
Accelerating Cryptographic Protocols:
A Review of Theory and Technologies

Antti Hakkala1,2 and Seppo Virtanen2

Turku Centre for Computer Science TUCS1

Department of Information Technology2

University of Turku
Turku, Finland

Email: {antti.hakkala,seppo.virtanen}@utu.fi

Abstract—Modern cryptography applications require signifi-
cant processing power and resources on computers. To make
implementations of these algorithms comply with the rising
requirements of speed and throughput of modern applications,
the use of instruction set extensions and external cryptography
processors has become more and more commonplace. While
cryptography algorithms can and do differ significantly in their
design and functionality, there are certain algebraic operations
which are used throughout all algorithm types. In this paper,
we review the fundamental operations that can be found behind
several cryptography algorithms currently in use. We examine the
need for enhancing the performance of cryptographic protocols
and available methods for accelerating the computation of such
algorithms. We discuss current methods for accelerating their
performance and examine the use of instruction set extensions
for cryptography algorithms, particularly the cases where an
instruction set can be used for multiple purposes. We conclude
that future applications require making these instruction sets as
general as possible to support a wide range of algorithms.

Keywords-Cryptography; Instruction Set Extensions; Embedded
Security; ASIP.

I. INTRODUCTION

Cryptography is the science—and some say, art [1]—of
hiding and securing information. Cryptography has an interest-
ing and far-reaching history dating back thousands of years,
but what can be considered modern cryptography began in
the 20th century. Driving forces to this development were
the advent of computers and the pressure from the second
World War, where cryptography and cryptanalysis played a
vital role in its’ outcome [2][3]. Currently, the whole global
communication network is heavily dependent on cryptography
and its applications.

As a result of this progress, applications handling personal
data, banking information, spatial data and private commu-
nications have spread to mobile and embedded devices. This
data must be secured at all points in the communication chain.
Cryptography is computationally intensive, and thus modern
embedded devices that must be able to process encrypted
information require different cryptography acceleration meth-
ods to function properly in this environment. There are many
different possible approaches to solving this problem, and in
this paper we consider the problem with focus on Instruction
Set Extensions (ISE) for a general-purpose CPU (GPCPU).

This approach allows the device to execute certain pre-defined
operations more effectively than a software approach. A ded-
icated hardware solution on silicon would be faster, but these
solutions sacrifice flexibility and programmability for speed.
Properly designed ISEs can provide concrete improvements
to performance with additional programmability added to
the system, but before this is possible, the central building
blocks from number theory that are required for cryptography
algorithms must be identified. If these blocks can be mapped
to other, seemingly unrelated functions, the instruction sets
can be designed to accommodate even broader functions than
cryptography.

In this paper we review and examine the building blocks of
cryptography algorithms at different security model abstraction
levels. We discuss current methods for accelerating their per-
formance and examine the use of instruction set extensions for
cryptography algorithms. We start the discussion by defining
the layered security model we use for categorizing security
elements in this paper in Section II. In Section III, we proceed
to give an introduction to the foundations of ISEs. Then, in
Section IV, we proceed to review the predominant types and
functions of modern cryptographic algorithms. In Section V,
we review and discuss methods for accelerating the processing
of cryptographic protocols by examining the mathematical
foundations behind cryptographic algorithms. In Section VI,
we review proposed solutions for cryptographic instruction
set extensions, including co-processor and application-specific
instruction-set processor (ASIP) approaches. In Section VII,
we suggest some of the interesting future research directions
regarding embedded security, cryptographical primitives and
ISE design for embedded systems. Our concluding remarks
are discussed in Section VIII.

II. THE PYRAMID MODEL OF SECURITY

The structure of any information security design can be
generalized into the form of a security pyramid [4], divided
into five different levels ordered by the level of abstraction,
from highest to lowest. At the top abstraction level is the
security protocol architecture, which describes the protocols
used for secure communications. In the next layer are the
different algorithms used to achieve the security specified by

103

CTRQ 2011 : The Fourth International Conference on Communication Theory, Reliability, and Quality of Service

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-126-7

Security
Protocol

Architecture

Security
algorithms

Number theory

Cycle accurate /
instruction accurate models

Implementation

Provides definitions and
requirements for lower levels

Provides services to
upper levels

Fig. 1. Security Pyramid [4]

the protocols. These algorithms include the basic signature,
encryption and hash algorithms required for cryptography. The
third level contains the basic building blocks of the algorithms
themselves. These include the number theoretic foundations
of the algorithms, and different number representations for
speeding up cryptography algorithm implementations. The
fourth level contains the platform-independent representations
of the algorithms, and the fifth and final level is the actual
physical silicon implementation of the algorithms in the pro-
tocol architecture.

