CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

Integrating Creative Artifacts into Software Engineering Processes

Hans-Werner Sehring
Department of Computer Science
Nordakademie
Elmshorn, Germany
e-mail: sehring@nordakademie.de

Abstract—Model-driven software engineering processes are
based on formal models that are automatically transformed
into each other. Many software development approaches involve
creative activities that result in manually generated and informal
documents that prevent automatic model transformations. The
content of these documents must be accessed in a structured way
to enable transformation steps. Manually maintained documents
are subject to frequent changes, including modifications of their
structure. To enable model-driven processes in the presence
of creative activities and their documents, we are currently
experimenting with parsing techniques that combine the structure
of documents with domain knowledge about their content.
First experiments are based on the Minimalistic Metamodeling
Language and its ability to integrate semantic descriptions with
syntactic representations.

Keywords-software development; software engineering; computer
aided software engineering; top-down programming; document
handling.

I. INTRODUCTION

Software engineering processes involve the creation and
consumption of a series of documents. Such documents link
different phases of activity in software creation processes, be
they sequential work performed by experts in phase-oriented
projects or simultaneous cooperation in cross-functional teams
in agile approaches.

A class of software engineering processes that are based on
documents that contain formal models are called Model-Driven
Software Engineering (MDSE) or Model-Driven Software
Development (MDSD) processes.

Some software engineering processes include creative activ-
ities, such as conceptual modeling or interaction design [1].
Such creative actitivies are supported by documents that have
neither a common format [2] nor formal semantics. Instead,
they reflect subjective impressions, case-based presentations,
alternatives, and similar content directed at a human audience.

Documents that lack formal structure cannot participate in
MDSE processes per se. However, they can be annotated by
their creators with, for example, with references to relevant
content that are sufficiently fine-grained to address well-
formed content. Such annotations allow creative documents to
participate in MDSE processes.

However, such annotations refer to specific document in-
stances. Documents used in creative activities are, in particular,
working documents that are subject to constant change. This
includes changes in the structure of the documents. Therefore,
any fixed reference to content in such a document will poten-
tially become invalid and metadata may become inconsistent
as work progresses.

In this paper, we investigate means of integrating informal
documents, in particular ones that are subject to change,
into (model-driven) software engineering processes. We are
currently experimenting with linguistic means of recognizing
the content of documents with changing structures. First
experiments with document recognition are based on a mod-
eling language and its special ability to integrate semantic
descriptions with syntactic representations.

Preliminary results show that at least some content can be
extracted from documents that lack formal representations. In
this way, model-driven approaches can potentially be applied
to software projects with creative aspects.

The remainder of this paper is organized as follows: In
Section II, we revisit model-driven software engineering
and discuss the need for incorporating informal documents.
Section III presents typical ways of referencing content in
single documents, and it addresses means of managing volatile
references to content of mutable documents. Section IV
briefly introduces a modeling language that is used for initial
experiments in this paper. An experimental implementation of
these concepts is presented in Section V. The paper concludes
in Section VI with a summary and an outlook on future work.

II. VISUAL SOFTWARE ENGINEERING ARTIFACTS

The discourse in this paper does not require a comprehensive
introduction to model-driven approaches. However, this section
introduces some basic terms and highlights the challenges of
integrating creative work.

A. Model-Driven Software Engineering

In software development processes, a series of documents is
created. The kinds of documents may differ depending on the
kind of software being created and on the methodology used
for the process. But all documents serve common purposes,
such as linking activities by the results represented in them,
allowing traceability of activities [3], and others.

MDSE formalizes the flow of documents and thus the
connection of development steps. Documents are models with
a formal semantics. Models are derived by means of model-
to-model transformations and finally to code in model-to-
text transformations on a (semi-) automatic basis. This way,
development steps can be performed (semi-) automatically and
changes to models can be propagated down the model chain.

