employee accidentally
leaks information to the outside. However, as powerful and
convenient it is, data-centric information protection is useless
against a premeditated internal attack.

For this reason, behaviour analysis becomes an important
concept to fight data leaks. By taking logged information
about user interaction with protected data, it should be
possible to create a behavioural profile, which can be used as
a base of comparison during future interactions. In this
paper, a framework for data leak detection through user
behavior analysis is proposed. The framework collects
RightsWATCH users’ logs, crafting an individual
behavioural profile from them. We then explored the
capacity to distinguish between normal and abnormal
behaviour. The research described here is part of the
RightsWATCH development project.

This paper is organized into six main sections, the first of
which is this introduction. The second section discusses the
state of the art regarding Intrusion Detection systems,
focusing mainly on Anomaly Detection. The third section
provides a more detailed view of the proposed framework’s
architecture, and the fourth section describes the
experimental environment. The fifth section discusses the
obtained results, while the sixth and final section gathers the
final conclusions and thoughts.

II. STATE OF THE ART

An intrusion detection system (IDS) is a tool capable of
detecting possible security breaches on a system, by
gathering and analysing security events. It can be designed to
work with a wide range of information, such as logs from
different sources (firewalls, OSs, etc.), application usage
data, keyboard inputs, or network data packets. According to
[4], an intrusion detection system should provide the
following security functions: it has to monitor the computer
or network, to detect possible threats and to respond to the
possible intrusions.

Axelsson [5] developed a generalized IDS model, which
is shown in Fig. 1: solid arrows represent data/control flow,
while dotted arrows indicate a possible intrusion response.
Axelsson’s model is useful to describe the general, high level
behaviour of an IDS, but a complete characterization and
classification goes beyond this simple architecture, mainly
due to the diverse technologies that can be implemented. Fig.
2 presents a more complete classification [6].

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

Figure 1. Generic model of an intrusion detection system.

Figure 2. Characterization and classification of IDS.

This classification considers only the functional attributes

of intrusion detection systems. But there is a non-functional
one that should also be considered, the usage frequency [7],
which is useful to distinguish an IDS from a scanner used for
security assessment - the usage frequency provides a fair
distinction between the two.

Each attribute has a very specific meaning, and is deeply
related to the system purposes.

A. Architecture

The IDS architecture should be idealized considering
three relevant factors: The source of the data to be analysed,
the way tasks are being distributed and the processing
components [6]. It is, as such, divided into two different
categories: scope and location. Regarding its scope, an IDS
can be host based (HIDS), network based (NIDS) or a
hybrid system, comprising characteristics of both types.

Host based intrusion detection systems collect and
analyse data from a single host. The detection software
installed on the host is commonly known as agent. It can
monitor a wide range of activities, such as application logs,
changes in the file system, system integrity, use of resources,
user access and interaction with the system, among many
others.

Agents are developed to monitor servers, hosts, or even
applications services. Due to the variety of implementations,
de Boer and Pels consider four different main HIDS
categories in [8]: Filesystem monitors, logfile analysers,
connection analysers and kernel monitors.

The NIDS collects and analyses data from a network and
usually focuses on the TCP/IP protocol. Data packets are
sniffed through sensors positioned on “mission critical”
spots. Sensors can be of two types [9]: appliance and
software only.

In [9], the author describes some of the events detected
by most of the NIDS: Application/Transport/Network layer
reconnaissance and attacks, unexpected application services
and policy violations.

The “location” in Fig. 2 refers to the placing of all the
different modules that compose the IDS, comprising three
types: centralized, where there is only one system (the
manager) responsible for event analysis, detection,
classification and system reaction; hierarchical, where more
than one manager can exist; distributed, where there are
several managers as well, but the data analysis and
processing can also be done by any other component.

B. Post-detection

After detecting an intrusion, an IDS can perform either
actively (if it reacts by its own), or passively (if it acts as a
decision support system, by triggering alarms and/or
notifications for the administrator).

C. Detection Method

Depending on the chosen methodology for analysing the

audit data, IDSs can be categorized as knowledge based

and/or behaviour based. Knowledge based IDSs are

commonly referred to as misuse or signature detection

systems, focused on attacks information, while behaviour

based intrusion detection systems are usually known as

anomaly detection systems (ADS), focused on information

about the system behaviour [7]. The fusion of these

detection methods into a hybrid system is possible.

An ADS is based on the premise that security breaches

can be detected by monitoring audit data and searching for

abnormal patterns of system usage, as Denning stated in

[10]. The system starts by learning the general profile that

describes a subject’s normal behavior – learning phase.

Then, during normal work, the same features are captured

and a profile is deduced in a similar way – detection phase.

