
QoS-based Autonomic Service Component for Service

Delivery
Houda Alaoui Soulimani, Philippe Coude

Department of Architecture and R&D

Société Française de Radiotéléphonie (SFR)

Paris-France

{houda.alaouisoulimani, philippe.coude}@sfr.com

Noëmie Simoni

Department INFRES

TELECOM ParisTech - LTCI - UMR 5141 CNRS

Paris - France

simoni@telecom-paristech.fr

Abstract - Nowadays, with the rising complexity of the service

personalization in a heterogeneous and mobile context and the

need to satisfy the End-to-End QoS, the service resources should

be taken into account as a prominent resource as well as the

network resources. Therefore, a high degree of self-sufficiency,

self-management and automation is required in the service

resource “service component” to enhance the service delivery. In

this paper, we propose an autonomic service component ”ASC”

based on an integrated QoS–agent that self-controls and self-

manages the service resources to dynamically adapt the service

resources in response to changing situations during the user’s

session. To explain our proposal, we detail the mechanisms used

to provision and monitor the service resource and to verify its

conformity to the QoS contract established between the service

providers and the customers during the exploitation. The issue of

the ASC self-control and self-management is addressed according

to the functional and non-functional (QoS) requirements in order

to ensure the service continuity during the service delivery.

Keywords - Autonomic Service Component; End-to-End QoS; QoS-

agent; Mobility; Service Delivery.

I. INTRODUCTION

In the last years, with the fast evolution of the new

generation networks and services (NGN/NGS), the user wants

to access his personalized services while switching between

different terminals or access networks. All these types of spatial

mobility must be executed without impacting the End-to-End

QoS. However, with the increasing demands on service

delivery from customers, Providers are faced with the challenge

of provisioning and managing their service resources in an

efficient, cost-effective and flexible way. Currently, there are a

set of mechanisms used to provision and monitor the network

resources which caters to the specific QoS requirements of the

applications at the transport network. These solutions permit to

ensure and maintain the data delivery which guarantees the

QoS of the transport network during the media session. These

mechanisms do not take into account the QoS of the service

resources knowing that there are some problems that arise

during the user's session because of the services behavior in the

platforms. Nowadays, QoS solutions which operate only on the

network resources are no longer sufficient because the

delivered QoS to a given client may be affected by many

factors including the performance of the service component, the

hosting platform or the underlying transport network. This is

the reason why we have thought of broadening the QoS control

and management in the service resource “service component”

during the user’s session. In fact, to guarantee the user

satisfaction with regards to the service delivery in a

heterogeneous and mobile context, we should provision and

monitor the service resources as well as the network resources,

and dynamically re-provision the service resources by

benefiting from the ubiquitous services offered by different

providers in the service platforms. To summarize, providing a

service to the users guaranteeing the End-to-End QoS requires a

horizontal QoS management at the service layer which is added

to the existing QoS management at the access and transport

layers.

However, the Service Oriented Architecture (SOA) [1] plays

a principal role in allowing the creation of applications as a

composition of independent service components offered by

different providers. In addition, many available service

components provide identical functionalities albeit with different

quality of service capabilities. The following questions arise:
How to rethink the service component to include the QoS control

and management at the service level during the user’s session?

How a service component can enhance the service delivery? How

to cover all the user’s preferences and requirements (functional

and non-functional QoS) and ensure a better performance in a

heterogeneous and mobile context?

The purpose of this paper is to highlight the service

component features that intend to decentralize and automate

the QoS control and management for a flexible services

composition with a better QoS performance. The benefit of this

solution is to conceive a service component able to

dynamically and autonomously react in real time to a change in

the QoS contract during the user’s session, such as availability.

That’s the reason why we propose in this paper an autonomic

service component “ASC” based on a QoS-agent to monitor

the QoS in real time during the processing. This QoS-agent

triggers an event in the ASC environment in the case of a

deterioration of the QoS. The receipt of an event activates the

necessary mechanisms to change the current ASC used by

another equivalent service component having the same

functionality and QoS in order to maintain the QoS at the

service level of the architecture and consequently to guarantee

the service delivery.

The remainder of this paper is organized as follows: In

Section II, we discuss some of the works related to the topic of

this article. Section III details our proposal by explaining the

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-192-2

CTRQ 2012 : The Fifth International Conference on Communication Theory, Reliability, and Quality of Service

service component features and mechanisms that are used to

self-control and self-manage the QoS during the user’s session.