One of the first prominent examples of MDSE is the Object
Management Group’s Model-Driven Architecture (MDA). Var-
ious other approaches have emerged that differ in the way in

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

https://orcid.org/0009-0008-3016-6868

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

Concept Lo-Fi Prototypes Hi-Fi Prototypes
Dlaaneiia el Information
7 Architecture Style guide
Personas X
K % Solution Software
\4 W ‘ Wireframes v Click dummy Architecture Architecture + Code
Customer journeys Module catalog Touchpoint- X
‘ / N ‘ data mapping Software architecture
Yy Y v X V¥ Tests Touchpoint- X
Solution hypothesis Navigation function mapping y Code
‘ (Semiformal (code, ‘ VY Libraries
fil f prototyping tool: .
iles of prototyping tools) High-level Y Configuration
architecture [P

Informal descriptions
Formal descriptions

Architecture description

Figure 1. A typical software development process that integrates creative activities [4].

which they implement transformations, for example, by means
of metaprogramming [5], code templates [6], or generative
artificial intelligence [7].

B. Creative Software Development Activities

Certain kinds of software solutions, for example, one with a
focus on the human-machine interface, include creative steps.
Examples of creative activities are the definition of interaction
patterns, of user experience in general, and user interface design
in particular.

In [8], we use the term Model-Supported Software Creation
(MSSC) to distinguish this kind of software development from
general MDSE that relies purely on formal representations.

Figure 1 shows typical development steps and artifacts
created to model aspects of a software solution. Models,
such as the Domain model, the High-level architecture, and
the Software architecture can typically be expressed in a
suitably formal way as to be derived from each other by
model-to-model transformations. However, other documents
are typical representatives of informal documents, such as
Personas, Customer journeys, and Style guides. There may
even be dynamic artifacts, such as a click dummy that needs
to be experienced by a human observer who interacts with it.

C. Creative Artifacts in Model-Driven Processes

Depending on the type of software, there are different
steps in the development process that are of an informal
nature. Some software solutions require creative development
activities. Typical such activities are those from the disciplines
of domain modeling, conceptual modeling, and visual design.
Such development steps are typically performed manually and
lead to subjective results. As a result, tools that support creative

activities often produce informal representations and documents.

Therefore, software projects that involve creative activities
cannot be fully covered by model-driven processes in most
approaches.

In order to include creative actitivies in model-driven
processes, the informal documents that are generated have
to be interpreted in such a way that their content can be
referenced and can be extracted in a defined structure. Through

such an interpretation, content may be used in software models
or during model transformations.

Interpretations of documents that lack formal structure can
be added explicitly. For example, their creators may provide
annotations with content references and metadata to guide
access to relevant content. Such annotations, however, refer to
specific document instances.

Creative activities typically consist of numerous iterations.
As a consequence, documents used in creative activities are
subject to constant change. Changes include changes to the
structure of the documents. Therefore, any fixed reference to
content in such a document will potentially become invalid
and metadata may become inconsistent as work progresses.
As a consequence, documents are required to be constantly
reinterpreted.

III. REFERENCING CONTENT IN DOCUMENTS

In order to extract content from documents in a form that
is suitable for use in a formal development process, parts of
that content must be addressable. This requires documents to
be structured, or to allow superimposed structures for content
references.

Digital documents can be structured to varying degrees.
Typically, document formats are categorized as structured, semi-
structured, and unstructured.

A. Structured Documents

Structured documents are created according to a well-defined
structure and they can be analyzed precisely according to that
structure. This can be realized in three different ways. The
structure of documents may be used to query for content,
such as object paths based on JSON definitions. To be able to
address specific parts of a document, structure elements must
have stable names (paths) or stable IDs. A different approach
is grammars, which can be used both to create documents of
a certain form and to parse documents to identify structural
elements according to linguistic constructs.

A common structure to which multiple documents conform
calls for a schema or document format. Schemas of structured
documents differ in the meaning they convey. A format may

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

reflect visual layout like, for example, in the case of HTML, it
may use a generic semantics like, for example, XML formats
for formal languages, or it may carry domain knowledge as,
for example, application-specific XML formats.

