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Abstract—Groundwater depletion, primarily driven by un-
sustainable irrigation practices in agriculture, has become a
pressing global issue. Accurate soil moisture monitoring and
prediction are essential for supporting sustainable water resource
management. This review contributes to an ongoing research
effort aimed at developing a predictive soil moisture modeling
framework by integrating signals from sparsely distributed
ground-based sensors with satellite-derived datasets, including
NASA’s Soil Moisture Active Passive (SMAP) products. As a
part of this study, a case analysis involving several International
Soil Moisture Network (ISMN) stations in the United States is
conducted to evaluate the agreement between in-situ and satellite-
derived measurements. While both data sources reveal consistent
seasonal trends, significant discrepancies in magnitude highlight
concerns regarding the reliability of these data as a universal
benchmark. The paper provides a comprehensive review of recent
advances and persistent challenges in soil moisture prediction,
emphasizing the role of ISMN data. The overarching goal is
to guide the development of robust, high-resolution tools for
precision agriculture and sustainable groundwater management.
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I. INTRODUCTION

Groundwater levels are declining at an alarming rate across
the globe due to various factors, with excessive irrigation
practices being one of the primary ones [1][2]. According to
the 2018 U.S. Census of Agriculture, approximately 50% of
the irrigated land in the United States depends exclusively on
groundwater, while an additional 16% relies on a combination
of groundwater and surface water. Alarmingly, nearly half of the
monitoring sites across 28 U.S. states have reported significant
groundwater depletion since 1980, indicating unsustainable
usage patterns [3].

To address this growing crisis, it is imperative to optimize
agricultural water consumption. An ongoing research project at
Grand Valley State University (GVSU), Michigan, conducted
under the Precision Agriculture Research Lab, aims to address
this challenge. The focus of the project is on predicting soil
moisture by integrating data from sparsely distributed in-situ
moisture sensors with satellite-based observations, such as
NASA’s Soil Moisture Active Passive (SMAP) mission [4] and
the European Space Agency’s Climate Change Initiative (ESA
CCI) [5].

Soil moisture monitoring and predictions can play a pivotal
role not only in minimizing water waste but also in enabling
informed decision-making for farmers and policy makers.

Figure 1. Average daily soil moisture by SMAP (surface-level and rootzone)
vs ISMN at Gaylord-9-SSW (Michigan, U.S.). Null values were imputed
through forward-fill (rolling average with window-size=3).

Figure 2. Average daily soil moisture by SMAP (surface-level and rootzone) vs
ISMN at Bedford-5-WNW (Indiana, U.S.). Null values were imputed through
forward-fill (rolling average with window-size=3).

Effective soil moisture management supports long-term soil
health, prevents erosion, and ensures sustained agricultural pro-
ductivity. In addition to precision agriculture, it enables better
drought monitoring, flood forecasting, and land-atmosphere
interaction modeling [6][7]. Although soil moisture prediction
has been widely investigated, the development of consistent
and reliable benchmark datasets remains an ongoing challenge.
Figure 1 presents the aggregated daily average soil moisture
measurements from January 2023 to January 2025 at the
Gaylord-9-SSW station in Michigan, USA, an example site
within the ISMN, a publicly accessible global database that
consolidates in-situ soil moisture observations from numerous
monitoring networks. By offering standardized data formats
and automated quality control protocols, the ISMN serves a
vital role in validating satellite-derived soil moisture products
and land surface models, and has become a widely adopted
reference in hydrological and climate research due to its
comprehensiveness and accessibility [8].

To assess the consistency between ground-based and satellite-
derived soil moisture measurements, we compare average daily
values from NASA’s SMAP products with corresponding data
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from the ISMN. As illustrated in Figure 1, both datasets
exhibit similar seasonal trends, with the primary differences
occurring in the magnitude rather than the overall pattern.
A comparable analysis at a second ISMN site, Bedford-5-
WNW in Indiana, is shown in Figure 2. In this case, the
discrepancy between SMAP and ISMN measurements is more
pronounced than at the Gaylord-9-SSW station. These findings
raise important questions regarding the reliability of these data
as a benchmark for soil moisture modeling: To what extent can
ISMN be trusted for model evaluation? What are its inherent
strengths and limitations? And are there viable alternatives that
offer improved consistency or coverage? This review primarily
focuses on the following key aspects related to soil moisture
prediction:
• Identifying the challenges involved in building accurate soil

moisture prediction models.
• Examining the difficulties associated with collecting reliable

data.
• Evaluating existing benchmarks for soil moisture prediction,

with particular emphasis on their strengths and limitations
in supporting robust model development.
The paper is organized as follows. Section II outlines

advances and challenges in soil moisture prediction. Section III
reviews ISMN data, emphasizing its strengths, limitations, and
applications. Finally, Section IV summarizes the review with
key observations and recommendations.