The working profile is then compared to the stored one

searching for deviations, and if they occur, and are above a

given threshold, the activity is considered a possible

intrusion [5]. Note that the subject in this context refers to

any resource capable of access and operate the information

system, typically a user, or a process on behalf of a user.

Although the concept is fairly straightforward, the actual

division between anomalies and normal data is quite

challenging, generating frequently a high number of false

positives, which is the main drawback of this approach.

Anomaly detection is the approach chosen for the

problem at hands, mainly because there are no known

patterns of possible attacks – and that seems very difficult to

define. Looking for possible techniques to adopt in this

case, the most commonly used are statistical methods

[11][12] and data mining methods [13][14], the latter

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

usually dividing into classification or clustering [15][16],

although other methods were also studied - expert systems

[10][17][18], computer immunology [19], user intention

identification [20][21], and a few other approaches,

including combinations of different methods [11].

Following a clear tendency in the field, the scientific

research potential and the authors’ experience, classification

was the technique selected for this work.

Classification commonly follows one of three

approaches: Supervised, semi-supervised and unsupervised

learning. These techniques are implemented under the

assumption that a proper classifier, which can distinguish

between normal and anomalous data, can be trained within

the feature space available [22]. The model obtained

through training can be one of two types: one-class and

multi-class. In the first case, the training dataset has only

one class label and the model consists of a discriminative

boundary around the normal (labeled) instances, treating

everything out of that boundary as anomalous. Multi-class

methods are used when the training dataset has labels

defining more than one normal class and, for each class,

there will be a classifier. Some variants of this method

associate a confidence level with the prediction made. The

characteristics of the project under consideration points to

one-class classification.

III. THE FRAMEWORK’S ARCHITECTURE

RightsWATCH logs every user’s daily operation with
protected data. The main challenge here is to discover which
logs correspond to normal and abnormal activity – at first
because there is no formal definition of what is normal and
abnormal – and/or which features, among a large dataset, are
relevant to catch dangerous activity. As already referred, the
proposed anomaly detection framework follows a one-class
classification model, which will be trained by a controlled
dataset generated by regular user interaction (free of
abnormal behaviour).

The proposed architectural design of the framework is
depicted in Fig. 3 and a brief explanation of each component
is given next. The Reader module is responsible for reading
and preparing the input data. The raw data have to be
previously selected by the developer and this information is
embedded into the code, including formal interface rules.
This way, the framework can be easily adapted to accept
other data sources. The Reader is divided into two
submodules. The first one is called Preprocessor, whose
main function is to take raw data and prepare the desired
features according to the classifier format requirements.
Several logs are not in an adequate format, appearing as
categorical or descriptive data. When dealing with
categorical data, it is required to break it into n features,
where n is the number of existent cases – a technique known
as one-hot encoding.

The Preprocessor output feeds the second submodule,
the DatasetBuilder, whose main function is to build the final
dataset. This dataset aims to represent the user’s behaviour,
while preserving the user’s privacy by completely

transforming the data into something that cannot be tracked
back to its original state - the dataset is fully composed of
numeric values, whose relationship to the real data is
completely eliminated.

Figure 3. Architectural design of the framework.

In Fig. 3 there is a second source of logs labeled as AD

RMS logs (Active Directory Rights Management Services).
It corresponds to an infrastructure provided by Microsoft,
which gathers all the server and client technologies to
support information protection through the use of rights
management in an organization. RightsWATCH uses this
technology, but the associated logs are not used, for now -
the dashed and greyed arrow line indicates that.

The Dataset provider by the Reader module will be the
input for the ClassifierBuilder module. This module analyses
the data and creates a model of the user’s behaviour. This
model, or classifier, will be used as a reference for future
comparisons. To perform this task, a classification algorithm
is needed. Support Vector Machines (SVM) was the chosen
one for the task, by wrapping the libsvm library provided, by
Chang and Lin [23]. This library packs the standard SVM
algorithm along with the most relevant variations, such as
one-class SVM and SVM for regression. Another version of
the library, available in the website, also packs the Support
Vector Data Description (SVDD) algorithm. The reason for
choosing this library has to do with the fact that since its
inception in 2001, libsvm was successfully integrated and
used in similar problems (the full list is available on libsvm’s
website), appearing as one of the most promising approaches
to the classification problem.

To perform the detection, two different SVM algorithms
were investigated, although one of them to a much greater
extent than the other (the standard binary SVM classification
algorithm was also used in a set of preliminary tests). As
referred above, these algorithms are the one-class
classification algorithm and the SVDD. This second
algorithm was only considered in the final stages of the
investigation, mostly for performance comparison. Both of
these relate to semi-supervised learning, and are the only
SVM options available for this problem.

