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Abstract—This paper researches the application of state-of-
the-art large language models to autonomously solve real-world
software engineering problems based on the problem description
intended for humans. For this research, we picked 10 outstanding
GitHub issues of different difficulty levels in the Aibyss project.
We tasked an AI agent to autonomously solve them based solely
on the GitHub Issue description intended for human software
engineers. As part of this research, we compared the follow-
ing large language models: Claude Sonnet 3.7, DeepSeek-V3,
DeepSeek-R1, and o3-mini-high. We used the Aider agent to solve
the problems. Additionally, we have evaluated the Claude Code
agent as one of the best closed-source AI software engineering
agents. We have found that the best performance is achieved
by Claude Sonnet 3.7 with reasoning enabled – with the Aider
agent and the Claude Code agent. Both of them provided working
solutions to 5 out of 10 GitHub issues. We analyze the agents’
behaviors, including reasoning steps, common failure modes, and
the impact of reasoning tokens. The results highlight both the
promise and the current limitations of autonomous LLM-based
software engineering.

Keywords-code generation; large language models; AI
agents; natural language processing

I. INTRODUCTION

Recent advances in large language models (LLMs) have
led to powerful code generation systems capable of assisting
software developers. Models like o3-mini and DeepSeek-R1
can translate natural language specifications into code with
impressive accuracy [1][2]. These models underpin tools such
as GitHub Copilot and Cursor Composer, which have been
rapidly adopted as “AI pair programmers” to autocomplete
code and suggest solutions [3][4][5]. Studies show that such
tools can improve developer productivity, but also raise ques-
tions about reliability and how developers interact with AI-
generated code. So far, these AI coding assistants operate with
a human in the loop: the developer guides the process, reviews
suggestions, and tests or debugs the outcomes.

A growing area of interest is whether state-of-the-art LLMs
can operate more autonomously to tackle software engineering
tasks end-to-end. Inspired by agentic frameworks like Re-
Act [6] and the popularity of systems such as AutoGPT [7], re-
searchers have begun treating LLMs as independent problem-
solvers rather than just interactive assistants. For example, the
ReAct paradigm by Yao et al. [6] enables an LLM to generate
reasoning traces and act on them iteratively, and projects like
AutoGPT aim to let an LLM plan and execute a sequence
of steps towards a high-level objective. Meanwhile, multi-
agent approaches have emerged to coordinate multiple LLMs
or tools in specialized roles (e.g., planning vs. coding) to solve

complex tasks [8]. Existing benchmarks of these autonomous
LLM agents indicate that the choice of the underlying model
has a critical impact on success: for instance, GPT-4 can
substantially outperform GPT-3.5 or smaller models in au-
tonomous decision-making tasks [9].

Recent advances in LLM-based agents open up the possi-
bility of automating several steps in the classical software de-
velopment lifecycle. Tasks such as requirement interpretation,
code generation, test creation, and documentation can now be
at least partially handled by these agents. Especially in the
early phases-like prototyping or resolving isolated issues from
natural language descriptions-LLMs show a strong capacity
for autonomous operation [10]. However, phases involving
architectural decisions, integration testing, and final validation
still rely heavily on human expertise and oversight.

Despite the growing capabilities of these models, transi-
tioning from generated code to a trusted, production-grade
system presents significant challenges. These include ensur-
ing correctness, robustness, maintainability, and compliance
with domain-specific standards. Generated code often lacks
integration context, can contain subtle bugs, or may not
align with broader system constraints. Therefore, human-in-
the-loop review, continuous integration pipelines, and formal
verification methods are often critical to close the gap between
raw LLM output and trustworthy software.

Research in software configuration management (SCM) is
increasingly intersecting with AI-driven development. Some
ongoing work investigates how agents can update deployment
configurations, manage dependencies, and track version his-
tory intelligently. Emerging tools explore LLMs not just as
code generators but as collaborative participants in the evolu-
tion of codebases, integrating with version control systems and
automating routine deployment and maintenance tasks [11].