The security pyramid model can also be seen as a service
architecture. The upper levels define requirements (what needs
to be done) and general architecture guidelines (how this
can be done), and the lower levels provide services upwards
by implementing the requirements of the upper level. For
example, when the security protocol is chosen, it defines what
security algorithms will be required for implementation, but it
does not explicitly specify how they should be implemented,
as long as they meet the requirements. Similarily, the selection
of security algorithms leave the designer free to explore actual
algorithm implementation options based on the requirements
from the upper level (optimization for speed, energy efficiency,
side-channel resistance). The instruction accurate level pro-
vides the actual number theoretic functionalities of the third
level in the form of instruction sets. Finally this continues
down to the implementation level, where the requirements and
specifications from the upper levels define the actual physical
implementation and layout of the device.

The interactions between levels are straightforward when
the security pyramid is considered to be separate from the
rest of the design process of the whole device the security
features are a part of. When the whole process is considered,
this model is not accurate enough to represent the problems
and relations in security design for devices.

A similar security pyramid for embedded systems has been
presented in [5]. It also contains five levels of abstraction, but
with little differences. The top level, similarly to the previous
model, is the protocol level. The second level is the algorithm
level. The third level is the architecture level, which consists
of secure design architectures and partitioning to prevent

attacks against the systems from software. The fourth level is
the microarchitecture level, which contains secure hardware
design guidelined by the architecture level decisions. The
lowest level is the circuit level, which contains secure physical
layer implementations for the chosen microarchitecture. In this
model, number theory has been absorbed by the algorithm
level to make way to secure design and partitioning, an
important issue with secure embedded systems.

What is common for both models is that, as is pointed
out in [5], the whole problem of secure system design is not
necessarily concentrated on a single level of abstraction. Some
problems can be addressed on a single level, but others must be
addressed on several levels or the security of the system breaks
down. Because adversaries usually have full physical access
to an embedded device they are trying to compromise, the
security must be sound on all levels on the security pyramid,
or the whole system is compromised. This is challenging from
a design standpoint, and more research needs to be directed to
ensuring built-in system security in all abstraction layers and
all phases of the design process.

III. INTRODUCTION TO INSTRUCTION SET EXTENSIONS

Cryptographic algorithms utilize certain algebraic opera-
tions, which are often not directly implemented in or supported
by the Instruction Set Architecture (ISA) of modern digital
systems. Cryptography applications require a large amount
of computation resources, so identifying and streamlining the
calculation of these algebraic operations is essential to good
performance on digital computers. This can be implemented
with software, but this approach is slow and requires a lot
of power. Conversely, pure hardware solutions are very fast
and efficient, but lack the flexibility of software. Thus hybrid
methods that use both techniques are required. There are sev-
eral methods available to achieve performance gains, and they
are dependent on the overall architecture and purpose of the
target system [6]. General purpose embedded processors can
be paired up with co-processors, FPGA solutions or hardware
accelerators, or specifically designed ASICs or ASIPs can
handle the extra computational load. This review is centered
on specific processor ISEs used to handle these operations.
ISEs expand the available native instructions for a processor,
and when an operation is supported by a specific ISE, its’ pro-
cessing is substantially faster than an implementation purely
based on software.

ISEs can be mapped to the security pyramid, where they
occupy the fourth level, as is seen on Figure I. As ISEs are
dependent on the building blocks provided by their respective
upper layers, the fundamentals of these operations must be
understood so that the best possible choices can be made for
the basis of ISE design. These are naturally dependent on other
architectural choices, so this review will take into account the
most basic and general methods.

When considering ISEs and their implementation, it must
be realized that the pressure for effective implementation
comes from the upper levels of the security pyramid. At
the implementation level, there is not much we can do after

104

CTRQ 2011 : The Fourth International Conference on Communication Theory, Reliability, and Quality of Service

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-126-7

the specifications have been decided and the chip design
is finished. Similarly, there is nothing a designer can do
about cryptography protocol or specific algorithm design, the
designer must work between these layers to provide good
service to both upper and lower layers in the security pyramid.