II. ADVANCES AND CHALLENGES IN SOIL MOISTURE
PREDICTION

Soil moisture prediction has evolved significantly over the
past two decades, driven by advances in remote sensing, data
assimilation, and machine learning. Traditional approaches
primarily relied on physics-based land surface models (LSMs),
such as the Noah LSM and the Community Land Model (CLM),
to simulate water and energy fluxes at the land-atmosphere
interface [9][10]. These models use meteorological inputs
and land surface parameters, but their performance is often
constrained by uncertainties in input data, parameterization, and
the scale mismatches between model outputs and observational
datasets [11].

Machine Learning (ML) and Deep Learning (DL) methods
have recently emerged as powerful alternatives or complements
to traditional models. Data-driven algorithms, including random
forests, support vector machines, and artificial neural networks,
have been employed to estimate soil moisture from remote
sensing and meteorological data [12][13]. Deep learning archi-
tectures, particularly Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), have demonstrated
strong capabilities in modeling complex spatiotemporal patterns
in soil moisture dynamics [14]. Additionally, hybrid approaches
that integrate physical modeling with ML have gained attention
for improving generalizability and interpretability [15][16].

Satellite missions such as NASA’s SMAP, ESA’s Soil
Moisture and Ocean Salinity (SMOS), and the AMSR series
have facilitated the development of predictive models at
multiple spatial scales, contributing to applications from global

hydrological assessment to localized precision farming [17][18].
However, most satellite-derived products are available at coarse
spatial resolutions (e.g., 1 km or greater), limiting their
usefulness in field-level agricultural decision-making [19].

Despite these technological advancements, several key chal-
lenges hinder the development of accurate and reliable soil
moisture prediction models. A major issue is the scarcity and
spatial sparsity of high-quality ground truth data, which is
critical for both model training and validation [20]. The het-
erogeneity of environmental variables, such as soil properties,
vegetation cover, land use patterns, and topography, further
complicates model generalization across different regions
[21]. Equally critical are the challenges associated with data
collection. In-situ soil moisture measurements, such as those
provided by ISMN, offer valuable ground truth but are often
spatially sparse and unevenly distributed, particularly in under-
monitored regions [22]. Variations in sensor type, calibration,
and installation practices introduce inconsistencies, while sensor
failure or communication issues can lead to temporal gaps.
Satellite-based data, while offering broader coverage, are
impacted by cloud cover, vegetation, and surface roughness,
reducing measurement reliability in many settings [23][24].
Arid and semi-arid regions, where accurate soil moisture
monitoring is most crucial, are particularly affected due to
low signal-to-noise ratios [25].

Addressing these multifaceted challenges calls for multi-
disciplinary strategies involving improved sensor networks,
data harmonization, uncertainty quantification, and interpretable
modeling frameworks. The integration of adaptive machine
learning algorithms with heterogeneous data sources is critical
to developing high-resolution, accurate soil moisture predictions
that can transform sustainable water resource management and
data-driven agriculture.

III. ISMN DATA: STRENGTHS, CHALLENGES, AND
APPLICATIONS

The ISMN has emerged as a critical resource for collecting
and harmonizing in-situ soil moisture data across global
observation networks. It serves as a foundational resource
for validating, calibrating, and benchmarking satellite- and
model-derived soil moisture datasets. Its importance lies in
the harmonized collection and open dissemination of in-situ
soil moisture data from a wide array of monitoring networks
across different climate zones, land cover types, and soil
structures [8][22]. The ISMN enables intercomparison of
remote sensing products (e.g., SMAP, SMOS, AMSR2) by
providing a global standard against which these data sources
can be evaluated [20]. It also supports the assessment and
development of downscaling algorithms and machine learning
models by offering high-quality ground truth measurements
[26]. Moreover, the temporal consistency and metadata richness
of ISMN facilitate long-term hydrological studies and trend
detection, which are crucial for climate resilience planning and
agricultural decision-making. By improving the accuracy and
robustness of predictive models, ISMN plays a critical role
in the advancement of soil moisture science and its practical
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applications in water resource management, agriculture, and
disaster mitigation.

