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Abstract— The agricultural sector faces escalating challenges 

from pest issues exacerbated by climate change, which alters 

the distribution and behavior of insect pests, threatening crop 

yields and food security globally. While traditional chemical 

pest control methods exist, there is increasing interest in 

sustainable alternatives, such as plant-derived Volatile Organic 

Compounds (VOCs), which show potential for environmentally 

friendly pest management. Certain plants, including rosemary, 

peppermint, and lavender, emit VOCs capable of repelling 

pests, aligning with principles of integrated pest management 

and climate-smart agriculture. Advances in sensor technology 

now allow precise detection and analysis of these plant-

produced VOCs, facilitating research into their composition, 

concentration, and effectiveness for pest control. Additionally, 

understanding the dispersal range of VOCs is essential to 

optimize the placement of aromatic plants in agricultural 

systems for maximum pest deterrence. This study aims to 

characterize the gases emitted by rosemary, peppermint, and 

lavender using various gas sensors, and additionally, to 

determine the maximum detection range of these emissions to 

enhance pest control strategies. For data classification, 

Machine Learning (ML) techniques were employed to enhance 

the system's performance. With all features, Boosted Trees 

achieved 77.66% accuracy, while reducing to 5 features 

improved accuracy to 80.4%. The model effectively 

distinguishes temperature patterns between distances, though 

the confusion matrix shows minor misclassifications, 

suggesting potential for refinement. 

Keywords- pests; aromatic plants; sustainable agriculture; 

gas sensors; pest repellent. 

I.  INTRODUCTION 

The agricultural sector faces significant challenges due to 
pest problems, which can severely impact crop yields and 
food security. As climate change continues to alter 
ecosystems, the geographic distribution and behavior of 
agricultural insect pests are shifting, creating new threats for 
farmers worldwide [1]. To address these evolving 
challenges, various pest control methods have been 
developed and implemented, ranging from traditional 

chemical approaches to more sustainable and ecological 
management strategies [2]. 

In recent years, there has been a growing interest in 
alternative pest control methods that are both effective and 
environmentally friendly. Among these, the use of plant-
derived Volatile Organic Compounds (VOCs) has gained 
attention as a potential tool for pest management [3]. Plants 
such as rosemary, peppermint, and lavender are known to 
produce a variety of gases that can repel or deter insect pests 
[4]. These natural compounds offer a promising avenue for 
sustainable pest control, aligning with the principles of 
integrated pest management and climate-smart agriculture 
[2]. 

Advancements in sensor technology have enabled 
researchers to detect and analyze these plant-produced gases 
with increasing precision [5]. These sensors can provide 
valuable data on the types and concentrations of VOCs 
emitted by plants, offering insights into their potential 
effectiveness pest control applications [6]. Understanding the 
composition and concentration of these plant-derived gases 
is crucial for developing effective pest management 
strategies based on their repellent or insecticidal properties 
[7], [8]. 

The distance that plant-produced gases can reach is an 
important factor in determining their efficacy for pest 
control. While the dispersal of VOCs depends on various 
environmental factors, such as wind speed and temperature, 
recent studies have begun to investigate the spatial dynamics 
of these compounds in agricultural settings [9]. This 
knowledge is essential for optimizing the placement of 
aromatic plants or their extracts in crop systems to maximize 
their pest control potential [10], [11]. 

The aim of the study is to characterize the gases emitted 
by specific plants (Rosemary, Peppermint, and Lavender) to 
prevent pest presence, by using different types of gas 
sensors. Additionally, the study seeks to determine the 
maximum detection range of these emissions. 

The rest of the study is divided into seven sections. 
Section II details the most relevant reported studies, whereas 
Sections III and IV describe the proposal and test bench. The 
Results are explained in Section V, and in Section VI, a 
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discussion is presented. Finally, conclusion and future 
perspective are shown in Section VII. 

II. RELATED WORK 

This section summarizes the current findings in gas 
characterization, sensor monitoring and usage, and pest 
management. 