In Section IV, we present a scenario illustrating a utilization

case of the ASC. In Section V, we evaluate the performance of

the ASC through an implementation. Section VI concludes the

paper.

II. RELATED WORK

In recent years, many researchers have focused their efforts

on the service composition, the autonomic service component

and the autonomic service architecture (ASA) especially in

terms of providing the QoS to consumers in a dynamic

environment.

Farha et al. [2] presented in their paper a generic

Autonomic Service Architecture (ASA) to deliver applications

and services over an all-IP infrastructure. Their solution is

based around the concepts of SOA, virtualization and service

delivery. The ASA proposes a generic framework to deal with

the activation, provisioning, management and termination of

network resources in an autonomic way. The ASA acts

especially on the network resources to deliver a given service

to customers. Cheng et al. [3] presented an approach to the

autonomic service architecture (ASA) by proposing a

framework for the automated management of internet services

and their underlying network resources. This framework

ensures the service delivery at the transport layer. The

drawback of these approaches lies in the fact that they act on

the network resources and do not cover the service resources

which are essential to the service delivery.

Zhang et al. [4] proposed a framework to identify QoS

problems in the SOA when a business process fails to deliver

the quality of service. Their proposal is based on a set-covering

algorithm which is used to select the locations of run-time

service data collection or probes. The framework creates a

dependency matrix to denote the relationships between the data

recorded by probes and the service status. A diagnosis is then

used to identify potential faulty services. Zhai et al. [5]

presented a framework to repair failed services by replacing

them with new services and ensuring that the new service

process still meets the user specified QoS constraints. The

drawback of these approaches lies in the fact that they present

centralized solutions to identify failed services during a

session. In opposition to the previous approaches, our

proposition is based on a distributed self-management and self-

control of the QoS to dynamically maintain the service session

without impacting the end-to-end QoS.

Zambonelli et al. [6] proposed autonomic service

components that are able to dynamically adapt their behavior

in response to changing situations. They present mechanisms

to enable the components to self-express the most suitable

adaptation. The components acquire the proper degree of self-

awareness to put into action the self-adaptation and the self-

expression schemes. Liu and Parashar [7] presented a

framework which enables the development of autonomic

elements and the formulation of autonomic applications to

have a dynamic composition of autonomic elements. They

propose rules and mechanisms for the dynamic composition of

autonomic components so that the computational behavior of

the elements as well as their compositions and interactions can

be managed at the runtime using dynamically injected rules.

These approaches focus on the autonomic application creation

paradigms and the behavior of the service component

adaptation. However, these current solutions focus on self-

adaptation and self-awareness of the service component and

don’t take into account the dynamic aspect of the session at the

service level. In opposition to these approaches, we propose a

distributed self-control and self-management of the QoS in

each service component that is based on overcoming QoS

violations without modifying any QoS parameter in the SLA.

The QoS-based autonomic service component aims to enhance

the service delivery in a dynamic, mobile and heterogeneous

context.

III. PROPOSITION

In order to satisfy the SLA contract established between

the customers and the providers, a more flexible and adapted

service composition based QoS is desired to enhance the

service delivery during the session mobility. Its principle task

is to integrate the QoS control and management at the service

level of the architecture. To do so, we should automate and

distribute the QoS control and management at each service

component which is involved in the delivery of a given service.

That’s the reason why we propose in this paper an ASC to

fulfill such purpose. To explain our proposal, we firstly detail

in section A the architectural and the functional aspects of the

ASC. Secondly, we explain in section B our QoS model which

is the basis of the service component self-management.

Finally, we explain in section C the mechanism applied by the

ASC during each operational step to self-manage and self-

control its own resources for a dynamic reaction and adaptation

during the user’s session in order to maintain the service

delivery with the required QoS.

A. Autonomic Service Component

Our proposal is based on two approaches: the SOA

(Service Oriented Architecture (SOA) approach and the EDA

(Event Driven Architecture) approach. The benefit of the SOA

is the possibility to implement decentralized applications in

distributed computing systems. One of the most important

advantages of the SOA is its capacity to enable the rapid

composition of the service components offered by various

providers. The EDA complements the SOA because the service

components can be activated by triggers fired on incoming

events. To make the dynamic composition more effective in a

heterogeneous and mobile context during the operations, we

propose a novel view of the SOA (Service Oriented

Architectures) based on an autonomic service component

“ASC” that is generic, stateless, shareable, autonomous and

self-manageable. The ASC is stateless because it performs the

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-192-2

CTRQ 2012 : The Fifth International Conference on Communication Theory, Reliability, and Quality of Service

same processing (operations) for all the requests coming from

different users without storing the state or the data related to

each request. This is important in the situation where it should

make a dynamic replacement of a service component in the

case of a deterioration of the QoS during the user’s session.