The secondary function of the ClassifierBuilder module
is, in the validation stage and following a conservative
approach, to test different variations of the detection method,
as described in the next section.

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

The final model will be stored and used by the
AnomalyDetection module, which is divided into three
submodules: Detector, Classifier and AlarmManager. The
first submodule is responsible for getting logs from users in
real-time, extract the features and prepare. After, the
Classifier submodule evaluates the entry using the classifier
obtained by the ClassifierBuilder module and produces a
score result, which is outputted to the AlarmManager
submodule. This submodule will react to the result, issuing
an alarm to the administrator with the corresponding threat
level. Shall it be the case of a false alarm, the administrator
can mark the event as benign, which will also trigger an
update of the classifier with the new information, to avoid
similar mistakes in the future.

IV. DATASET CREATION AND FRAMEWORK

DEVELOPMENT

RightsWATCH and the ADS framework discussed in
this paper were developed at Watchful Software’s office,
facilitating the integration and assuring all the technical
support necessary. All the testing was performed there, with
data logs captured from 4 collaborators during 1 day (only 4
were chosen since only those exhibit what can be considered
a typical work interaction with RightsWATCH). The
available number of logs for user 1, user 2, user 3 and user 4
are, respectively, 5714, 3120, 2514 and 2365.

The logging information, initially stored in a dedicated
database, is copied to a new table, called LogTraining (see
Fig. 4), to keep original logs intact. Next we will describe in
more detail the dataset creation, which, as already
mentioned, raised several problems.

A. Dataset Creation

To data mining researchers, real world industrial
databases can be considered one of their worst nightmares,
and the reason is simple: real data is, most of the times, dirty
and cluttered, and databases are not prepared at all for data
mining. As this turned out to be the case, RightsWATCH
logging table demanded for a preparation and cleansing
process. The resulting table has thirty-eight dimensions
(excluding primary key), filled with numerical, categorical
and binary data. The table’s structure, along with other new
tables, is depicted in Fig. 4.

The most prominent problem is that thirty-five of the
thirty-eight dimensions have missing values, blank spaces or
null values, which affect every table record. Apart from this,
there are inconsistencies between data, as well as
information that should have been inserted into a different
table cluttered in one single column. The logs containing
email addresses that users chose as recipients in emails, are
an example of the cluttered set of information – for each
record, a user can have something like
email1;email2;...;emailn for n “to” recipients.

The solution for these problems was quite
straightforward. The missing values were substituted by
actual default values, the inconsistent values were removed
and the cluttered information was reorganised into different
tables.

Figure 4. Database structure.

There are other features deserving particular attention,

given their relevance and the amount of perturbation they
may impose, namely: log_path and log_previous_path,
contain a directory path of a protected file – since shared
directories are avoided, this features may have an excessive
weight in classification; rule id, that logs the id of a policy
rule triggered by the user, appeared with some imprecisions
due to system limitations encountered at the time. To
perceive better their influence we decide to perform data
analyses removing each and both from the complete dataset.

For the initial features selection and extraction stages,
WEKA (Waikato Environment for Knowledge Analysis)
was used, to assess the influence of each feature over the
dataset. WEKA is a well-known machine learning tool
wildly used for this type of data analysis and it includes
libsvm. For each user’s data we consider other users’ data
attacks (examples of bad behavior). Following regular
recommendations, we perform a 10-cross validation
operation (WEKA randomly divide the dataset in 10
subsamples, keeping one for model validation and the others
for training; the process is repeated 10 times so that all
subsamples are used for validation, in each time). The same
process was performed with the original dataset and the ones
obtained by removing the problematic features, as referred
above. The results achieved are presented in tables I, II and
III. Overall, the accuracy is not very high, which demands
for more research.

With these results, it became obvious that a more formal
way to assess feature quality was needed, which was done
with PCA (Principal Components Analysis), a data analysis
technique also included in WEKA.

PCA was run over the same dataset variants and it
revealed that there are no outstanding features. There are, of
course, features with larger coefficients (weight values)

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

associated to them than others, but adjacent coefficients are
close in value.
Table I. CLASSIFICATION ACCURACY RESULTS FOR THE FIRST VERSION

OF THE DATASETS WITHOUT THE PATH FEATURES.

Table II. CLASSIFICATION ACCURACY RESULTS FOR THE VERSION OF

THE DATASETS WITHOUT THE RULE ID FEATURE AND STILL WITHOUT

THE PATH FEATURES.

Table III. CLASSIFICATION ACCURACY RESULTS FOR THE FIRST VERSION

OF THE DATASETS WITH THE PATH FEATURES.

Contrary to what was expected, the path features do show
some classification potential. On the other hand, the email
features did introduce noise in the dataset, as expected. Also,
the full set of email related features correspond to
approximately thirty-six percent of the whole dataset.