Recent studies on gas detection and analysis in plants by 
using sensor technologies have gained significant attention in 
agriculture, environmental monitoring, and plant health 
assessment. Several studies have explored the use of various 
sensor types and systems for this purpose. In 2024, Díaz 
Blasco et al. [12] investigated the use of Metal-Oxide (MQ) 
sensors which are sensible to different gases. These gas 
sensors were used for classifying essential oils from Cistus 
ladanifer plants. Their work demonstrated the feasibility of 
using low-cost gas sensors to differentiate between essential 
oil samples based on their VOC profiles. This approach 
shows promise for rapid and in-situ analysis of plant-derived 
gases. In a related study in the same year, Ahmad et al. [13] 
developed a LoRaWAN-based network for estimating 
harvest time in Cistus ladanifer crops. While not directly 
measuring plant gases, this work highlights the potential of 
integrating sensor networks with long-range wireless 
communication technologies for agricultural applications. 

The importance of monitoring plant gases extends to pest 
management in sustainable agriculture. Bouri et al. [14] 
reviewed climate-smart pest management techniques, 
emphasizing the role of precision agriculture tools, including 
sensors, in monitoring and managing pests. Similarly, 
Kanwal et al. [4] discussed the integration of precision 
agriculture techniques for pest management, highlighting the 
use of sensors for pest monitoring and detection. 
Additionally, El-Zaeddi et al. [15] characterized the volatile 
composition of essential oils from aromatic herbs grown in 
Mediterranean regions. Their work provides valuable 
insights into the diverse range of volatile compounds 
produced by plants, which can inform the development of 
targeted sensing technologies. 

On another note, in 2023, Alabi et al. [16] studied the 
effects of essential oil blends on rumen fermentation and 
greenhouse gas emissions in livestock. While focused on 
animal agriculture, this work underscores the importance of 
analyzing plant-derived compounds and their impact on gas 
production in biological systems. 

In conclusion, numerous papers and experiments are 
similar to the research currently in progress. The objective, 
in comparison to related work, is to collect all the benefits 
provided by these studies, merging them with the concept of 
pest detection and plant damage prevention, and 
incorporating them into our system. 

Nevertheless, there are a series of open issues that should 
be solved, especially the ones related to the cost of electronic 
devices to be installed in the crops. Additionally, the 
possibility of developing unassisted sensors is crucial for 
decreasing, among others, the cost of production of final 
products (e.g. reducing the amount of fuel required for 
farmers’ displacements). Finally, it is so important to 
determine the number of devices required for covering a crop 

to be sure that measurements are significative enough. For 
this reason, in this paper, we have created a device capable 
of identifying different profiles of aromatic plants. 
Additionally, the presence of plants is measured at different 
distances to know the ratio of action of only one plant. As we 
already commented, the use of this type of plants mixed with 
other crops helps farmers to reduce or even eliminate the use 
of chemical pesticides in crops, protecting then, the 
environmental from unnecessary pollutants.  

III. PROPOSAL 

This study aims to develop a low-cost system for 
identifying aromatic plants using MQ family sensors 
integrated into a gas monitoring node [12]. In the market, it 
is possible to find a vast variety of gas sensors with different 
manufacturing techniques. Most of them require some kind 
of maintenance [17][18]. However, MQx sensors do not 
require it [19]. 

A. Introduction to MQ Sensors 

MQ sensors, based on metal oxides, are known for their 
high sensitivity and rapid response times, making them 
suitable for applications such as flammable gas detection, air 
quality assessment, and the identification of compounds in 
breath. Each MQ sensor model is designed to detect specific 
chemical components in the air, offering flexibility across 
various monitoring applications. 

B. Selection of Sensors and Cost Efficiency 

Seven MQ sensors were selected due to their 
accessibility and low cost, generally priced between 1.5 to 2 
€ per sensor. This affordability makes MQ sensors a practical 
choice for many experimental and environmental monitoring 
applications. These sensors were selected based on a 
previous study conducted by Viciano-Tudela et al. [20]. 