The ASC is shareable because it is designed for the

provisioning and the processing of several users’ requests

according to its capacities. In order to control and manage this

resources sharing, we associate a queue in the usage plan for

each service component which holds all the accepted users

requests. The Service component is autonomic because it is

both autonomous and self-manageable. The service component

is autonomous because it is functionally independent, i.e., it is

self-sufficient and does not need other service components to

achieve its functionality. The aim of the functional

independence between the various components of service is to

facilitate the change of a service component by a ubiquitous

one in the case of a QoS deterioration or a malfunctioning

during the processing without any impact on the global service

requested by the end-user. The service component is self-

manageable because it monitors its own QoS and manages its

states related to the use of resources during the user’s session.

The service component will have at any time “t”, one of the

following four states: Unavailable, Available, Activable and

Activated. The state Unavailable means that the service

component is temporary or permanently inaccessible. The state

Available means that the service component is or can be

accessible. The state Activable means that the service

component is ready to be activated, and the state Activated

means that the resource is being used. When the service

component is activated, a QoS-agent inserted in its

management plan, monitors and controls the QoS contract (In

contract/Out contract) and communicates the service

component resources state via notification events. We mention

that the QoS agent is based on two functional elements: the

IQM (Internal QoS Manager) and the EQM (External QoS

Manager). The IQM is in charge of the control and the

management of each service component QoS. It monitors the

internal resources of the service component to determine the

QoS contract state (In contract / Out contract) of the ASC

during the exploitation phase. The main function of the EQM

is the communication and the coordination of the QoS

resources between the different service components. [8]

During the user’s session, a QoS agent can have one of the

four following roles: Passive, Active, Interactive or Proactive.

The QoS agent has a passive role when it ensures the internal

processing of the QoS and does not communicate with its

environment. It has an active role when it notifies the QoS

resources status of the service component (In Contract/Out

Contract). It has an interactive role when it interacts with other

QoS-agents to negotiate the QoS parameters. The service

component has a proactive role when the QoS-agent has the

knowledge and the rules that enable it to make decisions on its

own and send notifications to its environment. To do so, a

service component instantiates a QoS model allowing a real

time management of the service resources and their possible

deteriorations.

Figure 1: Structure of the Autonomic Service Component

B. QoS Model

In order to maintain the user Service Level Agreement

(SLA), it is necessary to have a homogenous expression of the

service component QoS to evaluate the End-to-End behavior.

This is the reason why we propose a QoS model which

represents the QoS in a uniform and homogeneous manner.

The behavior of each component is reflected by measurable

QoS parameters that can be categorized according to a vector

of four criteria: Availability, Reliability, Delay, and Capacity.

Availability “A”: represents the ratio of accessibility for a

service component. It indicates the number of times that the

service component was accessible.

A= 1- U/ T
U represents the number of times a service component has

rejected a request because it was not available.
T represents the total number of requests sent over a period of

time.

Reliability “R”: represents the ability of a service component

to be executed without impacting the information. It indicates

the percentage of successful invocations for a given period of

measurement.

R= 1- F/ T
F indicates the number of failed requests over a period of

time.
Delay: represents the average time to process a request by a

service component.

Capacity: represents the average number of requests processed

by a service component during a unit of time.

The QoS criteria are necessary and sufficient for the self-

control and self-management of the service component. These

criteria are evaluated through three types of measurable values:

design values, current values and threshold values.

Design values set the maximum processing capacity of a

service component. Current values are used during the

operation phase to monitor the behavior of the service

component during the processing. Threshold values indicate

the capacity limit that should not be exceeded by the service

component in order to insure a normal treatment of the

requests.

The QoS information helps to support the management,

the treatment and the decision–making process of the service

component. Hence, to make the right decisions during the

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-192-2

CTRQ 2012 : The Fifth International Conference on Communication Theory, Reliability, and Quality of Service

Figure 2: QoS Management Mechanisms applied by the ASC

user’s session at the right time and the right place, it is

necessary to have an efficient representation of the real world.