In all PCA executions, the correlation between features
was fairly poor. Except from the obvious correlations (for
instance, the mark email action type feature is always heavily
correlated with the Microsoft Outlook plugin feature), most
of the features have shown low correlation values between
each other.

Regarding the results, the only action decided was
towards the recipient email addresses. As it became clear,
their presence in the dataset is a prelude of an erroneous
classifier. But simply discarding the emails seems a waste of
possibly useful data. As such, a more conservative solution
was adopted, performing the division of the recipient emails
into their respective local and domain parts. The local part is
discarded, while the domain is retained as a feature. Of
course, this way it is not possible to distinguish, for example,
if a user is sending one hundred emails to one hundred
different Gmail addresses, or one hundred emails to the same
Gmail address. Still, it is better than blinding the classifier
with noise or not having any recipient email address
information at all.

Finally, and to conclude this section, the features
produced by PCA or, in other words, the principal
components, are often used in place of the original features.

B. Framework Conception

The development of the ADS framework started with the
Reader module and data transformation. The categorical
feature that is not one-hot encoded is the log_client_time. It
was rendered by two new features, day_of_the_week and
time_of_the_day. Both features are numeric –
day_of_the_week goes from zero (Sunday) to six (Saturday).
It is important to note that day_of_the_week was only added
later and, by that time, time of the day was also modified
(these changes are explained in full detail on the next
section).

Two modifications regarding user names had to be
implemented, by privacy reasons. The first one was ignoring
the log_user field - it is not associated with any type of
behavior; the second one occurs at runtime, and it is the
removal of the user’s name from every directory path,
whenever it is present. For instance, for a path such as
“Users\John\Sales Report.docx”, the final result is just
“Users\Sales Report.docx”.

After the preprocessing, the Reader module has to build
the datasets. The ratio is 70% of the total data for training,
and the remaining 30% for testing (following the
recommendations given in libsvm documentation). The
datasets are created in a sequential fashion – first the training
set, and then the test set. This order has to be maintained, as
the features of the test set will depend on the training set. In
other words, the test set will only have features that are also
available in the training set, (any new feature is excluded).
This condition is needed since categorical features are
divided into sets of new features through one-hot encoding,
and there will be cases where some of these features will
exist on the test set but not on the training set.

Next, at heart of the ClassifierBuilder module, we use
libsvm, as already referred. It also has methods to test and
cross-validate data, and since it performs a very time
consuming task, it implements some inner and heavy loops
in a paralyzed way using OpenMP (Open Multi-Processing).

Apart from its main classification function, the
ClassifierBuilder also implements new methods for
performance measurement and classifier quality assessment.
Essentially, the classification results regarding false/true
positives/negatives are used to build a confusion matrix, and
then combined together to compute the precision and recall
values. These indicators evaluate different aspects of the
classifier. Precision, or positive predictive value, is obtained
with the division of true positives by the sum of all the
examples that were considered positive (i.e., true positives
and false positives) and represents the accuracy. It can be
though as a numerical representation of the model’s
exactness. Conversely, recall or sensitivity is calculated by
dividing true positives by the sum of true positives with false
negatives, which can be seen as the model ability to classify
observations from a class as cases from that actual class. It
can be understood as the classifier’s completeness. Both
values vary between zero and one – zero being the worst

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

case, and one the best case. Low precision can be a sign of a
large number of false positives, and low recall can mean that
the classifier is detecting too many false negatives. As such,
the ideal is to have both values as closer to one as possible.
Both measures are used to determine the F1 score, which can
be interpreted as the weighted average of precision and
recall, and its computation is achieved through the harmonic
mean (F1 score = 2 · (precision·recall)/(precision+recall)).
F1 score also varies between zero and one, with similar
interpretation. These performance indicators are commonly
used with anomaly detection solutions.

Finally, the ClassifierBuilder, was designed to test the
two SVM algorithms, as stated before, and using all the four
kernels available in libsvm - linear, RBF, polynomial and
sigmoid kernels. This is achieved through a loop that
performs a grid search over the algorithm parameters – C for
SVDD and ν for one-class – and kernel parameter γ (except,
of course, for the linear kernel, that does not use γ). Besides,
the algorithm also performs a k-fold cross validation over the
dataset (as explained before), looking for the best classifier
provided by each kernel. The results of the four classifiers
are then evaluated, and stored along with the parameters
used. Since this is done for each user, it is not viable to
actually use this in a real world environment (besides, the
grid search takes too much time). Still, this configuration
will be maintained at the prototype level for research
purposes.

V. RESULTS

For the testing methodology, it was decided to follow

nearly the procedure suggested by libsvm authors, the

difference being that all the available kernels are used.