C. MQ Sensor Structure and Functionality 

Each MQ sensor contains an electrochemical sensor that 
changes its resistance upon exposure to certain gases. This 
resistance change enables the measurement of gas 
concentrations in the environment. Each sensor includes a 
heating element, which raises the temperature of a metal 
wire, typically composed of tin dioxide (SnO₂), to enhance 
sensitivity to gas. For safe operation, sensors are enclosed in 
a double-layer stainless steel mesh, preventing the heating 
element from affecting surrounding materials. The sensor’s 
internal circuits comprise a heating circuit and a 
measurement circuit, which detect resistive changes 
indicative of gas concentration. 

D. Additional Environmental Monitoring with DHT11 

Sensor 

A DHT11 sensor was incorporated to monitor 
temperature and humidity, as these variables can influence 
the accuracy of gas sensor readings. The DHT11 sensor 
measures temperature with an accuracy of ±2 °C within a 0 
°C to 50 °C range, and humidity with ±5% accuracy within a 
20% to 90% range. The sensor operates at a sampling rate of 
1 Hz, enabling continuous environmental monitoring. 
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E. System Processing and Data Management 

The MQ sensors and the DHT11 sensor are managed via 
an Arduino Mega 2560 microcontroller board, chosen for its 
high number of analog inputs, essential for processing data 
from multiple sensors. The board’s ATmega2560 processor 
features 54 digital I/O pins (15 with PWM output capability), 
16 analog inputs, and 4 UARTs for serial communication. 
This microcontroller acts as the system's central processing 
unit, collecting data from the sensors, processing it, and 
storing it in a database, as can be seen in Figure 1. 

F. Data Storage and Real-Time Monitoring 

The prototype system includes data storage in a MySQL 
database, allowing for real-time review of measurements. 
Additionally, a real-time clock is integrated to timestamp 
each measurement, facilitating data analysis. 

 

Figure 1. Illustration of the proposed sensor node consisting of 7 MQ gas 

detector connected to the router. 

G. Application for Aromatic Plant Identification 

This setup enables precise monitoring of aromatic plants 
by leveraging the sensitivity and versatility of MQ sensors to 
detect the unique chemical components emitted by these 
plants. By analyzing data from the sensors, the system can 
identify and differentiate specific aromatic plants efficiently 
and economically. 

IV. TEST BENCH 

This study uses gas sensors to identify three aromatic 
plants from the Lamiaceae family: rosemary, lavender, and 
mint. Emissions from each plant were measured at different 
distances and times to analyze their effectiveness as pest 
repellents. Statistical analysis will help differentiate the 
species and optimize sensor use in aromatic plant 
monitoring. 

A. Plant description 

For our tests, three varieties of aromatic plants commonly 
found in different crops were selected, all belonging to the 
Lamiaceae family. The first is rosemary (Salvia rosmarinus), 
a woody perennial plant with green leaves and purple 
flowers. Lavender (Lavandula angustifolia) in Figure 2, a 
perennial plant with lanceolate leaves and purple flowers, 
was also used. Finally, specimens of mint (Mentha) were 
included, which are herbaceous perennials with green leaves 

and white or purple flowers, although, at the time of the 
measurements, the mint plants did not have flowers. 

 

  
A) B) 

Figure 2. Plant Sample. A. Corresponds to Lavandula angustifolia. B. 
Corresponds to mint. 

B. Data Gathering Methodology 

To characterize each plant, the procedure followed is 
explained as follows. First, the sample plant (Salvia 
rosmarinus, Lavandula angustifolia, or mint) was placed 
inside the measurement device. The sensors were turned on, 
and, after 24 hours, the data collection process was stopped. 
Once the data collected was stored, sensors were turned off. 

This procedure was meticulously repeated for each plant 
species in the experiment, and a total of three trials per 
species were conducted. The measurement device was 
positioned with exact precision at one centimeter from the 
plant like in Figure 3. After completing all measurements at 
this distance, the device was then placed ten centimeters, and 
finally thirty centimeters from the plant. Throughout, the 
above process was consistently followed to obtain the 
required data for each plant species. 

 
Figure 3. Assembly of the experiment at different distances. A. 0 cm 
separation from the plant; B. 10 cm separation from the plant; C. 30 cm 
separation from the plant. 