B. Semistructured Documents

Documents that have a recognizable structure, but no com-
mon schema to which they conform, are called semistructured.
Any interpretation rules applied to such documents are fragile
in the sense that they may not be applicable to all document
instances, or else all possible forms of documents must be
considered.

If there is some technical structure that allows referencing
parts of a document, then some pragmatics can be applied
to interpret combinations of structure elements and content.
For example, in a text document, there may be a recognizable
structure of single-line terms written entirely in bold font. That
may be interpreted as the term being a section heading. If
the document is a software architecture description, and if
the term is interpreted as a subsection of a section “Software
Components”, then the term may be interpreted as the name
of a software component.

In this way, semistructured documents are required to expose
some recognizable structure, and interpreting them requires
some known domain semantics and pragmatics to apply some
interpretation rules.

C. Unstructured Documents

Unstructured documents, exhibit no structure that would
allow referencing parts of a document. Typical examples of
such documents are media files in binary format.

To reference parts of an unstructured document, some
technical ways of addressing can be used, for example, pixel
ranges in an image or timecode sequences in movies. Such
references depend on the concrete document or, more precisely,
on the actual presentation of it. For example, areas of an image
that are defined by pixel coordinates relate to the resolution
of that image. Such references are, therefore, volatile. For
example, a selection of pixel coordinates is not valid for an
equivalent image in different resolution.

There is no precise way to semantically reference content,
although the semantics of unstructured documents can be
analyzed by various algorithms.

D. Aggregating Documents from Different Sources

When accessing document collections that originate from
different sources, the problem of different or varying schemas
may aries. A typical approach to cope with such a situation is
employing adapter components that allow accessing structured
documents according to a common schema or by transforming
them into a common schema [9].

E. Extracting Content from Mutable Documents

As mentioned earlier, documents created during creative
activities in software engineering processes are subject to
change, which means they have to be mutable (volatile,
sometimes called /iving documents).

In MDSE processes, the contents of documents are used
to create software models from them, or such models are in
other ways related to the contents of documents. Changing
documents can generally break such relationships.

One solution is to create copies of documents once they
are referenced and to keep these copies stable. But this would
exclude further work on those documents from the process.

Parsing is a standard approach to identifying meaningful
content in a document. For formal languages, a parsing
process operates on the syntactic structures of a document
and applies a defined semantics to interpret those structures.
Documents resulting from creative processes do not follow a
fixed semantics. Therefore, classical parsing approaches based
on formal languages alone do not work on them. In our current
research, we augment document parsing with the application
of domain knowledge.

Parsing of semistructured documents requires pragmatics
since not all parts of the document have an identifiable structure.
An open question is whether pragmatics can be provided by
domain knowledge: two equally formatted expressions may be
distinguished by some significant content. In general, domain
knowledge may be necessary to decide on a parsing strategy.

Parsing is well understood for formal and, to a limited extent,
semistructured representations, but it is usually applied once.
Updating models based on subsequent parsing results of a
modified document requires, according to our current findings,
an additional relationship between document structure and
domain semantics.

IV. THE M3L AS A MODELING LANGUAGE

The Minimalistic Metamodeling Language, short M>L, is
a metamodeling language. As such, it can be employed for
models for different kinds of applications. We use it for first
experiments in document recognition by capturing domain
semantics as well as document formatting.

The M3L allows defining and deriving concepts. Definitions
are of the general form
A is aB {CisaD} |=E {F} |- GH
Such a statement matches or creates a concept A. All parts of
such a statement except the concept name are optional.

In the course of this paper we use a graphical notation of the
MB3L as shown in Figure 2 for the different parts of a concept
definition. For concept refinement we borrow notation from
the Unified Modeling Language (UML), see Figure 2c for is a
relationships and Figure 2d for is the relationships.

The concept A is a refinement of the concept B. Using the “is
the” clause instead defines a concept as the only specialization
of its base concept.

The concept C is defined in the context of A; C is part of the
content of A. Contexts define (hierarchical) scopes. Concepts,
such as A are defined in an unnamed top-level context.

There can be multiple statements about a concept visible
in a scope. Statements about a concept are cumulated. This
allows concepts to be defined differently in different contexts.