Therefore, we need to have a uniform information structure

containing both the description of the information of the

service component as well as the knowledge of the behavioral

aspects of the service component (such as the QoS). The

informational model contains the different profiles that are

going to be solicited during the different operations phases. For

the provisioning phase, we have the resource profile which

contains the QoS design values. During the consumption

phase, the “Real Time Profile” is instantiated in real time to

have a dynamic management of the QoS. It contains the QoS

current values that will be compared with the Threshold values

to allow the control of the service component behavior during

the usage.

C. QoS Management Mechanisms

 When the user demands a global service (GS) with an SLA

that can be composed as a business process invoking a variety

of available ASCs, it is necessary to apply a number of

mechanisms to perform the service delivery during the user’s

session steps. During the pre-provisioning step, each ASC

proceeds by a QoS Admission Control ”QAC” to verify the

service capacity required to treat a new user’s request. The

QAC allows the selection of the ASCs that suit the user’s QoS

requirements because of the ubiquitous characteristics of the

ASCs offered by different providers. During the provisioning

step, each ASC reserves the necessary resources to process the

user’s demand. Each ASC associates a queue (Figure 2) in the

usage plan to hold all the accepted users requests because of its

shareable characteristic. In order to control this resource

sharing, we must apply a “QAC” to accept a user’s query in the

queue. The role of the QAC is to determine whether a new

requestor can be accepted in the ASC queue, without violating

the SLAs of the already accepted requestors. Finally, the QoS

should be dynamically and continuously managed during the

consumption step. Our self-management vision is based on the

QoS-agent which is integrated in the management plan of each

ASC to monitor the QoS related to the processing of the query

as well as the QoS related to the ASC queue. We have already

proposed ubiquitous services and queues communities in order

to ensure a replacement of the ASC during the service delivery

when a QoS agent detects a deterioration of the QoS. In fact,

each ASC belongs to a Virtual Service Community (VSC) [9],

which contains a set of ASCs having the same functionality

and an equivalent QoS, each ASC’s queue also belongs to a

Virtual Queue Community (VQC) [10], which contains ASCs

queues of equivalent QoS.

 The ASC is structured on three plans: the control, the usage

and the management plan. The usage plan includes the main

functions performed by the service component in order to

process the requests. It includes all the mechanisms to process

a request during the consumption phase. The control plan

includes all the mechanisms used synchronously during the

user’s session to provision the service component resources.

The management plan contains the self-management functions

applied asynchronously on the data to control the service

component resources. We explain in the following via an

automaton the QoS management mechanisms used by the ASC

in each plan during the different operational phases: the pre-

provisioning, the provisioning, the delivery and the

management phase.

 During the pre-provisioning phase, the ASC receives in the

control plan a signaling message to respond to a new user’s

request (Figure 3). First, it increments the “Attach” variable to

“Attach+1” to keep the traceability of the users attached to a

service component. Then, the QoS-agent applies a QAC

mechanism to verify the statistical capabilities of its ASC. The

statistical capabilities are based on the QoS design values. This

admission control permits to determine if a component can be

attached to a new user session to process its request. If the

result is positive “OK”, then the ASC changes its state to

Activable in the case where it has not been previously attached

to another user’s session. Afterwards, it adds the user’s session

identifier to its profile in the knowledge base. If the result is

negative “NOK”, it should decrement the “Attach variable” to

“Attach -1” and then the system searches in the VSC for

another ASC having the same functionalities and an equivalent

QoS to respond to the user’s request.

 During the provisioning step, the ASC receives the user’s

transaction in the control plan, it then increments the variable J

to “J+1”. Afterwards, the QoS-agent verifies the dynamic QoS

based on the QoS current values of the queue in order to

control the admission of the user’s transaction in the queue. If

the result is positive, it provisions the query in the queue and it

changes its state from Activable to Activated if there is no

query in the queue (i.e., J=1), else it decrements the variable J

to”J-1”.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-192-2

CTRQ 2012 : The Fifth International Conference on Communication Theory, Reliability, and Quality of Service

 Figure 3 : Automaton of the ASC: Control and Usage Plans

Figure 4: Automaton of the ASC: Management Plan

Figure 5: Scenario

 During the consumption step, an ASC that is in use through

a user’s session may not continue to function normally or to

fulfill the user’s QoS requirements. This is the reason why we

solve such problem by proposing a number of mechanisms to

monitor and manage the QoS at each ASC participating in the

service delivery to the users. Our concept is based on a QoS

agent integrated in the management plan of each service

component. Figure 4 shows the different mechanisms used

during the consumption step to maintain the service with the

required QoS level. If the ASC takes a longer time to process a

request (Timer 4 expired), the processing time of the requests

that are provisioned in the ASC queue could be affected. The

QoS-agent monitors the current QoS of the ASC queue. When

it detects a QoS contract violation, it should notify the VQC to

refer the request to another ubiquitous service component

queue.