Moreover, there is a growing interest in fine-tuning or
pretraining LLMs for specialized tasks such as software update
management. These niche LLMs aim to support activities like
patch generation, changelog summarization, and semantic ver-
sioning analysis. This area is attracting attention as organiza-
tions seek to reduce the overhead of continuous software main-
tenance through domain-adapted language models [10][12].

In this work, we explore the practical application of cutting-
edge LLMs as autonomous software engineers on real-world
tasks. We design an experiment in which an AI-driven coding
agent is given only the natural-language description of a
software issue (as one would find in a bug tracker or feature
request) and is tasked with resolving the issue by modifying
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the codebase, without human assistance. We evaluate the
following state-of-the-art LLMs in this autonomous setting:
Claude Sonnet 3.7 [13], DeepSeek-V3 [14], DeepSeek-R1 [2],
and o3-mini-high [1]. We have used the Aider [15] agent
to solve the problems – one of the best open-source AI
software engineering agents. Additionally, we have evaluated
the Claude Code [13] agent as one of the best closed-source AI
software engineering agents. We examine not only whether the
LLM-powered agent can produce a working solution, but also
the quality of the solution (linting, code style, user experience)
and the computational cost (API calls/tokens consumed).

The results of the research show that the best performance
is achieved by Claude Sonnet 3.7 with reasoning enabled –
with both the Aider agent and the Claude Code agent. Both
of them provided working solutions to 5 out of 10 GitHub
issues. Surprisingly, Aider paired with o3-mini-high performed
the worst out of all the agents and has shown the worst
understanding of the problems.

The rest of the paper is organized as follows. Section 2
provides an overview of the related works. Section 3 describes
the method used in the research. Section 4 presents the
experiment implementation details. Section 5 presents the eval-
uation results. Section 6 presents a detailed analysis of agent
behaviors and failure modes. Finally, Section 7 concludes the
paper.

II. RELATED WORKS

In this section, we examine the existing literature and
research efforts that form the foundation for our current study.
Prior investigations have established several key approaches
and methodologies that inform our work.

A. LLMs for Code Generation and Assistance

The use of large neural models for code generation
has rapidly progressed in recent years. OpenAI’s Codex
model [16], which powers GitHub Copilot, was among the first
to demonstrate that an LLM trained on vast amounts of code
can produce syntactically correct and often functionally correct
code for given descriptions. Subsequent models have pushed
these capabilities further: DeepMind’s AlphaCode achieved
a performance on par with average human competitors in
programming contests[17], signaling the potential of LLMs
to handle complex algorithmic problems.

Recent developments in the field have demonstrated sig-
nificant progress in computational capabilities. Specifically,
models such as OpenAI 03-mini-high, DeepSeek-R1, and
Claude Sonnet 3.7 have established new performance stan-
dards [1][13]. These advancements indicate the continued
rapid evolution of LLM capabilities, with potential implica-
tions for fully autonomous software engineering agents.

B. LLM-Based Autonomous Agents

Beyond single-turn code completion, the idea of an LLM-
driven agent that can perform multi-step tasks has gained
traction. The ReAct framework [6] pioneered the combination
of chain-of-thought reasoning [18] with action execution,

enabling an LLM to decide not only what to think next but
also what action to take in a unified prompting strategy. This
idea of using the LLM’s own output as an intermediate state
has influenced many subsequent systems.

In early 2023, a series of autonomous agent prototypes built
on GPT-4 (such as AutoGPT) captured popular imagination.
These systems prompt the LLM to continuously plan and
execute sub-tasks towards a given objective, simulating an “AI
agent” that can function without user prompts for each step.

Recent developments in AI-powered code generation have
witnessed significant breakthroughs with the emergence of
sophisticated agent-based systems. Notably, Courser Com-
poser and Aider have demonstrated improved capabilities in
autonomous programming tasks [5][15].

Our work can be seen as an instance of an LLM agent
applied to a focused real-world task: given a specific issue in
an existing software project, the agent (backed by an LLM)
must understand the problem, read and modify the project’s
code, and submit a solution. We contribute new data on how
today’s strongest LLMs perform in this autonomous coding
scenario, complementing prior research.