Two very similar training datasets were used for each

user, built from the same logs, which means that in total

every user will have two classifiers. The difference between

the two datasets is a subset of features – those features that

are completely unique to each user, namely hostname and

user email addresses, were removed from one dataset. Note

that in a regular situation, these features would be vital in

the dataset - for instance, it is possible to use the hostname

to cover the anomalous cases where the user account is used

on an unknown machine. In this case, as most of the test sets

were composed by data from other users, labeled as

anomalous behaviors, the presence of that information

would introduce a strong bias on the results. For similar

reasons, the username feature was completely excluded

from both datasets as well.

For this testing phase, the default values for the one-

class classification parameters - 0.5 to ν and 1/features to γ –

were used. For the polynomial kernel we keep the default

parameter value. Dataset A is the complete one, and dataset

B is the one without unique features. The values for

precision, recall and F1 scores were computed only for the

attacks with all the available test data, and are available on

tables IV and V (for visualisation purposes, every decimal

value was rounded from six to two decimal places).

Let the focus be on dataset A results. The number of

final features per user vary - 1781, 819, 377 and 761 for

users 1, 2, 3 and 4, respectively. As it was expected, most of

the classifiers that were trained with full featured datasets

were heavily influenced by the unique features. Otherwise,

it would be virtually impossible for any classifier to achieve

a classification accuracy of 100%, as it happens in so many

cases. However, note that this is a good thing, considering

the true nature of the problem: the idea is not to have the

classifier distinguishing between users, but instead having it

identifying anomalous behaviour of the same user and, from

that point of view, the classifier ability to decide that an

example is anomalous if the hostname or the email address

that the user wields are different from the usual, is very

important. Regardless, it seems that most of the classifiers

whilst easily recognising other users, struggle to recognise

the user itself. A particularly noteworthy case of this is User

2. As a clear case of the closed world assumption point of

view discussed earlier, this user has got the lowest score

when tested against itself no matter the kernel used and, as a

consequence, had the lowest F1 score too, given the low

recall results. Also, notice that regardless of the

unrealistically high classification values that this user

achieved with the test dataset that comprises every user, the

F1 score values resist this tendency and provide for a more

grounded analysis, which ends up proving the advantage of

using such a metric. As for the kernels, the RBF kernel

achieved the overall worst results, while both linear and

sigmoid kernels appear to perform better in this case.

The results are slightly different for dataset B. With a

minimal decrease in features, the importance of the missing

features becomes evident, as the overall results are much

lower in quality. With this dataset, the classifiers had trouble

both in distinguishing between behaviors and in recognising

the target user. In addition, these results also prove that the

default SVM parameters are, in this case, far from optimal.

Finally, the kernels exhibit similar results between them,

with the linear kernel slightly outstanding itself from the

rest, always with the highest F1 score for all users. Note that

in contrast with dataset A, the recall values for dataset B

were always higher than the corresponding precision - not

due to an increase in recall values, but instead because of a

drastic decrease in precision.

After testing the kernels, the next challenge is to search

for the best (ν, γ) combination, through cross-validation. To

do that, the same 70%-30% division was made for each

user. The training sets were used in a 10-fold cross

validation, for a grid search on twelve values for ν and

fifteen values for γ (again, following libsvm’s

documentation recommendations). In the end, the best

performing parameters combination for each dataset is

stored, and then used to create new classification models.

Then, each model is tested. The resulting performance

metrics are presented on tables VI and VII.

At a first glance, and judging by the accuracy values, it

seemed that these parameters would push the framework

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

into producing overly permissive classifiers. This has to do

with the way that one-class SVM works: tampering with the

ν parameter has a direct impact on the number of

observations that are accepted - the lower the value, the

more permissive the resulting classifier will be.

Dataset A still demonstrates the importance of the user

unique features. Also outstanding is the clear difference in

the ability to correctly classify both anomalous and

legitimate instances between the linear kernel and the

remaining three. The quality of this kernel was already

noticed before, but not to this extent. For every user, this

kernel attained the best F1 score. In fact, the F1 scores for

this kernel are, for every user, better than those reported in

the results before the grid search. Although, it was the only

kernel to achieve such feat, as the remaining F1 scores are

mostly low. Finally, the recall values for this dataset were

substantially higher than before, due to the classifier

accepting more samples as normal ones (i.e., being more

permissive).

The results for dataset B turned out to be even worse

than before. Without the unique features, and with such

forgiving ν parameters, the classifiers declare a large part of

the attacking users’ instances as legitimate. In this dataset,

apparently, no kernel stands out from the others, and even

with the high recall values, the F1 scores are simply

unacceptable.