 
It is important to note that the data collected during the 

first hour of each trial should be excluded, as this is the 
estimated warm-up period required for the gas sensors to 
reach optimal performance. 

A 

B 

C 
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C. Data Analysis Procedure 

For the data analysis, the first step is to compare the 
variation in readings based on the type of aromatic plant 
analyzed and the distance at which gas sensors are positioned 
at different times of the day. This approach aims to 
determine whether the plants maintain consistent 
effectiveness over time or if there are specific periods during 
the day when their pest-repelling capabilities are more 
robust. Suppose fluctuations in data are observed at the start 
of measurement that later stabilize. In that case, it will be 
considered that the sensor requires an initial warm-up period, 
which may affect the readings. For this reason, a prolonged 
measurement period is used for each plant to determine the 
sensor’s stabilization time. 

To evaluate each plant’s effective range, the sensors are 
placed at controlled, progressively increased distances, 
observing any changes in readings. A reduction in values as 
distance increases could indicate that the plant has reached 
its maximum effective range in repelling pests. 

TABLE I.  SUMMARY OF THE ACHIEVED ACCURACY IN CONDUCTED 

TESTS 

Nº of 

features 
Model 

Accuracy 

Training-

Validation (%) 

Test 

(%) 

38/39 (all) Boosted Trees 88.87 77.66 

9/39 (all) Ensemble 97.95 72.21 

5/39 (all) SVM 98.23 80.43 

 

 
 
Figure 4. Confusion matrix of selected ML-based classification model. 

 
Once the minimum required measurement time is 

established, the next critical step is to ensure precise 
differentiation between the three plant varieties used in the 
experiment. This differentiation is achieved through the 
inclusion of controls and statistical methods. The goal is to 
identify which, or if a combination of sensors, can accurately 
determine the type of plant present and the effective range of 
its action. The sensors that have demonstrated the highest 
accuracy for these parameters will be selected to optimize 
precision in future measurements and analyses. 

V.  RESULTS 

In this section, we will present the collected data and the 
results produced by the classification models. The data 
analysis includes a statistical overview of the collected data. 
Additionally, the classification outcomes are assessed using 
established metrics and represent the models that will be 
included in the node. 

A. Data processing and classification 

For data classification, the generated dataset is divided 
into two datasets. Raw values from the data obtained from 
plants closest and 10 cm to the sensors are used to train the 
model, and data from 30 cm apart from the sensor is used to 
test the generated models. The metric selected to test these 
models is accuracy. 

In Table 1, when all features are included, an accuracy of 
77.66% is achieved with Boosted Trees. On the other hand, 
in order to reduce the number of features, up to 9 features, it 
is possible to reach a 72.21% accuracy, reducing its 
precision. Nevertheless, when reducing to 5 features, it is 
possible to achieve the highest accuracy. The classification 
model achieved an accuracy of 80.4% in distinguishing 
between temperature measurements taken from plants by a 
sensor positioned at 0 cm and 10 cm from the plants 
compared to a sensor placed at 30 cm. This accuracy metric 
indicates the model's ability to correctly classify the 
temperature data based on sensor distance. Specifically, an 
accuracy of 80.4% means that, on average, the model 
correctly identified the temperature measurement source in 
80.4% of the test cases. This suggests a reasonably effective 
differentiation between the temperature profiles captured at  
these three distances, though some overlap in temperature 
readings between the two distances may still exist. The 
confusion matrix can be seen in Figure 4. 

The matrix provides detailed insights into the model’s 
classification performance. The rows represent the 
actual(true) classes, with "1" and "2" corresponding to 
temperatures (26ºC and 27 ºC) at 0 and 10 cm compared to 
30 cm. The columns represent the predicted classes. In this 
case, of the samples belonging to Class 1, the model 
correctly identified 2,235 instances, while misclassifying 540 
instances as Class 2. For Class 2, the model accurately 
classified 1,765 instances and misclassified 433 instances as 
Class 1. The matrix reveals a balanced distribution of correct 
classifications for both classes, with high true positive and 
true negative counts indicating the model effectively 
distinguishes temperature patterns. However, some 
misclassifications suggest potential for further refinement, 
showing the model’s strong generalization across sensor 
depths tested. 