An instruction for a single round of a block cipher can be
implemented, and it provides very fast performance for that
single block cipher. What happens if the cipher suite needs to
be changed by altered application demands? Even though a
new device can be brought in to handle the changed require-
ments, it is not always practical to change the hardware in
applications for which the cipher suites can change regarding
to the service they provide. If the device is required to handle
several different cryptography protocols for different purposes,
it is desirable to have as broad a functionality as possible in the
single chip without losing performance significantly. Also, the
designer must pay attention to related functions that overlap
with the security features [4]. This means that the instructions
provided for cryptography applications can be used for other
purposes as well, if the underlying functions have sufficient
similarities, such as using the same permutations or field
operations.

IV. MODERN CRYPTOGRAPHY ALGORITHMS

Contemporary communication systems are heavily depen-
dent on secure communication of information. Algorithms
for secure communications have been developed throughout
history, but many of them have been broken by cryptanalysis.
Here we focus on the three main groups of cryptography
algorithms. When considering an algorithm for cryptography
purposes, a designer has a wide range of choices available, as
the number of available and secure ciphers is very large and
growing constantly. Cryptographic algorithms can be broadly
divided into symmetric or private-key, asymmetric or public-
key ciphers and cryptographic hash functions.

The two basic techniques for obfuscating the relationship
between plaintext and ciphertext are confusion and diffu-
sion [7]. Confusion aims to blur the relationship between the
plaintext, key and ciphertext, while diffusion eliminates the
statistical redundancy inherent in the plaintext and distributes
it over the ciphertext. Good ciphers should employ both
techniques, and several different operations for both public
and private key systems exist for achieving confusion and
diffusion. Symmetric cryptography algorithms use the same
key for encryption and decryption. Before two communicating
parties can begin to exchange encrypted messages, they have
to agree on the algorithm to be used and a common key both
will use for encryption and decryption. After a key has been
agreed upon, both parties use the same key for both encryption
and decryption.

In 1976, Whitfield Diffie and Martin Hellman introduced
the concept of public-key cryptography [8]. A public key
algorithm has a pair of keys, one for encryption (public key),
the other for decryption (private key). The public key for
encrypting messages to the recipient is published and the
private key for decrypting received messages is kept secret.

The security of public-key cryptography lies on a difficult
mathematical problem that is easy to solve with certain specific
information, but next to impossible otherwise. The intractabil-
ity of integer factorialization and discrete logarithms in certain
groups are the most used problems as the basis of public-key
cryptography algorithms. Some problems thought at first to be
intractable have been shown to be solvable, thus breaking the
cryptosystem built on it.

Hash functions are essential to many cryptographic proto-
cols, because they provide condensed versions of their input in
a manner which cannot be reversed. This has several applica-
tions in message authentication schemes and integrity checks,
among other important functions. An ideal hash function is a
one-way function that generates a fixed length digest h(m)
of an arbitrary length input value m. The one-wayness of
a function means that evaluating the function is easy, but
evaluating its’ inverse is not feasible.

V. METHODS AND ALGORITHMS FOR ACCELERATING
CRYPTOGRAPHIC PROTOCOLS

To effectively realize fast implementations for cryptography
algorithms, it is necessary to examine the number theoretical
foundations of these algorithms. The following approaches are
mainly algorithmical or mathematical approaches to acceler-
ating the calculation of central operations in cryptography. In
addition to the fundamental basis of increasing speed of cryp-
tographic calculations, the understanding of these operations
also help to give insights into cipher design and requirements.

The techniques examined here address modular arithmetic,
point scalar multiplication and operations for symmetric ci-
phers. They are based on the third level of the security
pyramid, and form the basis of instruction set extensions
found on the fourth level. As such, they essentially define
how fast we are able to perform the required operations for
cryptography algorithms in the first place.

A. Exponentiation and modular arithmetic

Exponentiation is a central arithmetic operation in most
algorithms, and consequently the speed of exponentiation
significantly affects their performance. Modular arithmetic
operates in a residual number system, where all operands are
reduced modulo an integer. Cryptography combines these two
central operations in many ciphers, and because of this, they
are critical to the performance of cryptography applications.

Trivial multiplication algorithms have a complexity of
O(n2) [9]. Algorithms such as Karatsuba-Ofman multiplica-
tion [10] have a complexity of O(nlg 3). Efficient exponenti-
ation has many solutions, and a good review of fast methods
and their mathematical fundamentals can be found in [11],
where addition chains, the binary method, m-ary method,
different window methods and redundant number systems are
considered. It was found in the review that the choice of the
multiplication algorithm depends on the situation. Sometimes,
as is with Diffie-Hellman key exchange, it is more prudent
to use precomputation methods, while in other situations the
choice of the group will make all the difference, as is with F2n

105

CTRQ 2011 : The Fourth International Conference on Communication Theory, Reliability, and Quality of Service

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-126-7

in Elliptic Curve Cryptography (ECC), where it is possible to
use different coordinate systems for a substantial advantage.
Other number representations for exponentiation have been
proposed, such as the Fibonacci m-ary representation [12],
which is a sparse number representation based on representing
numbers as sums of Fibonacci numbers.