At a first glance, this investigation could end here. The

linear kernel achieved better results with dataset A, after the

grid search. However, this does not prove that the linear

classifier will do a good job detecting anomalies. In fact,

without the unique features (dataset B), the classifier does

not perform so well. What if the user himself leaked

valuable information, from his usual machine, with his usual

email? Thanks to the unique features, the classifier would

likely detect the resulting log as legitimate. As such, it is not

time to finish, but to stop for a while. Time to pause and

think about the causes of the results obtained with dataset B.

Was it the classification algorithm, or the data itself? It

might have been both.

The ν parameter controls how many observations get

misclassified, and how many turn into support vectors. For

instance, if the ν parameter is set to 0.1, it is guaranteed that

at most 10% of the training instances will be misclassified,

and at least 10% of them will become support vectors.

Before the grid search, ν was the default libsvm value of 0.5.

This is a conservative value, which created classifiers

incapable of correctly recognising a legitimate user by

setting a high upper bound for the outlier ratio. Then, the

grid search chose the parameters that allowed for the highest

F1 scores. With such low ν values, the upper bound of

outliers decreased, therefore letting more examples fall on

the correct side of the hyperplane. On the other side,

assuming too small outlier ratios, can easily allow

anomalous instances to fall on the legitimate side of the

hyperplane, which indeed happened. Of course, the γ

parameter also influences everything as well. This

parameter defines how far the influence of a single training

example reaches: low values mean far and high values mean

close. Before the grid search, the value was dictated by the

number of features, which means that it varied, depending

on the dataset, between ≈ 0.0006 and ≈ 0.001. After the grid

search, most of the γ parameters achieved values that were

higher, which in turn diminished the influence of the

training instances. All of this leads to one thought: The grid

search method might prove effective with two class

problems, but the same might not apply to one-class

classification, given the actual nature of the optimisation

problem, when performing it with cross-validation.

Taking this into consideration, a new grid search was

performed: The classifiers were tested against data from

both the user and the other users and, instead of returning

the parameters with the highest F1 score, the algorithm was

modified to output all the data it produces for each

parameter combination, so that each of the 552 classifiers

(12 for the linear kernel and 180 for each of the other

kernels) could be individually examined. The perusal of the

data confirmed the worst: with dataset B there were no cases

where any of the classifiers managed to successfully

separate anomalous from legitimate records. The classifiers

mostly bounced between the two extremes - either

classifying most of the cases as legitimate or as anomalous.

When this is not the case, the classification accuracy values

just revolve around the 50% mark, with very low standard

deviation values.

With these results, it was inevitable to think about the

quality of the data. One of the first impressions that arose

when contacting with the available data for the first time,

during the data cleansing and data selection phases, was that

it would be possible it be too fine grained for the SVM

algorithm. The features are poorly correlated between them,

and with the naked eye, at least, it is next to impossible to

distinguish between examples, if we ignore users’ unique

features. Although this granularity-level issue is not

confirmed, the obtained results do allow to consider it as a

reason for the classifiers poor quality. As such, it seems

appropriate to rethink the way the dataset is built, and how

the information is used. Hence, the next section describes

the final dataset transformation.

Table IIV. PERFORMANCE METRICS FOR DATASET A.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

Table V. PERFORMANCE METRICS FOR DATASET B

Table VI. PERFORMANCE METRICS FOR DATASET A AFTER GRID SEARCH.

Table VII. PERFORMANCE METRICS FOR DATASET B AFTER GRID SEARCH.

A. Dataset Refactoring

The current dataset is composed of point anomaly

records. Following the reasoning explained before, the

framework will now aggregate data points into larger sets,

thus producing new features that, in essence, summarise the

attribute values from every example that comprises the

given aggregated set, this way creating a different, collective

anomaly dataset.

The log aggregation process was performed considering

each set of logs that was generated in an hour. In other

words, the set of logs generated in an hour became one

collective log. The starting time was defined by the very

first log. This time frame was chosen for two reasons.

Firstly, it is feasible that a user generates more than one log

in an hour. Secondly, it is still a small enough time frame to

allow for mitigating measures in case of a data leak.

With the aggregation, the number of available

observations diminished significantly. Users 1, 2, 3 and 4

now have, respectively, 1576, 1722, 469 and 1466 total

observations. The number of features has also changed, as it

was expected with the changes regarding the path features,

not to mention the fact that the features themselves are

different. Using the same distinction between datasets,

dataset A now consists of 642, 355, 485 and 398 records for

the four users (in that order), while dataset B contains 635,

349, 482 and 394 records. Note that with this dataset, the

training set of user 3 will have a number of features higher

than the number of observations, which can reshape the

final results.

