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Abstract—Conventional Agriculture is evolutionizing towards 

Regenerative Farming, which involves a range of techniques 

supported by innovative technologies to address climate 

change. Among them is the IoT (Internet of Things) technology 

in agriculture, which has seen continuous streams of data in 

real-time. From the use of drones to deployment of Wireless 

Sensors in the field, data is collected and transmitted via a 

communication channel to an Internet of Things platform. In 

this paper, we analyze the use of digital tools in regenerative 

farming, specifically soil sensors, and demonstrate this with the 

use of Long-Short Term Memory (LSTM) autoencoders to 

forecast future sensor readings based on historical data which 

can help a farmer make better farming decisions. LSTM 

networks are a type of Recurrent Neural Networks (RNNs) 

and have the ability to capture long-term dependencies, handle 

complex patterns in sequential data, and learn from past 

errors. This is evident through their use in predicting 

household power consumption, network traffic speed 

prediction, and predicting the crop yields. The proposed model 

is applied to the Cook Agronomy Farm (CAF) dataset, which 

contains field-scale sensor dataset for soil moisture and soil 

temperature at various levels. Using the Root Mean Square 

Error (RMSE) to evaluate the performance, the proposed 

model takes in multiple features as input and forecasts 

multiple steps and multiple parallel features. Traditional 

models such as Autoregressive Integrated Moving Average 

(ARIMA) have been used to forecast multivariate time series 

data. However, the proposed LSTM autoencoders perform 

with high accuracy and robustness in forecasting agricultural 

sensor data. 

Keywords-time series forecasting; LSTM autoencoders; 

precision farming; wireless sensors. 

I.  INTRODUCTION  

Traditionally, farmers have been relying on the natural 
resources like rain [21] and sunshine for plant growth, as 
well as farmers instincts based on routine practices with 
emphasis on manual labor and simple tools like hoes. This 
generally leads to low yields and losses due to uncertainty 
caused by climate change. Over time, farming has evolved 
with farmers adopting modern farming practices, 
organizations and governments investing in advanced 
technology, and mechanization. Wireless sensors are 
deployed in the garden to measure soil moisture, 
temperature, Nitrogen, Phosphorus, and Potassium (NPK) 

and soil nutrients. The data collected can be analyzed to help 
improve farming practices.   

Current prediction methods for agriculture sensor data 
focus on the real-time data to make recommendations. For 
example, in 2020, an IoT-based software system was 
proposed [1] for monitoring soil nutrients such as Nitrogen, 
Phosphorus, Potassium, soil pH, and temperature in real-time 
and can make recommendations regarding the quantity of 
water and fertilizers. Reashma and Pillai [3] discussed the 
use of machine learning techniques like Random Forest, 
Support Vector Machine (SVM) in three soil factors which 
are soil properties, soil moisture, and selection of crops. This 
is quite important when incorporated with domain 
knowledge to determine the course of action. This approach, 
however, seems hectic and would require much attention to 
the predictions. Time series data is a sequence of data 
collected over time intervals, allowing for tracking changes 
of a certain magnitude over time [5]. Sensor data collected 
over a period of time exhibits patterns such as trends, 
seasonal fluctuations, irregular cycles and occasional shifts 
in level or variability. Analyzing such series data helps us to 
extrapolate the dynamic patterns in the data to forecast future 
observations, estimate the effect of known exogenous 
interventions, and to detect unsuspected interventions. This 
has helped address real-world problems, like health 
monitoring, Web-Visitor traffic, and Network-wide traffic 
speed prediction [7].  

Time series data can be univariate, i.e., data containing 

only one feature variable, or it can be multivariate i.e., data 

with multiple feature variables. Traditionally, time series 

forecasting includes methods such as K-Nearest Neighbor 

(KNN) [8] and Autoregressive Integrated Moving Average 

(ARIMA) [9], which can handle time-dependent data and 

achieve high forecasting accuracy on multiple frequencies 

(e.g., hourly, daily, weekly, monthly). However, the recent 

advancement of deep learning, neural network architectures, 

and compute capacity has seen breakthroughs in robustness 

and performance for a variety of problems including 

sequence-to-sequence-learning tasks [10][11] surpassing 

traditional forecasting models with data generated from 

retail, stock markets, traffics, to mention but a few, and are 

yet to gain momentum in the field of agriculture. Thus, in  
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this paper, we aim to demonstrate the significance of deep 
learning in the shift towards regenerative learning 
particularly, building a model for multistep time series 
forecasting of agriculture sensor data. We use publicly 
available sensor data collected from different fields over a 
certain period of time and analyze it using the LSTM 
autoencoder. 