The Chinese Remainder Theorem (CRT) is often used to en-
hance RSA performance, as it can be used to effectively halve
the required modulus length by calculating exponentiations
mod p and mod q instead of mod (pq). A description of
CRT can be found in, for example, [1]. All methods where
the modulus is a composite and require modular exponenti-
ation can benefit from using CRT, with some reservations.
For example RSA decryption greatly benefits from this, but
encryption does not, as the factors of the composite modulus
n = pq are required for the CRT, and the security of RSA
depends on only the receiver knowing the factors for n. The
effect of using CRT on RSA results in theoretical decryption
speed increase of 4x, and for the implementation in [13], actual
speedup is 3.8x.

The use of modular arithmetic requires modular reduction
and inversion operations. These are computationally expen-
sive, and methods to improve their performance are well-
documented. Montgomery presented a method [14] for ac-
celerating modular exponentiation by transforming the cal-
culations into a new representation where divisions and re-
ductions by n can be performed as divisions and reductions
by some arbitrary binary number 2i. Given that reductions
and divisions by powers of 2 are trivial in digital computers,
this greatly increases the speed of modular exponentiation.
Although the benefit is lost for minor operations, as the cost of
transforming the operands to the Montgomery representation
is not free, repeated operations benefit from this approach
greatly. Discussion and algorithms for Montgomery reduction
and multiplication can be found in, for example, [15]. The
Montgomery method is widely implemented in digital systems
of all kind where efficient modular reduction is required, and
improvements to the original algorithm are widely researched.
An algorithm presented in [16] runs faster than Montgomery’s,
and differs from the Montgomery method by integrating the
multiplication and reduction steps. In [17], a modified version
of Montgomery multiplication is presented, with a reported re-
duction in multiplication steps of 26.68% to 38.9% compared
to previous improvements.

An alternative method for fast modular reduction [18] was
presented by Barrett. It is based on precomputing a single
parameter for later use. This precomputation cost can be
considered negligible if the modulus does not change dur-
ing calcualtions. So far, the Montgomery method is more
prominent in existing implementations. A modified Barrett
implementation was presented in [19]. It is based on modifying
the precomputation phase and by implementing a modified
Karatsuba-Ofman multiplication algorithm to provide substan-
tial improvement to performance compared to the Montgomery
method. When compared on three different platforms, the per-
formance of the modified Barrett algorithm was consistently

better than Montgomery’s, and increased with larger moduli.
Calculating multiplicative inverses are an important part in

any modular arithmetic based cryptosystem. This can be done
via Fermat’s Little Theorem, which states that ap−1 ≡ 1
mod p and thus the multiplicative inverse of element a is
ap−2 = a−1 mod p. An another way to calculate inverses
is the Extended Eucleidian Algorithm, of which a description
can be found in, for example, [20].

B. Elliptic Curve Cryptography

Elliptic Curve cryptosystems are based on elliptic curves
over finite fields [21], [22]. A basic introduction to ECC
can be found in [23], and a more comprehensive treatment
in [20]. While cryptosystems operating in Zp use modular
exponentiation, the central operation for ECC is point scalar
multiplication, where a point P on the elliptic curve is added
to itself k times. The reversal of this calculation is known
as the Elliptic Curve Discrete Logarithm Problem (ECDLP),
and the intractability of this problem in the chosen underlying
field is the basis of ECC. Attacks on ECC exist—like RSA, the
ECDLP has not been proven to be intractable—but they can
be alleviated with proper choice of system parameters [20].

Modular arithmetic is present in ECC systems, as the
operands are reduced modulo a prime for prime fields Fq ,
and modulo an irreducible polynomial in extension fields F2n .
Similar m-ary techniques, windowing techniques and NAF
representations discussed in Section V-A can be used for ac-
celerating such calculations [23]. The coordinate system used
to represent the points on an elliptic curve can also be modified
to provide faster calculations by reducing or removing the
need for inversions, which are costly to compute. Itoh-Tsujii
inversion [24], derived from Fermat’s Little Theorem, can
be used to calculate inversions in both prime and extension
fields. The use of repeated squarings to compute inversions
in binary fields is discussed in [25]. Also, the choice of
both the curve and the underlying field can have a significant
effect in speeding up calculations. See [20] for discussion on
accelerating ECC systems.