III. METHOD

Our research methodology is designed to evaluate each
LLM’s ability to autonomously resolve real software issues
under controlled conditions. We selected the open-source
project Aibyss, a web-based AI competition game, as our
testbed. Aibyss is a TypeScript project (Nuxt/Vue frontend
with a Node.js backend using Prisma ORM) where users write
AI bots to compete in a game [19]. We chose Aibyss because
it is a non-trivial codebase with realistic features and bugs, yet
manageable in size. From Aibyss’s issue tracker, we picked ten
issues that were open and well-described. These issues covered
a range of feature requests and bug fixes and were labeled by
us based on the perceived difficulty as “easy,” “medium,” or
“harder”.

A. Task Selection

The 10 issues included 3 labeled “easy”, 4 “medium”, and
3 “harder”. Each issue consisted of a title and a description
intended for human developers. We did not provide any
additional hints or test cases to the agent beyond this text.

Below is the complete list of problems that we selected and
their issue titles, presented as-is:

1) easy - “feat: draggable splitter between the code and the
game screen should remember its position between the
page reloads”

2) easy - “feat(rating): highlight top results in k/d, kills,
deaths, and food eaten columns in the rating table”

3) easy - “chore(World): double the frequency of food
spawns”

4) medium - “feat: allow turning off the bots of some users
by setting the “inactive” field in the database on the user
object to ‘true”’

5) medium - “feat: ensure that the game screen occupies
all available free space to the right of the code editor”
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6) medium - “feat(rating): add a new column to the rating
table displaying the number of times the user submitted
the code”

7) medium - “feat(sandbox): add an option to turn off
sprites and replace them with circles to make debugging
easier”

8) harder - “bug: fix the issue causing the bot code to
submit when the user opens “API reference”

9) harder - “feat: add code versions and an option to revert
to a previous version”

10) harder - “feat: surface bot execution errors to the user”
The actual GitHub issues with their descriptions can be

found on the Aibyss project GitHub issues page [20].

B. Agents and LLM Variants

We evaluated six agent configurations:
• Aider 0.75.2 + o3-mini-high 2025-01-31
• Aider 0.75.2 + DeepSeek-V3
• Aider 0.75.2 + DeepSeek-R1
• Aider 0.75.2 + Claude Sonnet 3.7 20250219
• Aider 0.78.0 + Claude Sonnet 3.7 20250219 with 32k

thinking tokens – in this variant, we enabled the “thinking
mode” in Aider (using v0.78.0 with thinking support for
Claude 3.7)

• Claude Code 0.2.35 – Anthropic’s Claude Code is a
proprietary agent with a CLI interface very similar to
Aider’s that uses the Claude Sonnet 3.7 model under the
hood; this can be seen as a closed-source counterpart to
Aider, specifically tuned for Claude [13]

C. Autonomy and Stopping Criteria

We configured the agents to operate fully autonomously.
Aider was run with the --yes-always flag, meaning it
would automatically apply its proposed actions. In the case
of Claude Code, we approved all its prompts manually. Each
agent was allowed to iterate until it produced no further
actions.

One exception to full autonomy was with the o3-mini-high
model in Aider: often this model did not automatically load
files it needed, and would ask the user to add certain files to
its context. Whenever Aider+o3-mini-high requested a file, we
manually added exactly that file (and no additional help), then
let it continue. No other agent required such interventions.

D. Evaluation Criteria

After each agent run, we collected the resulting code
changes (if any) and deployed/tested the application to judge
success. We evaluated outcomes on several criteria:

• Works (Yes/No): Did the changes address the issue from
the end-user’s perspective? For a feature request, this
meant the new functionality works as intended. For a
bug, the erroneous behavior was fixed.

• Linting Check Pass: We ran the project’s linting scripts.
If the agent’ss final code did not pass them, we marked
that as a quality issue.

• User Experience (UX): We manually inspected if the
solution introduced any noticeable UX problems (e.g., a
feature works but has a confusing UI or performance lag).

• Code Quality: We reviewed the diffs to assess if the so-
lution was implemented in a reasonable and maintainable
way. Inefficiencies, unmaintainable code, and obvious
bugs in the implementation were noted.