The testing process was the same one used before. The

70%-30% division between training and test sets still

remains, but note that this division was established only in

the individual logs. A lot of work would be needed in order

to apply this process to the new data, as it is created

dynamically. Fortunately, with the division between the

individual logs, the final ratio of the new data between

training and test sets is roughly 80%-20% for users 1 and 3,

and 75%-25% for users 2 and 4, which are still acceptable

boundaries. Also, this will be an opportunity to test the

impact of different division ratios between the data.

Despite the expectative, results are not very different

from those obtained before – for that reason we think it is

not necessary to present them in new tables. Next we will

discuss the small details that deserve some attention.

Dataset A exhibits the same high precision and low

recall values, while dataset B displays the same drop in

precision, while maintaining the recall values. Even the

different kernels performed in an identical fashion. On the

other hand, the variation between the F1 scores of both

dataset types is not wide enough to allow for any kind of

conclusion just yet. Since the default parameters were used,

these results are not unexpected.

The grid search for this dataset was slightly different

from before. This time, every parameter combination was

manually examined. Also, instead of performing the search

through cross-validation, the algorithm tested each of the

552 classifiers with the test sets that contain information

about all users. This was done so that the obtained

parameters were more adequate to the validation process.

Indeed, in a normal situation, the parameters would be

generated via cross-validation, as the data belonging to the

user would be the only data used. However, it was already

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

seen that the classifiers are able to accept logs as being

legitimate, and thus the purpose now is to search for

parameters that can aid the classifiers into defining the best

plane possible between both legitimate and anomalous

instances. Concerning dataset A, the only thing to point is

the superior performance of the polynomial kernel over all

the others. This kernel managed to obtain good results even

when the others wavered.

Recall that the only reason for working on a completely

different dataset had to do with dataset B disappointing

results. As it turns out, the new dataset B error metric results

are similar to the old ones - although, from a more

optimistic point of view, when looking at both the

classification and confusion matrices results, these

classifiers performed clearly better, with no exception. In

fact, these are good news, since there are still so many

possible ways to perform the log aggregation that were not

investigated. In other words, one (or more than one) of these

other options might prove itself to be more successful.

A curious pattern emerged with both datasets. With only

two exceptions - users 1 and 3 always scored the top

classification results. This is most certainly related to the

data division between training and test sets. Recall that these

two users are the ones with the 805-20% division – more

data to train the classifier and less data to test it. As it is

known, the more data there is, the more accurate should the

classifier be. However, this same pattern is noted, although

to a lesser extent, on dataset B classification result, which

might suggest that there is more to it than the data division.

Finally, a last attempt was made with the SVDD method,

using the initial datasets, A and B. However, the obtained

results were worst most of the times. Besides, it suggests

that this algorithm has a stronger resistance to the unique

features, as results from both datasets were quite similar.

This is actually a good omen if we think in terms of

generalisation capabilities.

Now the only question remaining is whether the optimal

parameters are able to improve the classifier’s accuracy or

not. Similarly to what happened before, both datasets

produced similar results, with dataset A’s classifiers

sometimes underachieving when compared to those of

dataset B, but most of the times surpassing them and, in

some instances, by a large margin. With dataset A, the RBF

kernel was always ahead of the other three, while this

distinction was not so clear with dataset B, where it was

even surpassed by the polynomial kernel on the tests with

user 4.

A noticeable aspect of the tests with this classification

method is that, for each user, the C regularisation parameter

is mostly constant throughout the different kernels, which

leads to the belief that this regularisation parameter is

stronger and more influential than the ν on the one-class

classification method, which might be directly involved in

this method’s resistance to the unique variables. In other

words, it is possible that the classifiers produced by SVDD

are more stable than the ones generated through the one-

class classification ν-SVM, but this result require more

research.

VI. CONCLUSIONS AND FUTURE WORK

As the obtained results suggest, and even if they are less

conclusive then expected, it is possible to define a user

behaviour pattern based on the features generated by

RightsWATCH, which can be used to identify possible data

leaks linked to abnormal behaviour. Regardless, there is still

so much more to do. With the knowledge about what has

already been done and how, it becomes easy to define a high

level roadmap for the framework. The first step is to test

additional different options for log aggregation – tests for

aggregating logs considering different time frames,

considering a fixed number of logs and considering the use

of a sliding window. If the classifier’s performance does not

improve, it might be advisable to start testing with different

classification methods, other than SVM. There is actually an

alternative machine learning technique that worth to

compare with SVM (the only reason why it was not tested

already is because it would give birth to a whole new

project). This technique is called online learning. Online or

incremental (online learning and incremental learning are

considered to be the same thing as often as they are not)

machine learning is similar to the standard “offline”

machine learning, with the difference that the model is

updated after the initial training, as new data points arrive.