The major contributions of this paper are: 

• A detailed explanation on the significance of 
deep learning to achieve regenerative farming. 

• An approach for multistep output forecasting 
using LSTM autoencoders. 

• A demonstration of the proposed work using the 
publicly available sensor data [4] for validation.  

The rest of this document is structured as follows: 
Section 2 explains regenerative farming in detail and briefly 
surveys the literature on LSTM and time series forecasting 
using LSTM autoencoders. Section 3 briefly formulates the 
challenge that we address in this study. Section 4 formally 
defines the proposed approach and provides the details of the 
implemented model. Section 5 describes the experimental 
evaluations and provides an interpretation of the results. 
Finally, Section 6 concludes the paper and discusses the next 
steps of this work. 

II. REGENERATIVE FARMING 

Regenerative farming is an evolution of conventional 
agriculture, where farmers rotate different types of crops 
over time reducing the use of water and other inputs and 
preventing land degradation and limiting pest infestations. It 
protects and improves soil biodiversity, climate resilience, 
and water resources while making farming more productive 
and profitable. From Africa to Asia, all the way to Europe 
and America, we have witnessed the impacts of climate 
change where some areas have had devastating impacts and 
others are yet to. This makes it hard for conventional farming 
to be profitable with high productivity. Hence, the need for 
more sustainable practices aimed at restoring soils and 
biodiversity, as seen in Figure 1. These practices, though 
they vary from place to place, include:  

• Minimizing soil disturbances by adopting no-till 
or reduced till techniques.  

• Planting cover crops between cash crops to 
prevent soil erosion and increase carbon inputs. 

• Integrating livestock when possible.  

• Diversifying crops in time and space by 
adopting intercropping. 

• Precision application of biological and inputs.  
Data-driven is a key part of regenerative agriculture, 

which involves the use of digital tools like wireless sensors 
connected to other IoT systems which collect the data, 
process and analyze it to provide a farmer with clear insight 
with what is happening on the ground. This, in turn, leads to 
the use of the optimal amount and the right type of product 
needed for a productive crop. Regenerative agriculture 
mitigates climate change through carbon dioxide removal, 
that is, it draws carbon from the atmosphere and sequesters it 
[12]. Deep learning has been widely adopted for time series 

data analysis [13] as models learn better with huge amounts 
of data, with the ability to extract both temporal and spatial 
features effectively. It offers significant potential to enhance 
regenerative agriculture practices through precise soil data 
analysis and forecasting. By analyzing soil sensor data, deep 
learning models can provide real-time updates on soil 
moisture, temperature, nutrient levels, and other critical 
parameters. We can forecast crop yields based on soil 
conditions [22] and determine the optimal timing and 
amount of fertilizer based on soil nutrient needs [6], reducing 
waste and environmental impact.  

 

 
 

                    Figure 1. Core Principles of Regenerative Farming. 

 

A. Time Series Forecasting 

Time Series Forecasting plays an important role in 
weather prediction, stock market forecasting, etc., it is the 
use of a computer model to predict future values based on 
previously observed values, i.e., fitting a model to historical, 
time-stamped data in order to predict the future values. 
Traditional approaches include moving average, exponential 
smoothing, and ARIMA but recently, due to massive data 
generated by IoT devices, deep learning models like 
Recurrent Neural Networks (RNNs), Transformers, 
XGBoost, etc., have proven effective in extracting features 
from the data for forecasting. One of the most advanced 
models for forecasting time series is the Long-Short Term 
Memory (LSTM) Neural Network. 
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B. Precision Farming  

Precision Farming is the use of technology to make 
farming more accurate, controlled, and optimized. It involves 
observing, measuring, and responding to inter- and intra-
field variability. Precision Farming can help implement and 
maintain Regenerative Agriculture practices like precisely 
applying chemicals and monitoring soil health by leveraging 
technology to optimize resource use and maximize yield, 
while minimizing environmental impact.  