We selected these criteria because they mirror how work
performed by a human software engineer is usually evaluated.
These qualitative judgments were used to label each successful
solution with additional notes (e.g., “works, but suboptimal
code” or “works, except fails linting”). Finally, we measured
the cost of each solution in USD.

IV. IMPLEMENTATION DETAILS

All agent runs were conducted in a consistent environment.
We created a fresh Docker container for each run, which
checked out the Aibyss repository at commit b4e58b2 (to
ensure all models started from identical code) and installed the
necessary tools (Node.js, Aider, Claude Code, etc.). The agent
was then launched inside the container and given the issue
text to solve. The prompt given to each agent was uniform:
"Please solve the following issue. Title:
<issue title> Description: <issue body>".
We ensured the project’s dependencies and database (SQLite
for this test) were properly set up in each container so that
the agent could run the app or tests if it chose to. The Aibyss
codebase was about 3.5k lines of TypeScript/JavaScript. Each
agent configuration was run on each of the 10 issues, yielding
60 trials in total.

After an agent completed, we committed its changes to a
new branch and opened a pull request on GitHub. This allowed
us to use continuous integration (CI) results as an additional
datapoint. We then manually reviewed and tested the branch
as described in the evaluation criteria. All of the PRs created
as part of this research can be found on GitHub [21].

V. RESULTS

Table I summarizes the performance of each agent config-
uration across the 10 issues. We report for each issue whether
the agent produced a working solution, along with notes on
linting, UX, and code quality. We also report the approximate
API cost incurred for that issue’s attempt. A “doesn’t work”
or “it didn’t understand the problem” indicates the agent failed
to solve the issue.

Looking at the overall success rates (“solved problems”
in the Total row), we see a clear ranking of the models.
The Claude Sonnet 3.7 with reasoning (both with Aider and
Claude Code) solved 5 out of 10 issues, the highest of any
configuration. In contrast, DeepSeek-V3 and -R1 solved 2
each, and the o3-mini model solved only 1. The standard
Aider+Claude (with no reasoning) solved 3. Enabling Claude
to use “thinking” (32k tokens context for chain-of-thought)
allowed it to solve two additional issues that it failed with a
shorter context, showing that reasoning improved performance.
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TABLE I
AGENT EVALUATION RESULTS