VI. DISCUSION 

The results of this study demonstrate the potential of 
using low-cost MQ sensors to detect and analyze the VOCs 
emitted by aromatic plants such as rosemary, lavender, and 
peppermint for pest control applications. These findings 
align with recent research on plant-derived VOCs, 
supporting their viability as eco-friendly alternatives to 
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synthetic pesticides. By leveraging the sensitivity of MQ 
sensors, we could identify the unique VOC profiles of each 
plant, providing insight into their repellent properties and 
practical ranges. 

A. Effectiveness of MQ Sensors for VOC Detection 

The MQ sensors displayed sufficient sensitivity to detect 
characteristic VOCs of the studied plants at varying 
distances, showing promise as a tool for aromatic plant 
identification. Given the low cost and wide availability of 
MQ sensors, they present a practical solution for integrating 
VOC detection into pest management practices, particularly 
in regions or settings where advanced instrumentation is 
economically or logistically unfeasible. This study’s findings 
are consistent with work by Díaz Blasco et al. [12] and 
Ahmad et al. [13], which demonstrated the practicality of 
MQ sensors in agricultural applications, including crop 
classification and essential oil analyses remains in enhancing 
the accuracy and specificity of these sensors. For instance, 
while the sensors successfully differentiated VOC profiles at 
proximity (0-10 cm), accuracy diminished slightly at greater 
distances (30 cm), indicating potential limits in the sensors’ 
effective detection range. This decline in sensitivity may be 
due to environmental interference or the natural dispersion of 
VOCs over distance. Thus, further refinement in sensor 
placement and calibration could improve detection accuracy. 

B. Implications for Sustainable Pest Management 

This study highlights the potential role of VOCs from 
aromatic plants in Integrated Pest Management (IPM) 
strategies, contributing to climate-smart agriculture by 
reducing the reliance on synthetic pesticides. By 
characterizing the VOC emission patterns of rosemary, 
peppermint, and lavender, we can inform farmers on the 
optimal placement and quantity of these plants within crop 
fields to enhance their pest-repelling effectiveness. These 
findings are aligned with the work by El-Zaeddi et al. [15] on 
the role of Mediterranean herbs in pest management.  

C. Environmental and Operational Considerations 

Integrating the DHT11 sensor for monitoring temperature 
and humidity proved essential, as these environmental 
factors significantly influence gas sensor performance. Data 
showed that changes in humidity and temperature led to 
slight variations in the sensors’ readings, a well-documented 
limitation in previous studies on MQ sensors’ environmental 
sensitivity. This suggests that real-time monitoring is crucial 
to ensuring reliable and consistent data from MQ sensors, 
particularly in field settings where climate conditions 
fluctuate. 

Future research should consider implementing calibration 
algorithms that adjust sensor readings in real time based on 
environmental conditions to address these challenges. 
Additionally, exploring alternative or supplementary sensor 
technologies, such as electrochemical or infrared sensors, 
may enhance the accuracy of VOC detection across a 
broader range of environmental conditions. 

D. Data Analysis and Model Optimization 

The machine learning models applied in this study 
achieved an accuracy of up to 80.4% in distinguishing 
between aromatic plants based on sensor data, validating the 
potential of data-driven approaches for plant identification. 
Notably, the accuracy was highest when using a reduced set 
of five features, suggesting that sensor data can be 
streamlined without compromising classification 
performance. This supports the hypothesis that certain VOC 
compounds indicate specific plant types and that focusing on 
these compounds can improve model efficiency. 

Nonetheless, the moderate misclassification rate 
observed in the confusion matrix indicates potential for 
optimization. Future work could involve experimenting with 
different machine learning algorithms, such as deep learning 
models, to enhance classification performance. Additionally, 
increasing the number of sensor types in the node could 
provide a more comprehensive VOC profile, potentially 
improving accuracy further. 