Figure 3. ISMN Stations Wold wide – an exact extract from [27].

ISMN aggregates soil moisture measurements from a va-
riety of sources, standardizing and applying quality control
procedures to improve accessibility and usability [8]. However,
the ISMN data can still exhibit inconsistencies due to differ-
ences in sensor types, installation depths, and environmental
heterogeneity [20]. Draper et al. emphasized the importance
of preprocessing ISMN data before using it for validation or
modeling tasks [28].

Despite its value, ISMN presents several challenges when
used in predictive soil moisture modeling. The spatial dis-
tribution of ISMN stations, as shown in Figure 3, is highly
uneven, with denser coverage in North America and Europe
and sparse representation in Africa, Asia, and South America.
This limits global-scale modeling and regional calibration,
especially in underrepresented ecosystems. Station metadata,
including soil depth, vegetation, and land use, is sometimes
incomplete or inconsistent, complicating efforts to standardize
data inputs for machine learning and physical models [20].
Discrepancies also arise from heterogeneity in sensor types,
calibration protocols, and measurement depths across networks,
introducing uncertainty into inter-station comparisons and
satellite validation studies [22]. Moreover, data gaps due to
sensor maintenance or environmental interference pose prob-
lems for time series continuity. These limitations necessitate
pre-processing steps such as harmonization, gap-filling, and
filtering, which introduce additional complexity into model
development pipelines. Despite these challenges, ISMN remains
a critical benchmark for validating satellite retrievals and
downscaling methods, though its shortcomings highlight the
importance of complementing it with other data sources and
standardization frameworks.

The increasing availability of ISMN data has enabled its
integration into machine learning and deep learning models
for high-resolution soil moisture estimation. Xu et al. [29]
used ISMN data to validate a wide and deep neural network
that improved the spatial resolution of SMAP satellite data
across the U.S. Similarly, Celik et al. [30] and Lee et al. [31]
developed deep learning models incorporating ISMN observa-

tions to improve performance in heterogeneous landscapes by
reducing dependency on physical modeling assumptions. In the
agricultural domain, Custódio and Prati [32] applied ensemble
machine learning models to IoT-supported irrigation systems,
using soil moisture as a key variable. Their results, validated
with real-time field data, support the use of AI for operational
water resource management.

While the ISMN is the most prominent repository for in-
situ soil moisture measurements, several alternative datasets
and platforms also play crucial roles in soil moisture research
and modeling. One key alternative is the USDA Soil Climate
Analysis Network (SCAN), which provides high-resolution,
near-real-time soil moisture data across agricultural zones in
the United States [33]. Similarly, the FLUXNET network offers
point-based data through eddy covariance towers, which include
soil moisture as part of broader ecosystem flux measurements
[34]. In terms of satellite-derived products, SMAP and ESA’s
SMOS missions provide global, gridded soil moisture datasets
at regular intervals [35]. The Advanced Scatterometer (ASCAT)
onboard EUMETSAT MetOp satellites also offers a long-term
record of soil moisture estimations with relatively high temporal
resolution [36]. Additionally, regional in-situ networks such
as the OzNet (Australia), REMEDHUS (Spain), and ARM
Southern Great Plains (USA) serve as valuable sources for
local model calibration and validation. These alternatives, while
often complementary to ISMN, highlight the diversity of data
sources available for soil moisture modeling and reinforce the
importance of integrated approaches that combine satellite,
in-situ, and model-based observations.

IV. CONCLUSION

Accurate soil moisture prediction is vital for mitigating
groundwater depletion in irrigation-dependent regions. This
review highlights the potential of integrating satellite data with
sparse in-situ measurements, though concerns remain regarding
the consistency of benchmark datasets like ISMN. Case studies
reveal seasonal alignment with SMAP, yet discrepancies in
magnitude question ISMN’s reliability as a ground truth. Key
challenges include sparse station coverage, sensor inconsisten-
cies, and the coarse resolution of satellite products. Moving
forward, improving data quality, harmonization, and leveraging
explainable AI and high-resolution models will be essential
for developing robust, interpretable soil moisture prediction
systems to support sustainable agricultural water management.

Future work must prioritize the refinement of benchmark
datasets through enhanced quality control, data harmonization,
and sensor calibration strategies. Simultaneously, advances in
data fusion, explainable AI, and high-resolution modeling hold
the potential to significantly improve prediction accuracy and
practical utility.
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