Problem
Aider 0.75.2 +
o3-mini-high
2025-01-31

Aider 0.75.2 +
DeepSeek-V3

Aider 0.75.2 +
DeepSeek-R1

Aider 0.75.2 +
Claude Sonnet 3.7

20250219

Aider 0.78.0 +
Claude Sonnet 3.7
20250219 with 32k

thinking tokens

Claude Code 0.2.35

1 cost: $0.04
doesn’t work

cost: $0.0046
doesn’t work

cost: $0.0092
doesn’t work

cost: $0.12
✓works

linter check fail
UX is bad
code is bad

cost: $0.20
✓works

linter check fail
UX is bad

✓code is good

cost: $0.2928
✓works

✓linter check pass
UX is bad

✓code is good

2
cost: $0.05

it didn’t understand
the problem

cost: $0.0037
doesn’t work

cost: $0.0070
✓works

linter check fail
✓UX is good
✓code is good

cost: $0.04
doesn’t work

cost: $0.07
✓works

linter check fail
✓UX is good
✓code is good

cost: $0.1175
doesn’t work

3

cost: $0.03
✓works

✓linter check pass
✓UX is good
✓code is good

cost: $0.0033
✓works

✓linter check pass
✓UX is good
✓code is good

cost: $0.0066
✓works

linter check fail
✓UX is good
✓code is good

cost: $0.04
✓works

✓linter check pass
✓UX is good
✓code is good

cost: $0.07
✓works

✓linter check pass
✓UX is good
✓code is good

cost: $0.1151
✓works

✓linter check pass
✓UX is good
✓code is good

4 cost: $0.07
doesn’t work

cost: $0.0043
doesn’t work

cost: $0.0070
doesn’t work

cost: $0.06
doesn’t work

cost: $0.08
doesn’t work

cost: $0.4942
doesn’t work

5 cost: $0.04
doesn’t work

cost: $0.0042
doesn’t work

cost: $0.0079
doesn’t work

cost: $0.07
doesn’t work

cost: $0.08
doesn’t work

cost: $0.2085
doesn’t work

6 cost: $0.07
doesn’t work

cost: $0.0046
it didn’t understand

the problem

cost: $0.0092
doesn’t work

cost: $0.07
it didn’t understand

the problem

cost: $0.10
it didn’t understand

the problem

cost: $0.2523
it didn’t understand

the problem

7 cost: $0.22
doesn’t work

cost: $0.0090
doesn’t work

cost: $0.02
doesn’t work

cost: $0.06
doesn’t work

cost: $0.09
✓works

linter check fail
✓UX is good

code is bad

cost: $0.4650
✓works

linter check fail
minor UX issues

code is bad

8 cost: $0.09
doesn’t work

cost: $0.0031
✓works

✓linter check pass
✓UX is good

code is bad

cost: $0.0063
doesn’t work

cost: $0.04
✓works

linter check fail
✓UX is good

code is bad

cost: $0.07
✓works

linter check fail
✓UX is good

code is bad

cost: $0.1518
✓works

✓linter check pass
✓UX is good
✓code is good

9 cost: $0.08
doesn’t work

cost: $0.0062
doesn’t work

cost: $0.01
doesn’t work

cost: $0.10
doesn’t work

cost: $0.12
doesn’t work

cost: $0.53
✓works

linter check fail
UX issues

code is bad

10 cost: $0.07
doesn’t work

cost: $0.0082
doesn’t work

cost: $0.02
doesn’t work

cost: $0.05
doesn’t work

cost: $0.16
doesn’t work

cost: $0.50
doesn’t work

Total cost: $0.76
1/10 solved

cost: $0.05
2/10 solved

cost: $0.10
2/10 solved

cost: $0.65
3/10 solved

cost: $1.04
5/10 solved

cost: $3.13
5/10 solved

Easy solved 1/3 1/3 2/3 2/3 3/3 2/3
Medium solved 0/4 0/4 0/4 0/4 1/4 1/4
Harder solved 0/3 1/3 0/3 1/3 1/3 2/3

In terms of difficulty, all agents found the easy issues
more approachable: Aider+Claude 3.7 with thinking solved
all 3 easy tasks, and even the weakest model solved one
easy issue. The medium tasks proved challenging: only the
Claude Sonnet 3.7 with reasoning (both with Aider and Claude
Code) managed to solve 1 out of 4 medium issues. Harder
tasks (8, 9, 10) saw partial success: Claude Code solved two
(Issues 8 and 9), while Aider+Claude 3.7 with thinking and
Aider+DeepSeek-V3 each solved one (Issue 8). No model
could handle Issue 10, a complex feature involving tracking
and displaying bot errors.

We also observe notable differences in solution quality.
For instance, Issue 3 was solved by almost all models, but
DeepSeek-R1’s solution failed linting due to minor format
issues, whereas others passed. In Issue 1, all Aider+Claude

solutions worked functionally, but they left some UX issues
(the page loaded with a flicker in the splitter position) and
non-ideal code; the Claude Code agent’s solution was slightly
better (fixing the linting problem) than Aider+Claude’s. The
other models did not even reach a working solution for
Issue 1. Another example is Issue 6. In Issue 6, none of the
agents solved it and most (even Claude) misunderstood the
requirement – they implemented a total count instead of a
7-day count for a metric. This shows that LLMs can misread
context that a human developer is expected to catch. Additional
context or clarification in prompts might be needed for such
cases.

Cost-wise, the DeepSeek-V3 and DeepSeek-R1 are very
cheap to run totalling $0.05 and $0.10 USD per 10 solutions
produced respectfully. While using Claude Sonnet 3.7 was
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Figure 1. Aider+o3-mini-high prompting the user to manually add the file it
needs

more expensive, these costs were fairly low in absolute terms
(each issue well under $1 for Claude). Notably, Claude Code
consumed roughly 3× the tokens of Aider+Claude, meaning
it took more steps or context per issue. This aligns with
Claude Code’s behavior of running tests and iterating on a
solution autonomously. Aider+Claude with reasoning achieved
the same 5/10 solves at one-third the cost of Claude Code. In
a scenario where API cost is a concern, the improvement in
solution quality by Claude Code may not currently justify its
higher cost.