 

1) Long Short Term Memory Networks 
      The Long Short-Term Memory (LSTM), illustrated in 
Figure 2, is a type of Recurrent Neural Network (RNN) 
designed to overcome the exploding and vanishing gradient 
descent with the ability to effectively capture temporal 
dependencies and to make accurate predictions. Through the 
standard recurrent layer, self-loops, and the internal unique 
gate structure, the LSTM network effectively improves the 
exploding and gradient vanishing problem existing in the 
traditional RNN. It has the form of a chain of repeated 
modules of neural networks, where each module includes 
three control gates, i.e., the forget gate, the input gate, and 

the output gate. As seen in Figure 2, each gate is composed 
of a sigmoid neural net layer and a pointwise multiplication 
operation. The sigmoid layers output numbers in the interval 
[0, 1], representing a portion of input information that 
should be let through. As the use of a RNN for time series 

data, the LSTM reads a sequence of input vectors x = {x1 , 

x2 , . . . , xt , . . .}, where xt ∈ Rm represents an m-

dimensional vector of readings form variables at time-
instance t. 

  

      Given the new information x t in state t, the LSTM 

module works as follows. Firstly, it decides what old 

information should be forgotten by outputting a number 

within [0, 1], say ft with 

 

ft = σ1(Wf .[ht−1 , xt ] + bf ),                                (1) 

 

where ht−1 is the output in state t − 1, Wf and bf is the weight 

matrices and the bias of the forget gate. Then, xt is 

processed before storing in cell state. The value it is 

determined in the input gate along with a vector of 

candidate values C̃t  generated by a tanh layer at the same 

time to updated in the new cell state Ct , in which 

it = σ2 (Wi .[ht−1 , xt ] + bi ),                              (2) 

 

C̃t = tanh(Wc [ht−1 , xt ] + bc )                           (3) 

and  

Ct = f t ∗ Ct−1 + it ∗ C̃t ,                                      (4) 

 

where (Wi, bi ) and (Wc , bc ) are the weight matrices and 

the biases of input gate and memory cell state, respectively.  

 

 
Figure 2. LSTM Network. 

 

Finally, the output gate, which is defined by 

 

ot = σ3 (Wo .[ht−1 , xt ] + bo ),                            (5) 

 

ht = ot ∗ tanh(Ct).                             (6) 

 

where Wo and bo are the weight matrix and the bias of 

output gate, determines a part of the cell state being 

outputted. Figure 2 presents an illustration of the structure 

and the operational principle of a typical vanilla LTSM 

module. In this figure, the cell state runs straight down the 

entire chain, maintaining the sequential information in an 

inner state and allowing the LSTM to persist the knowledge 

accrued from subsequent time steps. Note that there are no 

weights and biases that can modify the cell state (Long 

Term memory). This allows it to flow through a series of 

unrolled units without causing the gradient to explode or 

vanish. Short-Term memories are directly connected to 

weights that can modify them. The first stage in the Long 

Short-term Memory unit determines what percentage of the 

Long-term memory is remembered. It is usually called the 

Forget Gate. The other part of the LSTM is usually called 

the Input Gate. The final stage of the LSTM updates the 

Short-term memory. The new long-term memory is used as 

input to the Tanh activation function. The previous three 

cases to determine the percentage of long-term memory to 

remember we use a sigmoid activation function. Because the 

new short-term memory is the output from this entire LSTM 

unit, this stage is called the output gate. 

      Besides forecasting, LSTMs have been used to solve 

other sequence learning problems like language modeling 

and translation, audio and video data analysis, handwriting 

recognition and generation among others. 
 

2) Autoencoders  
An autoencoder is a special type of feed forward neural 

network trained to efficiently compress (encode) input data 
down to its lower dimensional representation containing 
essential features or latent variables only (bottleneck), then 
reconstruct (decode) the original input from this compressed 
representation. Most autoencoders are used to solve AI 
related tasks like feature extraction [15], data compression  
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                       Figure 3. Illustration of LSTM Autoencoders. 

 
 [16][17], image denoising [18], anomaly detection [19], and 
facial recognition [20]. We use LSTM autoencoders, as 
illustrated in Figure 3, for multistep output forecasting of 
time series data.  