VI. INSTRUCTION SET EXTENSIONS FOR CRYPTOGRAPHY

Given the demonstrated complexity of operations in cryp-
tography algorithms and the fact that computers are used
by necessity to perform these operations, the optimization
of performance for computer systems is essential for any
cryptography application. Wu et al. [26] state that for a fast and
efficient platform for cryptography applications, the platform
must be scalable and it must perform the essential operations
required in cryptography efficiently.

ASIPs have been intensively studied already for more than
a decade. The aim in ASIP design is to find sequences of
general purpose operations in the target application, and group
these sequences into a hardware implementation [27], [28],
[29], [30]. Often the target application is profiled using tool-
based automation to find such code sequences. The resulting
recurring command sequences that are chosen for hardware
implementation are often quite short, usually less than 10

106

CTRQ 2011 : The Fourth International Conference on Communication Theory, Reliability, and Quality of Service

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-126-7

and often only 2-3 general purpose processor commands
of length. In ASIP methodologies often a general purpose
processing core is enhanced with hardware execution units for
the detected command sequences with the aim that the special
hardware units speed up overall application processing speed
considerably. For example, in an early study presented in [27]
it was determined that this kind of an approach provides a
performance increase of no more than 30 % when compared
to a general purpose processor designed with equal area and
power constraints.

ASIP design methodologies have established their position
as an attractive alternative to embedded processor design,
especially in the digital signal processing application domain.
The use of ASIPs for cryptographic applications has also
been studied quite intensively in recent years. For example,
in [31], an ASIP for speeding up AES, DES, MD5 and SHA
processing is designed. The design process attempts to identify
all possible levels of parallelism in the target application both
at the instruction level (where detected sequences are 5-10
instructions of length) and at the task level, thus aiming for
a better result than in the traditional instruction level profil-
ing. The results showed up to 2.7x cycle time improvement
for the target algorithms. In [32], an existing ASIP design
platform is used to design an ASIP for AES processing in
sensor networks. The optimization includes the design of two
new hardware units to speed up the AES MixColumns and
SubBytes transformations. In comparison to an unoptimized
reference model, the resulting optimized ASIP and its code
show cycle count reductions of 33 % and 45 % for encryption
and decryption, respectively. In [33], the design space is
explored to design an ASIP for cryptographic pairings based
on an existing RISC core. Based on the exploration, the key
extensions to the core are a multi-cycle scalable Montgomery
multiplier and an enhanced memory architecture. The resulting
ASIP instances range from a fast ASIP instance suitable to
embedded systems to a smaller and slower instance suitable
to for example smart card applications.

Instruction set design can also affect the choice of un-
derlying algorithms and methods dramatically. In [34], an
instruction set is customized to provide superior multiplica-
tion performance with an algorithm clearly inferior to other
available options when considered without the instruction set.

The question whether to accelerate public or private key
algorithms, or both, is heavily dependent on the target appli-
cation. For example the effects on cryptography acceleration
on SSL is analyzed in [35], where it was found that given very
short SSL sessions, public-key traffic for key exchange and
setup dominates the total amount of encrypted traffic. In SSL,
public-key encryption is used for key exchange and authentica-
tion, and symmetric encryption is used for payload encryption.
As the amount of traffic increases, symmetric encryption
becomes increasingly dominant in the overall traffic. If a
server has to handle multiple distinct encrypted connections
for a prolonged amount of time, public-key encryption traffic
becomes increasingly important. For a client which has to
handle only one connection, symmetric encryption becomes

more and more meaningful as the amount of traffic grows.

A. Synergy benefits from instruction sets

In [36], a method for accelerating AES with an instruction
set designed for ECC is presented. It exploits the fact that AES
uses finite field arithmetic in the field GF(28), and thus ECC
accelerators for fields of the form GF(2m) can be used also for
accelerating AES. The instruction set contained an instruction
for binary polynomial multiplication, and this was used to
enhance performance. The authors report a speed increase of
up to 25% for AES when utilizing instructions for ECC in a
SPARC V8 LEON-2 processor. Although the speed increase is
not on par with dedicated AES implementations on FPGA:s,
for example, it shows how it is possible to gain performance
from exploiting the common building blocks of cryptographic
algorithms.