This would allow the framework to continuously improve

the classifier, even if the user changed is behavioural

pattern. In a very interesting article, Laskov suggests a way

to extend the already known one-class and SVDD

classification methods to this learning method [24], but of

course, there are many more implementation suggestions,

considering both linear and non-linear kernels.

ACKNOWLEDGMENTS

This work has been supported by FCT – Fundação para a
Ciência e Tecnologia within the Project Scope
UID/CEC/00319/2013.

REFERENCES

[1] “2015 cost of data breach study: Global analysis,” Ponemon
Institute LLC, 2308 US 31 North, Traverse City, Michigan
49686 USA, Tech. Rep., May 2015.

[2] J. Bayuk, “Data-centric security,” Computer Fraud & Security,
vol. 2009, no. 3, 2009, pp. 7 – 11.

[3] Watchful software’s RightsWATCH.
https://www.watchfulsoftware.com/en. Retrieved: August,
2016.

[4] D. V. C. Venkaiah, D. M. S. Rao, and G. J. Victor, “Intrusion
detection systems - analysis and containment of false positives
alerts,” International Journal of Computer Applications, vol. 5,
no. 8, August 2010, pp. 27–33, published by Foundation of
Computer Science.

[5] S. Axelsson, “Research in intrusion-detection systems: A
survey,” 1998.

[6] A. Pathan, The State of the Art in Intrusion Prevention and
Detection. Taylor and Francis, January 2014.

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

https://www.watchfulsoftware.com/en

[7] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of
intrusiondetection systems,” Computer Networks, vol. 31, no.
8, 1999, pp. 805–822.

[8] P. de Boer and M. Pels, “Host-based intrusion detection
systems,” Amsterdam University, 2005.

[9] K. Scarfone and P. Mell, “Guide to intrusion detection and
prevention systems (idps),” NIST Special Publication, vol.
800, no. 2007, 2007, p. 94.

[10] D. E. Denning, “An intrusion-detection model,” Software
Engineering, IEEE Transactions on, no. 2, 1987, pp. 222–232.

[11] H. S. Javitz and A. Valdes, “The sri ides statistical anomaly
detector,” in Research in Security and Privacy, 1991.
Proceedings., 1991 IEEE Computer Society Symposium on.
IEEE, 1991, pp. 316–326.

[12] C. Manikopoulos and S. Papavassiliou, “Network intrusion
and fault detection: a statistical anomaly approach,”
Communications Magazine, IEEE, vol. 40, no. 10, 2002, pp.
76–82.

[13] W. Lee and S. J. Stolfo, Data mining approaches for intrusion
detection. Defense Technical Information Center, 2000.

[14] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with
unlabeled data using clustering,” in Proceedings of ACM CSS
Workshop on Data Mining Applied to Security (DMSA-2001,
2001, pp. 5–8.

[15] T. Lane and C. E. Brodley, “An application of machine
learning to anomaly detection,” in Proceedings of the 20th
National Information Systems Security Conference, vol. 377.
Baltimore, USA, 1997.

[16] T. Shon and J. Moon, “A hybrid machine learning approach to
network anomaly detection,” Information Sciences, vol. 177,
no. 18, 2007, pp. 3799–3821.

[17] H. S. Vaccaro and G. E. Liepins, “Detection of anomalous
computer session activity,” in Security and Privacy, 1989.
Proceedings., 1989 IEEE Symposium on. IEEE, 1989, pp.
280–289.

[18] C. Dowell and P. Ramstedt, “The computerwatch data
reduction tool,” in Proceedings of the 13th National Computer
Security Conference. University of California, 1990, pp. 99–
108.

[19] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer
immunology,” Communications of the ACM, vol. 40, no. 10,
1997, pp. 88–96.

[20] P. Spirakis, S. Katsikas, D. Gritzalis, F. Allegre, J. Darzentas,
C. Gigante, D. Karagiannis, P. Kess, H. Putkonen, and T.
Spyrou, “Securenet: A network-oriented intelligent intrusion
prevention and detection system,” Network Security Journal,
vol. 1, no. 1, 1994.

[21] T. Spyrou and J. Darzentas, “Intention modelling:
approximating computer user intentions for detection and
prediction of intrusions.” in SEC, 1996, pp. 319–336.

[22] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
detection: A survey,” ACM Computing Surveys (CSUR), vol.
41, no. 3, 2009, p. 15.

[23] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 2, no. 3, 2011, p. 27.

[24] P. Laskov, C. Gehl, S. Kruger, and K.-R. M ¨ uller,
“Incremental support vector learning: Analysis,
implementation and applications,” The Journal of Machine
Learning Research, vol. 7, 2006, pp. 1909–1936.

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