For an example of modeling with the the M3L, consider
the definition of a conditional statement found in imperative

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

A
- 7
c
(a) hanging,A M3L A
concept (b) M3L concept
containment

(c) M3L concept
refinement

A E Eﬂﬂ

(d) Unique M3L
concept refinement

(f) Syntactic rules of
MS3L concepts

(e) Semantic rules of
MB3L concepts

Figure 2. A graphical notation of M3L concepts.

ConditionalStatement is a Statement {
Condition is a Boolean
ThenStatement is a Statement
ElseStatement is a Statement }

Figure 3. Sample base model of procedural programming.

IfTrueStmt is a ConditionalStatement {
True is the Condition

} |= ThenStatement

IfFalseStmt is a ConditionalStatement {
False is the Condition

} |= ElseStatement

Figure 4. Sample semantics of conditional statements.

programming languages in Figure 3. It consists of Condition
to decide whether to execute ThenStatement or ElseStatement.

Semantic rules can be defined on concepts, denoted by “I=".
A semantic rule references another concept, that is returned
when a concept with a semantic rule is referenced. Like for any
other reference, a non-existent concept is created on demand.

Context, specializations, and semantic rules are employed
for concept evaluation. A concept evaluates to the result of its
syntactic rule, if defined, or itself, otherwhise. Syntactic rules
are inherited from explicit base concepts (given by is alis the)
and implicit base concepts (concepts with matching content).

By means of concept evaluation, semantics can be assigned
to concepts. The code in Figure 4 uses syntactic rules to assign
semantics to the conditional statement from the example above.
A concrete statement is matched against the two subconcepts
IfTrueStmt and IfFalseStmt. If one of them is recognized as
a derived base concept of the given statement, the semantic
rule of the matching concept is inherited. This way, the “then”
statement or the “else” statement is executed (evaluated next).

Concepts can be marshaled/unmarshaled as text by syntactic
rules, denoted by “I-”. A syntactic rule names a sequence of
concepts whose representations are concatenated. A concept
without a syntactic rule is represented by its name. Syntactic

Java is a ProgrammingLanguage {
ConditionalStatement
|- if (Condition) ThenStatement
else ElseStatement . }
Python is a ProgrammingLanguage {
ConditionalStatement
|- if Condition

"\n " ThenStatement
else:
"\n " ElseStatement . }

Figure 5. Sample syntax of the conditional statement.

rules are used to represent a concept as a string as well as to
create a concept from a string.

Figure 5 shows syntactic rules that map the conditional state-
ment from the example to different programming languages.

V. FIRST EXPERIMENTS USING THE M3L

Describing static documents with metadata provided as
concepts that make reference to relevant parts of the content
has been researched in the past. Some initial experiments with
simple documents have been conducted to investigate means
of linguistic document interpretation.

A. Static Document References

As a first example of document descriptions using the
M3L, Figure 6 illustrates static references to (fragments of)
documents. It uses an example from art history. A picture of a
painting shown on the bottom of Figure 6 is described using
(M3L) concepts.

The concept hierarchy starting with the concept Document-
Reference defines references to (fragments of) documents. A
Documentld defines some address of a document (file name,
URL, or similar), and FragmentSelector defines a part of a
document that holds interesting content. For the example, we
see a sketch of a refinement hierarchy which specifies concepts
for references to two-dimensional images, for those depicting
paintings, and paintings that specifically show a ruler.

A second concept hierarchy starting with DocumentDescrip-
tion contains concepts that describe the subject of a document.
The two hierarchies meet at the PaintingDescription. An
application-specific concept RulerPaintingDescription refines
it for the area of interest, and NapoleonCrossesTheAlps finally
provides an “instance” of a ruler painting.