 During the management step, The QoS–agent of each ASC

composing the global service compares in real time the current

QoS with the range of the QoS threshold values. If the result is

positive, the QoS-agent sends a notification event “IN

contract” to the VSC community to convey that it still respects

the QoS contract. Otherwise, the QoS agent sends a

notification event “Out contract” (Arm Timer 2 and Timer 3)

to the VSC community in order to replace the current service

component by a ubiquitous service (Stop Timer 2). At the end

of Timer 3, the ASC changes its state from available to

unavailable and leaves its community. Then, the ASC joins a

new VSC community according to its current QoS and

consequently changes its state from unavailable to available.

All these operations are transparent to the end user and are

done automatically by the system during the user’s session.

 Each ASC participates to the management of its VSC

community; it shall notify regularly the other members on its

QoS contract state (In Contract / Out Contract). If an ASC

receives an Out contract, it sets its FlagOUT to 1 and notifies

the VSC community to exclude the ASC that is out of the

contract and to proceed to its replacement in order to maintain

the VSC community. If the ASC receives an IN Contract, it

will stop the Timer1 which has been armed in anticipation of

receiving an IN Contract. In the case where Timer 1 expires

(Timer 1 out) without receiving an IN Contract; the ASC

should check first its FlagOut. If FlagOut=1, this means that

the ASC has already received an Out Contract. Otherwise, it

notifies the VSC about the defective communication of the

ASC.

IV. SCENARIO

In this section, we use a case study to demonstrate the

utility of the ASC during the user’s session. The following

scenario illustrates the case where the user wants to personalize

his services to search for a property to buy in his geographical

area. When the customer wants to search for a property, he

selects two services from his catalog to obtain the required

customized service. The first one is a global service named

Search Property “SP” with an SLA. SP consists of three ASCs:

FIND, LOCATION and GET. The second service is Google

Maps.

 The course of the scenario events is as follows: When the

user is moving, he will first use “FIND” to search for

properties according to his geographical position (Longitude,

Latitude). The search is performed in the user’s ambient zone

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-192-2

CTRQ 2012 : The Fifth International Conference on Communication Theory, Reliability, and Quality of Service

Figure 6: Basic Service component FIND

Figure 7: Autonomic Service Component FIND

which is limited by a radius R. Then, “Location” is used to

obtain the GPS coordinates (Longitude, Latitude) for each

property. Afterwards, he uses Google Maps to view the

property on a map and finally he uses “GET” to see a detailed

profile of each property (type, price and area). During the

exploitation, the performance of “FIND” deteriorates and

cannot provide the required QoS by the global service “Search

Property”. Therefore “FIND” sends an event notification to all

the members of its VSC community to process its change.

There are always some ubiquitous candidates to replace this

component “FIND” and the selection algorithm used in the

VSC community is essentially based on the user’s geolocation

in order to ensure the equivalent previous response time during

the session. Once the VSC community finds a functional and

QoS equivalent “FIND” on another platform, the connection is

transferred from FIND@provider1 to FIND@provider2

(dynamic provisioning). Finally, the user’s service session is

maintained and the service delivery is performed. We should

mention that all these operations are transparent to the user and

are done dynamically and automatically by the system during

the user’s session.

V. IMPLEMENTATION & PERFORMANCE

 In order to validate our proposal, we have used the language

JAVA to develop our ASCs as independent EJBs and the JMS

1.1 queues to ensure communication between the ASCs. We

have also used Oracle (V 10g) for the knowledge base and the

JFreeChart API to plot the performance results.