E. Limitations and Future Directions 

While the findings demonstrate the feasibility of using 
MQ sensors for plant VOC identification, limitations remain. 
MQ sensors, while cost-effective, lack the specificity of 
advanced Gas Chromatography-Mass Spectrometry (GC-
MS) used in laboratory settings. This limitation could be 
addressed by combining MQ sensors with more selective 
technologies in a hybrid sensing system, providing broader 
coverage of VOCs with improved accuracy. 

Future studies should also investigate the temporal 
dynamics of VOC emissions throughout the day to 
understand how plant VOC release patterns vary under 
different environmental conditions. By establishing these 
patterns, the effectiveness of VOCs as pest deterrents can be 
optimized based on real-time environmental monitoring. 
Furthermore, long-term field trials are recommended to 
validate these findings under real-world agricultural 
conditions, as laboratory settings cannot entirely replicate the 
complexities of open-field environments. 

VII. CONCLUSION AND FUTURE WORK 

Based on the results obtained, it has been demonstrated 
that the MQ sensor effectively detects VOCs emitted by 
aromatic plants. The data collected enables each plant to be 
characterized using artificial intelligence algorithms, 
achieving a significant level of accuracy in species 
identification and distance measurement. 

Nevertheless, it is necessary to expand the dataset and 
conduct further measurements under varying environmental 
conditions to enhance the precision and consistency of plant 
characterization. This would allow the models to be fine-
tuned and their robustness increased in field scenarios. 
Additionally, incorporating new variables, such as temporal 
variations in VOC emissions, could help identify optimal 
periods for pest control effectiveness. 

For future work, once an accurate characterization of the 
aromatic plants is achieved, estimates of the adequate spatial 
coverage of each species could be made. This will allow for 
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applying these findings to commercial-scale crops, 
optimizing the placement of plants in agricultural systems to 
maximize their repellent effect and contribute to a more 
sustainable integrated pest management approach. 

ACKNOWLEDGMENT 

This work is partially funded by Project TED2021-
131040B-C31 funded by 
MICIU/AEI/10.13039/501100011033 and by European 
Union NextGenerationEU/PRTR and by the "Generalitat 
Valenciana" through the “Programa Investigo” project 
INVEST/2022/467. 

 

REFERENCES 

[1] S. Skendžić, M. Zovko, I. P. Živković, V. Lešić, and D. 
Lemić, “The impact of climate change on agricultural insect 
pests,” Insects, vol. 12, p. 440, 2021. 
https://doi.org/10.3390/insects12050440. 

[2] M. Bouri, K. S. Arslan, and F. Şahin, “Climate-smart pest 
management in sustainable agriculture: Promises and 
challenges,” Sustainability, vol. 15, p. 4592, 2023. 
https://doi.org/10.3390/su15054592. 

[3] E. M. Hernández-Suárez and F. Beitia, “Sustainable 
management methods of orchard insect pests,” Insects, vol. 
12, p. 80, 2021. https://doi.org/10.3390/insects12010080. 

[4] S. Kanwal et al., “Integration of precision agriculture 
techniques for pest management,” Environ. Sci. Proc., vol. 23, 
p. 19, 2022. 
https://doi.org/10.3390/environsciproc2022023019. 

[5] F. Nchu, “Sustainable biological control of pests: The way 
forward,” Appl. Sci., vol. 14, p. 2669, 2024. 
https://doi.org/10.3390/app14072669. 

[6] S. Agatonovic-Kustrin, P. Ristivojevic, V. Gegechkori, T. M. 
Litvinova, and D. W. Morton, “Essential oil quality and purity 
evaluation via FT-IR spectroscopy and pattern recognition 
techniques,” Appl. Sci., vol. 10, p. 7294, 2020. 
https://doi.org/10.3390/app10207294. 

[7] L. Coşkuntuna et al., “Greenhouse gas emission reduction 
potential of lavender meal and essential oil for dairy cows,” 
Fermentation, vol. 9, p. 253, 2023. 
https://doi.org/10.3390/fermentation9030253. 

[8] T. Pinto et al., “Bioactive (poly)phenols, volatile compounds 
from vegetables, medicinal and aromatic plants,” Foods, vol. 
10, p. 106, 2021. https://doi.org/10.3390/foods10010106. 