B. Interpretation of Semistructured Documents

As a foundation of the interpretation of some kind of
documents, some general concepts are defined first. Figure 7
shows an example of documents that represent customer
journeys and that are exported from a (hypothetical) whiteboard
software. A concept Board allows to reference a whiteboard,
a concept Page some page (assuming the whiteboard software
allows to subdivide whiteboards). On a whiteboard, there is no
recognizable structure below the page level. Starting with the
concept CustomerJourney, we look for semantic structures on a

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

DocumentReference

2DImageReference

FragmentSelector

ImageReference
Documentid

<]_

TextReference

FragmentSelector

PaintingDescription

AreaSelector

| Origin I—[>| Point (from Geometrics) |

Painter

—| ImageDescription m— |

y

| Width l—[>| Integer (from Arithmetics) |

|DocumentDescription |<]-

—| TextDescription

| Height l—[>| Integer (from Arithmetics) |

NapoleonCrossingTheAlps

RulerPaintingDescription

- URL

NapoleonBonaparte
(from RulerDatabase)

> Documentlid

E

HistoricalPerson (from History)

| RulerDepiction I—[>| AreaSelector

-|- { NapoleonSelector

y

RulerDepiction

Figure 6. Static references to documents and document fragments.

BoardModels

Board

| String (from BaseTypes) |

/\

Page

| Name l—[>| String (from BaseTypes) |

CustomerJourney
| Name |
Name TouchPoint
| Persona | | Name
Service

Visitor

Step

| VisitBefore |—[>|TouchPoint |

| VisitAfter |—[>| TouchPoint |
==

. "rectangle" "shape": "chevron"

"name": Name "connection": VisitBefore

Figure 7. Example of a pattern for mutable documents.

whiteboard page. A customer journey is some named (graphical)
object that consists of elements that represent Touchpoints and
ones that represent Steps. A touchpoint is characterized by a

Name and a Service. Syntactic rules define how such concepts
are represented on a whiteboard page. Figure 7 sketches some
rules that generate/recognize JSON code as it might come out
of a whiteboard software that is provided as a Cloud service.

Once a customer journey has been developed on a whiteboard
of that form, the syntactic rules can be used to recognize the
structure and to extract the content of it. Figure 8a shows a
sample customer journey. Also in the example of that figure, a
(MB3L) concept for the board has been created as a subconcept
of Board from Figure 7 with a reference to the board document.

When the board is interpreted according to the syntactic
rules for Boards, the result is the concept structure from
Figure 8b. The concepts that have been created from the board
reflect some of the design decisions contained in the customer
journey representation, such as the participating persona and
the relationships to the touchpoints it visits and the sequence
of touchpoints along the customer journey.

The extracted information can be used in subsequent activi-
ties of the software development process. Using the M3L, the
resulting concepts can be related to concepts that represent
models created in such subsequent activities.

C. Reinterpretation of Mutable Documents

Mutable documents are handled by repeatedly applying
the parsing process. When reinterpreting a document after
a change, fresh concept definitions are made in the M3L. Due
to M3L’s way of matching definitions against existing concepts
before creating new ones, previous interpretations are found and
used in the parsing process. Depending on the concept model,
existing concept references that were established by model-to-
model transformations are preserved. In this way, documents
can be modified even if they have already been interpreted and
related to other models during an MDSE process.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

CustomerJourneys:CustomerJourney3

John ;mith

gwarene» Interest \> Conversio&ng%eme» Advocacy>
] —
v Online Ad ‘ , Website ‘ d Shop g q RegistralionJ lSOCia

CustJourneyBoardsWithDirectMailStep

2 ks URL Page
| Name | |CustomerJourney3 |e[>| Name
% CustomerJourney
| CustomerJourneys | TouchPoint
| Website |e[>| Service |

(a) Example of a query to mutable documents.

BoardInstances

SomeBoard

| CustomerJourneys |

Page

| CustomerJourney3 |

CustomerJourney3

| FrominterestToLoyalty || John Smith |

TouchPoint3.1 Step

| Banner || OnlineAd | |Awareness TouchPoint3.1

TouchPoint3.2 |

TouchPoint3.2 Step
Information Website | Interest Touchpoint3.2 ||TouchPoint3.3 |
| TouchPoint3.3 | | TouchPoint3.4 || TouchPoint3.5 |

(b) Example result of mutable document recognition.