LSTM autoencoders (Figure 3) utilize the capabilities of 
both the LSTM neural network and autoencoder which 
builds the LSTM network on the encoder and decoder 
schemes of Autoencoder. To forecast, we provide each one-
dimensional time series to the model as a separate input 
sequence. The network then creates an internal 
representation of each input sequence that will together be 
interpreted by the decoder.  

III. DATASET DESCRIPTION 

The Cook Agronomy Farm (CAF) sensors folder [4] 
consists of a field-scale sensor network dataset for 
monitoring and modeling the special and temporal variation 
of soil moisture in dryland agricultural field. It includes 
hourly and daily measurements of Volumetric Water content 
(VW) sensor and soil Temperature (T) sensor readings, 
collected at 42 monitoring locations, and 5 depths (30, 60, 
90, 120, and 150 cm) across Cook Agronomy Farm, 
collected from 2007 to 2016. As described below: 

• VW_30cm: Volumetric Water readings at 30 cm 
depth (m^3/m^3) 

• VW_60cm: Volumetric Water readings at 60 cm 
depth (m^3/m^3) 

• VW_90cm: Volumetric Water readings at 90 cm 
depth (m^3/m^3) 

• VW_1200cm: Volumetric Water readings at 120 cm 
depth (m^3/m^3) 

• VW_150cm: Volumetric Water readings at 150 cm 
depth (m^3/m^3) 

• T_30cm: temperature readings at 30 cm depth (C) 

• T_60cm: temperature readings at 60 cm depth (C) 

• T_90cm: temperature readings at 90 cm depth (C) 

• T_120cm: temperature readings at 120 cm depth (C) 

• T_150cm: temperature readings at 150 cm depth (C) 
 
Note that not all these features will be used. For 

demonstration purposes, only a few features will be selected. 
Figure 4 is a plot for the sensor data between 2009 to 2012 
and helps us to see the trends and seasonality. 

A. Problem Statement 

The CAF sensors data above is multivariate time series 
data describing the soil moisture and temperature sensor 
readings at different ground levels. Before planting any crop, 
it is important to have an idea of the crop requirements 
aforehand. We will use the data to address the question: 

“We know the optimal soil water content and soil 
temperature for a certain crop at various stages of growth 
so, given the recent soil sensor readings, what is the 
expected soil sensor readings for the week ahead?” 

This calls for the building of a predictive model to 
forecast the soil sensor readings over the next seven days. 
Technically, this is a multi-step time series problem, given 
the multiple forecast steps. Since we are dealing with 
multiple input variables, and predicting multiple steps ahead, 
this is called multi-step multivariate time series forecasting. 
     Note that, before we extract any useful insights from the 
data, we must clean the raw data by performing data 
wrangling and reshaping it into formats acceptable by the 
model for training. Good enough, the CAF data set is already 
separated into daily and hourly so in this paper, we are 
working with the daily sensor readings, not the hourly. We 
see from Table 1 that the data contains a lot of missing 
values. Table 2 shows how the dataset looks like after 
removing the missing values, converting the data type to 
numeric, and setting the date column as index. 

The dataset has been split into training and test dataset. 
Furthermore, the train and test dataset has been organized 
into sequences of 7 days. The training dataset has 203 
sequences, while the test dataset has 46 sequences. 
Remember it is a multivariate time series data, so we are 
dealing with 4 features. 

Deep learning makes it easy for the farmer to analyze the 
soil and other parameters for better course of action such as 
knowing when to apply fertilizers, irrigating or performing 
drainage. In this paper, we are using LSTM Autoencoders on 
historical soil sensor readings to predict the possible future 
readings. The data in Table 2. Is not ready to be ingested into 
the LSTM model yet. We first normalize it using either the 
standard scaler or the minmax scaler to improve the model 
performance before splitting it into train and test dataset.  

 
  TABLE 1. RAW DATA CONTAINING MISSING VALUES. 

 
Date VW_30cm VW_60cm VW_90cm T_30cm 

04/20/2007 nan nan nan nan 

04/21/2007 nan nan nan nan 

04/22/2007 nan nan nan nan 

04/23/2007 nan nan nan nan 

04/24/2007 nan nan nan nan 

 

TABLE 2. SAMPLE DATA AFTER CLEANING. 
 