The effects of the Intel AES instruction set [37][38] for
performance on SHA-3 hash function candidates is analyzed
in [39]. A significant majority of the SHA-3 candidates are
directly based on or utilize the AES round operation, so direct
performance improvements on the operation of such functions
is intuitive. The analysis is based on simulations on the
information available of the Intel AES ISE. As the instructions
perform one complete round of AES, algorithms which do not
directly comply to the round function do not gain performance
benefits from these instructions, even though they have similar
building blocks. This highlights the disadvantages of very
specialized instruction sets; it is always a tradeoff between
flexibility and performance, as the instructions perform a
complete round, any deviation from the standard round causes
the instructions to be unusable, even though the underlying
operations are the same.

It would be reasonable to assume that any methods for
accelerating AES performance would also have similar impact
on the performance of the SHA-3 candidates that are based
on AES. Especially instructions for ECC are interesting in this
regard, as it has been previously noted that they can be used
to accelerate AES, and thus would be by extension capable of
doing the same to some of the SHA-3 candidates. To the best
of our knowledge, no research in this direction has yet been
published, though.

VII. OPEN ISSUES AND FUTURE WORK

Because the capability of devices to execute a wide variety
of cryptographic protocols effectively is directly tied to the
security and privacy aspects of future communication systems,
the creative use of instruction sets to enhance the performance
of cryptography operations is an interesting research topic.
This is especially true for devices which must provide a wide
variety of functions using limited processing capabilities.

When considering the larger scale of secure system design,
overcoming the information security challenges of embedded
communication systems of the future requires continuous
fundamental and cross-disciplinary research. As an enabling
factor to approaching these challenges we see the need for a
paradigm shift: instead of treating security as an incremental

107

CTRQ 2011 : The Fourth International Conference on Communication Theory, Reliability, and Quality of Service

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-126-7

feature of embedded communication systems, research efforts
should focus on pre-empting the emergence of information
security threats and vulnerabilities in future embedded com-
munication systems. This requires incorporating information
security as an integral part into the design process of such
systems and their subsystems. Such a paradigm shift raises
challenging novel research problems in both hardware and
software development as well as related processes. Focusing
research efforts on security-enabled hardware/software code-
sign solutions and systematic approaches for designing secure
embedded communication systems would be an important first
step in this direction.

In our view, the initial step towards more robust and secure
system design could be integration of the design-time ”build-
ing security in” philosophy [40] from software engineering
to the run-time ability of adapting to new application-domain
specific applications, as conceptualized in Software-Defined
Radio (SDR) [41] and Open Wireless Architecture (OWA)
[42], in the overall embedded communication system design
process [43]. Bringing these research directions together to
design secure embedded communication systems would be an
extremely interesting approach. Some aspects of the research
required to accomplish this are outlined in [44]. A thorough
overview of design challenges for future embedded commu-
nication systems including their security is given in [45].

Security interacts directly with the price, power consump-
tion, testability, performance and reliability factors of the
design process [23]. This poses steep requirements to system
design processes and methodologies. To achieve these goals,
the requirements for such design processes should be explic-
itly defined and examined. Building security into embedded
systems has effects in all vital areas of system design, and
this is an interesting direction for future research.

VIII. CONCLUSION

Effective methods for accelerating different cryptosystems
have been presented in literature. It remains as the design-
ers dilemma to select the best of these methods which are
applicable to the current problem and use them effectively
to accelerate the required operations used in the design. The
design process of an embedded system should incorporate
security features to the core of the process, thus moving
towards design methods where security is already built in.
Security models such as the security pyramid are efficient in
pointing out that security is not a feature that can be added in
as an afterthought, but is a complex problem that involves all
layers of abstraction.

Implementing efficient methods for essential algebraic and
other operations can make a large difference in cryptogra-
phy application performance. The choice of these operations
depend on the nature of the cryptography application, but
as some operations are central to many different algorithms,
synergy benefits from implementing a broad base of operations
are worth consideration for implementations where flexibility
is a design parameter.

Instruction set extensions for general purpose processors
have been demonstrated to be very efficient in improving
cryptography application performance by providing instruc-
tions for particular operations that are ill-suited for execution
in traditional CPUs. Performance increases have been studied
and have been observed to be even an order of magnitude
faster than implementations in pure software.

Instruction sets for particular algorithms are naturally faster
in performance than generalized approaches, but fixed word
lengths and logic cause loss of flexibility in choosing different
algorithms for implementation. Instruction sets that target
some general problematic operation that is shared between dif-
ferent ciphers are naturally more flexible, while still providing
significant performance increase compared to pure software
solutions. If the goal is to create a flexible solution for
cryptography acceleration, these generalized instruction sets
are a very tempting choice over specific instruction sets.