[9] B. Kiprovski et al., “Essential oil quality of lavender grown 
outside its native distribution range: A study from Serbia,” 
Horticulturae, vol. 9, p. 816, 2023. 
https://doi.org/10.3390/horticulturae9070816. 

[10] P. Xylia, C. Goumenos, N. Tzortzakis, and A. Chrysargyris, 
“Application of lavender and rosemary essential oils (EOs), 
their mixture and eucalyptol (EOs main compound) on 
cucumber fruit quality attributes and microbial load,” 
Agronomy, vol. 13, p. 2493, 2023. 
https://doi.org/10.3390/agronomy13102493. 

[11] P. Capała, M. Ruszak, A. Rudawska, M. Inger, and M. Wilk, 
“The technology of tail gases purifying in nitric acid plants 
and design of deN2O and deNOx reactors—Review,” Appl. 
Sci., vol. 13, p. 7492, 2023. 
https://doi.org/10.3390/app13137492. 

[12] F. J. Díaz Blasco et al., “Employment of MQ gas sensors for 
the classification of Cistus ladanifer essential oils,” 
Microchemical Journal, vol. 192, 111585, 2024. 
https://doi.org/10.1016/j.microc.2024.111585. 

[13] A. Ahmad, F. J. Díaz-Blasco, M. Zaragoza-Esquerdo, S. 
Sendra, L. Parra, and S. Viciano-Tudela, “LoRaWAN-based 
network for harvest time estimation in Cistus ladanifer,” 
Proceedings of the IEEE International Conference on Internet 
of Things: Systems, Management and Security (IOTSMS), 
2024. https://doi.org/10.1109/IOTSMS62296.2024.10710243. 

[14] M. Bouri, K. S. Arslan, and F. Şahin, “Climate-Smart Pest 
Management in Sustainable Agriculture: Promises and 
Challenges,” Sustainability, vol. 15, 4592, 2023. 
https://doi.org/10.3390/su15054592. 

[15] H. El-Zaeddi, J. Martínez-Tomé, Á. Calín-Sánchez, F. Burló, 
and Á. A. Carbonell-Barrachina, “Volatile Composition of 
Essential Oils from Different Aromatic Herbs Grown in 
Mediterranean Regions of Spain,” Foods, vol. 5, 41, 2016. 
https://doi.org/10.3390/foods5020041. 

[16] J. O. Alabi et al., “Essential Oil Blends with or without 
Fumaric Acid Influenced In Vitro Rumen Fermentation, 
Greenhouse Gas Emission, and Volatile Fatty Acids 
Production of a Total Mixed Ration,” Ruminants, vol. 3, pp. 
373-384, 2023. https://doi.org/10.3390/ruminants3040031. 

[17] S. Panda, S. Mehlawat, N. Dhariwal, A. Kumar, and A. 
Sanger, “Comprehensive review on gas sensors: Unveiling 
recent developments and addressing challenges,” Materials 
Science and Engineering: B, vol. 308, no.-, pp.117616, 2024. 
https://doi.org/10.1016/j.mseb.2024.117616. 

[18] S. Dhall, B.R. Mehta, A.K. Tyagi, and K. Sood, “A review on 
environmental gas sensors: Materials and technologies,” 
Sensors International, vol. 2, no.-, pp. 100116, 2021. 
https://doi.org/10.1016/j.sintl.2021.100116. 

[19] L. Llamas. “Gas Detector with Arduino and the MQ Sensor 
Family”, [Online article], Publised: Oct 22, 2016. Available 
at: https://www.luisllamas.es/en/arduino-gas-detector-mq/ 
[Last access: November 10, 2024]. 

[20] S. Viciano-Tudela, S. Sendra, L. Parra, J. M. Jimenez, and J. 
Lloret, “Proposal of a Gas Sensor-Based Device for Detecting 
Adulteration in Essential Oil of Cistus ladanifer,” 
Sustainability, vol. 15, 3357, 2023. 
https://doi.org/10.3390/su15043357. 

54Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-323-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CSRF 2024 : The First International Conference on Sustainable and Regenerative Farming