 In order to test the performance of our proposal, we have

run the scenario that has been previously described with a

basic service component (BSC) in one case and an ASC in the

other. First case: we overload the BSC“FIND” and we notice

that the data is lost because its QoS has deteriorated (Figure 6)

and consequently the session is interrupted. Second case: we

use ASCs with the following QoS: Find (QoS α): A1= 0,99,

R1= 0,98, D1=300ms, C1=10; Location(QoS β): A2=0,97,

R2=0,86, D2=500ms, C2=8; Get (QoS µ): A4=0,98, R4=0,90,

D4= 450ms, C4=9. We note that if one of the four QoS criteria

degrades during the user’s session, it must proceed to change

the service component because all the QoS criteria (A, R, D,

and C) are necessary to maintain the overall QoS of the service

component. During the user’s session, the QoS-agent of the

ASC “FIND” detects a QoS deterioration at the reliability

criteria (R1min = 0, 8 at T=8ms) (Figure 7). It invokes the VSC

to change it by an equivalent ASC”FIND”. We notice that the

performance of the QoS is better thanks to the QoS-agent

because it prohibits a complete QoS deterioration of the service

component and maintains the service delivery.

VI. CONCLUSION

 In order to enhance the service delivery, we have proposed

in this paper an efficient solution based on an autonomic

service component “ASC” which plays a key role in offering a

service according to the consumer’s requirements in a

heterogeneous and mobile context. The ASC contains a QoS-

agent to dynamically self-control and self-manage its own

resources during the processing. Up to now, we have proposed

a number of mechanisms to seamlessly adapt the user’s session

against any QoS deterioration caused during the operations.

This solution is useful to resolve the problems of contemporary

architectures that require more real time dynamicity, flexibility

and responsiveness. Through experimentation, we have

demonstrated that this proposal provides a better performance

of the QoS and therefore a better service delivery to the

consumers. In the future, we will try to find the best solution

for the selection algorithm used in the virtual service

community (VSC) and the virtual queue community (VQC).

ACKNOWLEDGMENT

The authors would like to thank all the participants in the UBIS

project which is financed by the French ANR VERSO 2008.

REFERENCES
[1] “Portal for SOA and WS ” www.service-architecture.com, April 2012.

[2] R. Farha, A. Leon-Garcia,”Blueprint for an Autonomic Service
Architecture,” Proc. IEEE. Autonomic and Autonomous Systems (ICAS
2006), Silicon Valley, CA, July. 2006, pp. 16-16.

[3] Y. Cheng, R. Farha, S.K. Myung, A. Leon-Garcia, and J.W.-K. Hong, “A
Generic Architecture for Autonomic Service and Network Management,”
Computer Communications, November 2006, pp. 3691-3709.

[4] J. Zhang, Y. Chang, and K. Lin, “A Dependency Matrix Based
Framework for QoS Diagnosis in SOA,” Proc. IEEE. Service-Oriented
Computing and Applications (SOCA 2009), Taipei, Taiwan , January
2009, pp. 1-8.

[5] Y. Zhai, J. Zhang, and K. Lin, ”SOA Middleware Support for Service
Process Reconfiguration with End-to-End QoS Constraints,” Proc. IEEE.
International Conference on Web Services (ICWS 2009), Los Angeles,
CA, July 2009, pp. 815-822.

[6] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani, “On
Self-adaptation, Self-expression, and Self-awareness in Autonomic
Service Component Ensembles,” Proc. IEEE. Self-Adaptive and Self-
Organizing Systems Workshops (SASOW 2011), Michigan, Oct 2011,
pp. 108 - 113.

[7] H. liu, and M. Parashar, ”A component based programming framework
for autonomic applications, ” Systems, vol.36, May. 2006, pp. 341-352,
doi:10.1109/TSMCC.2006.871577.

[8] H. Alaoui, P. Coude, and N. Simoni, ”Modèle organisationnel pour le
pilotage dynamique de la qualité de service de bout en bout d’une session
user-centric,” Gestion des réseaux et de services (Gres 2010), Montreal,
Canada, Oct 2010, unpublished.

[9] H. Alaoui, N. Simoni, P. Coude, ”User-centric and QoS-based service
session,” proc. IEEE. Asia-Pacific Services Computing Conference
(APSCC 2011), Jeju, South Korea, Dec 2011, pp. 267-274.

[10] S Kessal, N Simoni, “ QoS based Service Provisioning in NGN/NGS
context,” proc.IEEE. Network and Service Management (CNSM 2011),
Paris, France, Oct 2011, pp.1-5.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-192-2

CTRQ 2012 : The Fifth International Conference on Communication Theory, Reliability, and Quality of Service