VI. DISCUSSION

To better understand the experimental outcomes, we per-
formed a qualitative analysis of each agent’s behavior and the
solutions (or attempts) they produced. Here we discuss key
insights and failure modes.

A. Need for Context Awareness

One striking limitation was observed with o3-mini-high.
This agent often failed to load relevant files autonomously. In
multiple issues it would stop and ask for a file (for example,
it did not automatically open the file containing a function
mentioned in the issue). We had to manually provide the file
for it to proceed. This behavior is depicted in Figure 1, which
shows a screenshot of the Aider+o3-mini agent prompting
the user to add a file to the context. Notably, none of the
other models exhibited this limitation — they have added
needed files to the context via the Aider agent’s capabilities. In
addition to this, the Aider+o3-mini-high demonstrated lack of
context awareness that significantly impeded its performance.
Even after adding files, its solutions were usually incomplete
or incorrect.

B. Common Reasoning Errors

Several agents made similar mistakes on certain issues,
suggesting the problem might lie in the prompt or the envi-
ronment rather than idiosyncrasies of one model. For example,
in Issue 4 (a medium bug fix involving adding a TypeScript
module import), the DeepSeek and o3-mini-high models all
attempted to import a database object incorrectly (they used

a wrong path), possibly picking up a pattern from elsewhere
in code. This parallel behavior implies that the initial system
might have led the models down a similar path, or they
all latently “agreed” on a plausible but wrong solution. It
highlights that autonomous agents might need better guardrails
or self-checks for such predictable pitfalls. A possible remedy
could be incorporating static analysis: e.g., after a code edit,
have the agent verify imports or run a quick compile step
(which Claude Code was usually doing).

Another pervasive issue was misunderstanding of require-
ments. Issue 6 (add a weekly count to the rating table) was
misinterpreted by every model as a total count. This happened
because the issue title was somewhat ambiguous and the
description didn’t explicitly mention the 7-day window (it
relied on context that all other stats in that table were weekly).
Our LLMs did not infer that context. This kind of mistake is
hard for an agent to catch without more project knowledge.
It suggests that for certain tasks, an autonomous agent might
benefit from a mechanism to ask clarifying questions – some-
thing we did not allow in this study.

C. Behavior of Claude Code vs. Aider

Using the same model (Claude Sonnet 3.7), the Claude Code
agent and the Aider agent exhibited different styles. Claude
Code was much more thorough: it would run the project’s tests
when available, and even run the linter, essentially simulating
what a careful developer would do. Claude Code was also
the only agent that was actually creating the Prisma database
migrations in addition to changing the schema. The downside
was that Claude Code consumed more time and tokens.

D. Successful Case Study (Issue 7 - Sandbox Sprites Toggle)

This was a medium difficulty feature that only the Claude-
based agents solved. The task was to add a user option
to replace graphical sprites with simple circles in the game
(for debugging). The Aider+Claude with reasoning agent
produced a clean solution: it introduced a button to switch
to and from the debug mode and a corresponding logic for
the toggle. The implementation was not trivial – it required
understanding how the rendering loop worked. The other
models failed here likely because they got confused by the
rendering code. Aider+Claude with reasoning’s success in
Issue 7 demonstrates the benefit of reasoning. Interestingly,
Claude Code’s working solution for the same issue was a bit
messy (the circle drawing code is unnecessary complex and
is repeated in two different places). This suggests that while
Claude Code’s strategy of iterative refinement is helpful, it
doesn’t guarantee a better solution design.