Figure 8. Parsing of documents and document fragments.

Recognition of existing concepts requires some stable
information. These may, for example, be unique names as
well as a certain location in the document structure where it
is placed. In the example of the digital whiteboards above,
names might be given in a specially positioned text field. As
a consequence, the documents are not completely mutable, at
least not in terms of content.

An agreement on some recognizable information constitutes
a restriction to the idea of mutable documents. Finding ways
of leveraging this situation is subject to future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate an approach to integrate
semi-structured documents supporting creative activities into
MDSE processes. Using the M3L, documents can be parsed
based on their syntactic structure in conjunction with the
semantics of the concepts represented in such documents. A
first simple experiment shows that content can be extracted from
a document in a suitably formal form if the document follows
some conventions. The concepts recognized in a document can
serve as model elements that link the documents to the chain
of model-to-model transformations of MDSE processes.

Future work will need to test this approach with a range
of existing file formats and service APIs to further investigate
the limits of document interpretation and possibly identify
additional requirements for parsing technology. There are limits
to the extent to which documents can be modified without
losing existing links to software models. These limits are not
well researched. We need to find the limits, ways to extend
them, and notations to describe parts of documents that must
not be altered. Another future research direction concerns a
form of roundtrip engineering in which documents are not only
interpreted, but also generated from models that need to be
presented in a form suitable for non-technical stakeholders.

ACKNOWLEDGEMENT

The author thanks the Nordakademie for granting the
opportunity to publish this work.

REFERENCES

[1] G. Liebel et al., “Human factors in model-driven engineering:
Future research goals and initiatives for mde”, Software and
Systems Modeling, vol. 23, no. 4, pp. 801-819, 2024.

[2] E. Herac, L. Marchezan, W. Assuncdo, R. Haas, and A. Egyed,
“A flexible operation-based infrastructure for collaborative model-
driven engineering”, in Modellierung 2024, ser. Lecture Notes
in Informatics (LNI), Gesellschaft fiir Informatik e.V., 2024.

[3] I. Galvao and A. Goknil, “Survey of traceability approaches
in model-driven engineering”, in Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing
Conference, 2007, pp. 313-313.

[4] H.-W. Sehring, “Visual artifacts in software engineering pro-
cesses”, in Proceedings of the Sixteenth International Conference
on Creative Content Technologies, ThinkMind, 2024, pp. 1-6.

[5] S. Trujillo, M. Azanza, and O. Diaz, “Generative metaprogram-
ming”, in Proceedings of the 6th international conference on
Generative programming and component engineering GPCE
’07, Association for Computing Machinery, 2007, pp. 105-114.

[6] J. Arnoldus, M. Van den Brand, A. Serebrenik, and J. J.
Brunekreef, Code generation with templates. Springer Science
& Business Media, 2012, vol. 1.

[71 K. Lano and Q. Xue, “Code generation by example using
symbolic machine learning”, SN Computer Science, vol. 4, Jan.
2023.

[8] H.-W. Sehring, “Model-supported software creation: Towards
holistic model-driven software engineering”, in Proceedings
of the 2023 IARIA Annual Congress on Frontiers in Science,
Technology, Services, and Applications, ThinkMind, 2023,
pp. 113-118.

[91 I Amous, A. Jedidi, and F. Sedes, “A contribution to multimedia
document modeling and querying”, Multimedia Tools and
Applications, vol. 25, pp. 391-404, 3 Oct. 2005.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

	Introduction
	Visual Software Engineering Artifacts
	Model-Driven Software Engineering
	Creative Software Development Activities
	Creative Artifacts in Model-Driven Processes

	Referencing Content in Documents
	Structured Documents
	Semistructured Documents
	Unstructured Documents
	Aggregating Documents from Different Sources
	Extracting Content from Mutable Documents

	The M³L as a Modeling Language
	First Experiments Using the M³L
	Static Document References
	Interpretation of Semistructured Documents
	Reinterpretation of Mutable Documents

	Conclusion and Future Work