REFERENCES

[1] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source
code in C, 2nd edition. John Wiley & Sons, 1996.

[2] D. Kahn. The Codebreakers. Macmillan Publishing Company, New
York, 1967.

[3] S. Singh. The Code Book: The Evolution of Secrecy from Mary, Queen
of Scots, to Quantum Cryptography, 1st edition. Doubleday, New York,
NY, USA, 1999.

[4] P. Schaumont and I. Verbauwhede. A reconfiguration hierarchy for
elliptic curve cryptography. In Conference Record of the Thirty-
Fifth Asilomar Conference on Signals, Systems and Computers, 2001.,
volume 1, pages 449–453. IEEE, 2002.

[5] D.D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede. Securing
embedded systems. Security and Privacy, IEEE, 4(2):40 –49, March-
April 2006.

[6] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan. Security as a
new dimension in embedded system design. In Proceedings of the 41st
Annual Design Automation Conference, San Diego, CA, USA, June 07
- 11. ACM, New York, 2004.

[7] C.E. Shannon. Communication theory of secrecy systems. Bell Syst.
Tech. J., 28:656–715, Oct. 1949.

[8] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22:644–654, 1976.

[9] D.E. Knuth. The art of computer programming. Volume 2. Seminumer-
ical algorithms, Third Edition. Addison-Wesley Reading, MA, 1998.

[10] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on
automata. In Soviet Physics Doklady, volume 7, page 595, 1963.

[11] D.M. Gordon. A survey of fast exponentiation methods. Journal of
Algorithms, 27(1):129 – 146, 1998.

[12] S.T. Klein. Should one always use repeated squaring for modular
exponentiation? Information Processing Letters, 106(6):232–237, 2008.

[13] K. Hansen, T. Larsen, and K. Olsen. On the Efficiency of Fast RSA
Variants in Modern Mobile Phones. International Journal of Computer
Science and Information Security, 6(3):136–140, 2009.

[14] P.L. Montgomery. Modular Multiplication Without Trial Division.
Mathematics of Computation, 44(170):519–521, 1985.

[15] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of
applied cryptography. CRC, 1997.

[16] S.M. Hong, S.Y. Oh, and H. Yoon. New modular multiplication
algorithms for fast modular exponentiation. In Advances in Cryptology—
EUROCRYPT96, pages 166–177. Springer, 1996.

[17] C.-L. Wu. An efficient common-multiplicand-multiplication method to
the montgomery algorithm for speeding up exponentiation. Information
Sciences, 179(4):410 – 421, 2009.

[18] P. Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Advances
in Cryptology—CRYPTO86, pages 311–323. Springer, 1987.

[19] W. Hasenplaugh, G. Gaubatz, and V. Gopal. Fast modular reduction.
18th IEEE Symposium on Computer Arithmetic (ARITH’07), 2007.

108

CTRQ 2011 : The Fourth International Conference on Communication Theory, Reliability, and Quality of Service

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-126-7

[20] D.R. Hankerson, S.A. Vanstone, and A.J. Menezes. Guide to elliptic
curve cryptography. Springer-Verlag New York Inc., 2004.

[21] V. Miller. Use of elliptic curves in cryptography. Proceedings of the
Advances in Cryptology—CRYPTO’85, 1986.

[22] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203–209, 1987.

[23] C.H. Gebotys. Security in Embedded Devices. Springer Verlag, 2010.
[24] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative

inverses in GF(2m) using normal bases. Information and Computation,
78(3):171–177, 1988.

[25] K.U. Järvinen. On repeated squarings in binary fields. In Proceedings
of the 16th International Workshop on Selected Areas in Cryptography,
SAC 2009, volume 5867 of Lecture Notes in Computer Science, pages
331–349. Springer-Verlag, 2009.

[26] L. Wu, C. Weaver, and T. Austin. CryptoManiac: a fast flexible
architecture for secure communication. ACM SIGARCH Computer
Architecture News, 29(2):110–119, 2001.

[27] M. Arnold and H. Corporaal. Designing domain specific processors. In
Proceedings of the 9th International Symposium on Hardware/Software
Codesign (CODES’01), pages 61–66, 2001.

[28] A. Both, B. Biermann, R. Lerch, Y. Manoli, and K. Sievert. Hardware-
software-codesign of application specific microcontrollers with the ASM
environment. In Proceedings of the Conference on European Design
Automation, pages 72–76, Grenoble, France, September 1994.