E. Partial Success and Limitations (Issue 9 - Code Versioning)

One of the “harder” issues (Issue 9) was to implement
code version tracking and allow reverting to previous versions.
Claude Code was the only agent to achieve a working solution
here. It modified the bot code storing logic to store versions,
added a new API to list code versions, built a frontend com-
ponent to list versions, implemented logic to restore the older
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Figure 2. UI added by Claude Code for code versioning (Issue 9)

versions of the bot code, and wired it all together correctly.
The resulting UI can be seen in Figure 2, which shows the
new interface element listing past versions of a user’s code
with a revert option. While this solution technically worked
(the user could revert to past code states), we discovered
a serious performance problem: the agent’s implementation
loaded all stored code versions of all users into memory on
server startup (a costly approach). This highlights a scenario
where the agent solved the letter of the request but not the
spirit of good software engineering – a human developer would
likely avoid loading all of the source code into memory.
This underscores a fundamental limitation of current LLM
agents: they often don’t evaluate trade-offs beyond immediate
correctness. We marked this solution as not production-ready
due to the RAM overhead. It needed human refactoring to
be acceptable. Nonetheless, the fact Claude Code managed to
implement a multi-step full-stack feature is impressive. For
future agents, improving their considerations for performance
might be beneficial, although that is a very difficult general
problem.

VII. CONCLUSION

In this paper, we explored the frontier of using state-
of-the-art LLMs as autonomous software engineers on real
development tasks. Through experiments on ten diverse issues
in an open-source project, we found that today’s top models
can partially fulfill the role of a developer: they wrote code
that solved about half of the tested issues without any human
assistance. This is a notable achievement and highlights the
rapid progress in LLM capabilities for software engineering.
However, our study also reveals the clear limitations and
challenges that remain:

• Autonomous agents are not yet reliable across the board.
They struggled especially with more complex or ambigu-
ous tasks, and often produced suboptimal solutions even
when they met the basic requirements.

• Reasoning and chain-of-thought prompting greatly influ-
ence success. Utilizing the reasoning ability of Claude
Sonnet 3.7 improved outcomes in our trials.

• There is a need for built-in validation and refinement.
Incorporating test execution, linting, and iterative self-
correction (as Claude Code does) helped catch mistakes.
Future agents should leverage all available verification
tools (compilation, static analysis, tests) to ensure higher
quality outputs.

• Certain errors, like misinterpreting the true intent of a
requirement or making inefficient design choices, are
currently beyond the examined agents’ capacity to avoid.
These will likely require changes to the agent’s architec-
ture or a human-in-the-loop to guide the agent.

Despite these limitations, the trend is very encouraging.
We expect that with each iteration, the gap on what tasks
are solvable autonomously will narrow. In practical terms,
autonomous LLM agents could already take on some tedious
parts of development (like writing boilerplate code, fixing sim-
ple bugs, updating configurations), freeing human developers
to focus on higher-level design and complex problem-solving.

As future work, our immediate next steps include:
• Evaluating newer models: We plan to test open-source

QwQ-32B with Aider to see if it can match Claude’s
performance. If successful, this could open the door
to more accessible autonomous coding (not relying on
closed APIs).

• Architect-editor agent design: We will experiment with
an “architect” mode in Aider, where one model (or one
prompting style) is used to outline the solution (select
files to change, perhaps write pseudo-code or steps), and
another model is used as the “coder” to implement those
steps.

• Scaling to more tasks and projects: Our current test
set is small. We want to expand the evaluation to include
a wider variety of issues (UI-heavy issues, algorithmic
challenges, integration tasks) and on different projects
(perhaps some Python backend projects, mobile app
issues, etc.). This will paint a fuller picture of where
autonomous LLMs excel and where they fail in software
engineering.

In conclusion, state-of-the-art LLMs, when coupled with a
suitable agent framework, are beginning to demonstrate practi-
cal utility in automating segments of software development in
a fully unsupervised manner. They function as knowledgeable
but flawed junior developers: capable of writing code and solv-
ing problems in familiar contexts, yet prone to mistakes that
require oversight. By continuing to improve LLM reasoning,
integrating robust self-checks, and using clever orchestrations
of multiple models, we move closer to a future where AI
agents could handle routine programming tasks autonomously.
Such a development could significantly accelerate software
engineering workflows, allowing human developers to push
the boundaries of innovation with the grunt work delegated to
our AI collaborators.
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