Date VW_30cm VW_60cm VW_90cm T_30cm 

05/21/2009 0.244 0.273 0.303 14.49 

05/22/2009 0.243 0.276 0.308 13.61 

05/23/2009 0.244 0.277 0.311 14.42 

05/24/2009 0.244 0.279 0.313 15.15 

05/25/2009 0.244 0.28 0.315 15.35 
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                                                                              Figure 4. Soil Sensor Readings from 2009 to 2012. 

 
 

B. Evaluation Metrics 

Our model is going to forecast seven values, each 
representing the reading for a day in the week ahead. We will 
evaluate each forecasted timestep separately, doing so helps 
us to: 

• Comment on the skill at a specific lead time (for 
example, +3 days versus +6 days) thereby 
helping us select an accurate forecast horizon.  

• Contrast models based on their skills at different 
lead times 

We will use the Root Mean Square Error (RMSE) as our 
performance metric. Evaluating the performance for each 
lead time from day 1 to day 7. 

IV. MODEL ARCHITECTURE 

We built the Encoder Decoder LSTM model to forecast 
Multiple Parallel Input and Multi-step multivariate time 
series sensor data using Tensorflow. Figure 5 shows the 
summary of the model architecture. 

The Encoder-decoder architecture is good for sequence-
to-sequence learning and as seen above, each is configured 
with 200 LSTM units. The first layer of the LSTM is the 
encoder, and the second one is the decoder. The latent vector 
is a 1-D array which is converted to the original number of 
features in the decoder level. The encoder is responsible for 
reading and interpreting the input, it compresses the input 
into the small representation of the original input (latent 
vector), which is then given to the decoder part as input for 
interpretation and forecasting. A RepeatVector layer is used 
to repeat the context vector obtained from the encoder. It is 
repeated for the number of future time steps (7 in our case) 
and fed to the decoder. The output received from the decoder 
in terms of each mixed. A fully connected Dense layer is 
applied to each time step via TimeDistributed wrapper, 
which separates the output for each time step.  

The RepeatVector increases the dimension of the output 
shape by 1. TimeDistributed is kind of a wrapper and expects 
another layer as an argument. It applies this layer to every 
temporal slice of input and therefore allows to build models  
 

 
 
that have one-to-many, many-to-many architectures and 
expects inputs of at least 3 dimensions.    

 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 6. Plot of the RMSE for the 7 days. 

 

A. Model Performance 

We ran several experiments tuning the batch size, 
number of epochs, number of LSTM units and the time steps 
and obtained different results. However, when we set the 
batch size to 4 and ran 100 epochs, looking back 14 days to 
predict the next 7 days of the soil sensor readings (since we 
used the Root Mean Square Error as the evaluation metric), 
the model performed well with the overall RMSE of 0.015 
(Figure 6). 

 
 

Figure 5. Summary of the LSTM Model 
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V. CONCLUSION AND FUTURE WORK 

The agricultural sector is undergoing a significant 
transformation, driven by the urgent need for sustainable and 
regenerative practices. Among the latest innovations making 
waves are the technology-driven solutions which include use 
of advanced sensors and data analytics to assess soil quality, 
organic matter, and nutrient levels, guiding tailored 
interventions. Adopting precision farming by leveraging 
drones, satellite imagery, and Artificial Intelligence can help 
to optimize the use of resources, monitor crop health, 
increase yields and attaining regenerative farming in the 
process. The challenge, however, is that many farmlands are 
located in rural areas with poor network connectivity but 
with time, infrastructures are being put in place to improve 
connectivity. The LSTM autoencoders are state of the art 
networks and have been used in predicting indoor air quality, 
power load forecasting, among others. We just demonstrated 
its use in forecasting agriculture sensor data which is crucial 
in regenerative farming as it saves farming costs through 
effective use of resources. The experiments carried out to test 
the proposed model show that the performed well with high 
accuracy. This means farmers can confidently make better 
decisions depending on the forecast.   

As future work, we will develop a Farm Management 
Information System (FMIS) using Fiware Technology and 
embed the proposed model to forecast. The FMIS will 
automate the farm activities thereby saving the farmer time 
and money.   
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