[29] T.V.K. Gupta, P. Sharma, M. Balakrishnan, and S. Malik. Processor
evaluation in an embedded systems design environment. In Proceedings
of the 13th International Conferenence on VLSI Design, pages 98–103,
Calcutta, India, January 2000.

[30] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man. Instruction
set definition and instruction selection for ASIP. In Proceedings of the
Seventh International Symposium on High-Level Synthesis, pages 11–16,
Niagara-on-the-lake, Canada, May 1994.

[31] D. Montgomery and A. Akoglu. Methodology and Toolset for ASIP
Design and Development Targeting Cryptography-Based Applications.
In Proceedings of IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pages 365–370, Mon-
treal, Canada, July 2007.

[32] N. Suarez, G.M. Callico, R. Sarmiento, O. Santana, and A.A. Abbo. Pro-
cessor customization for software implementation of the AES algorithm
for wireless sensor networks. In Proceedings of the 19th International
Workshop on Power and Timing Modeling, Optimization and Simulation,
LNCS 5953, pages 326–335, Delft, The Netherlands, September 2009.

[33] D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg,
D. Auras, G. Ascheid, and R. Mathar. Designing an ASIP for Crypto-
graphic Pairings over Barreto-Naehrig Curves. In Proceedings of 11th
International Workshop on Cryptographic Hardware and Embedded
Systems, LNCS 5747, pages 254–271, 2009.

[34] J. Großschädl, P. Ienne, L. Pozzi, S. Tillich, and A.K. Verma. Combining
algorithm exploration with instruction set design: a case study in elliptic
curve cryptography. In Design, Automation and Test in Europe, 2006.
DATE’06. Proceedings, volume 1, pages 1–6. IEEE, 2006.

[35] J. Burke, J. McDonald, and T. Austin. Architectural support for fast
symmetric-key cryptography. In Proceedings of the ninth international
conference on Architectural support for programming languages and
operating systems, pages 178–189. ACM, 2000.

[36] S. Tillich and J. Großschädl. Accelerating AES using instruction set
extensions for elliptic curve cryptography. Computational Science and
Its Applications–ICCSA 2005, pages 665–675, 2005.

[37] S. Gueron. Intel R© Advanced Encryption Standard (AES) Instruc-
tions Set. White paper, Intel Corporation, http://software.intel.com/en-
us/articles/intel-advanced-encryption-standard-aes-instructions-set/, Jan-
uary 2010.

[38] S. Gueron. Intel’s New AES Instructions for Enhanced Performance and
Security. In Fast Software Encryption: 16th International Workshop,
FSE 2009 Leuven, Belgium, February 22-25, 2009.

[39] R. Benadjila, O. Billet, S. Gueron, and M.J. Robshaw. The Intel
AES Instructions Set and the SHA-3 Candidates. In ASIACRYPT ’09:
Proceedings of the 15th International Conference on the Theory and
Application of Cryptology and Information Security, pages 162–178.
Springer-Verlag, 2009.

[40] G. McGraw. Software Security: Building Security In. Addison-Wesley,
2006.

[41] W.H.W. Tuttlebee. Software-defined radio: facets of a developing
technology. Personal Communications, IEEE, 6(2):38–44, Apr. 1999.

[42] W.W. Lu. Open wireless architecture and enhanced performance.
Communications Magazine, IEEE, 41(6):106 – 107, June 2003.

[43] D.D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. Embedded System
Design: Modeling, Synthesis and Verification. Springer Verlag, 2009.

[44] J. Björkqvist and S. Virtanen. Convergence of hardware and software
in platforms for radio technologies. Communications Magazine, IEEE,
44(11):52 –57, Nov. 2006.

[45] J. Isoaho, S. Virtanen, and J. Plosila. Current challenges in embedded
communication systems. International Journal of Embedded and Real-
Time Communication Systems, 1(1):1–21, 2010.

109

CTRQ 2011 : The Fourth International Conference on Communication Theory, Reliability, and Quality of Service

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-126-7

	Introduction
	The Pyramid Model of Security
	Introduction to Instruction Set Extensions
	Modern Cryptography Algorithms
	Methods and Algorithms for Accelerating Cryptographic Protocols
	Exponentiation and modular arithmetic
	Elliptic Curve Cryptography

	Instruction Set Extensions for Cryptography
	Synergy benefits from instruction sets

	Open Issues and Future Work
	Conclusion
	References

