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Abstract—This study introduces an efficient and scalable solu-
tion for image tagging through the utilization of OpenAI’s Con-
trastive Language-Image Pre-Training (CLIP) model. It features
a user-friendly Command-Line Interface (CLI) and leverages a
caching mechanism for image features introduced by the rclip
tool, which is powered by the SQLite 3 Relational DataBase
Management System (RDBMS). This enables effective tagging of
image catalogs already indexed by rclip. The performance of this
method was tested on the ObjectNet dataset, achieving 27.22%
accuracy for the top-1 prediction and 50.42% for the top-5
predictions. A scalability analysis revealed that both the indexing
and tagging processes increase linearly with the image count. For
instance, processing 50,273 unindexed images on an Apple M1
Max CPU was 31.66 times longer than tagging 965 unindexed
images, and handling 50,273 indexed images was 31.15 times
longer than 965 indexed images. This strategy is particularly
beneficial for sectors that handle large amounts of visual content
and require external processing tools, such as the media and
entertainment, security, and healthcare industries.

Keywords-image tagging; image indexing; photo manage-
ment; computer vision

I. INTRODUCTION

The unveiling of the CLIP model by OpenAI in 2021 has
captured widespread interest across the domains of Natural
Language Processing (NLP) and Computer Vision (CV). This
innovative model is capable of understanding advanced image
representations by analyzing a vast collection of 400 million
image and text pairs sourced from the internet. CLIP uniquely
identifies the most applicable text snippet for an image through
natural language guidance without being directly trained for
such tasks. Its zero-shot learning capabilities mirror those
found in GPT-2 and GPT-3 [1]. The authors of CLIP have
showcased its ability to match the performance of the original
ResNet50 on the ImageNet dataset in a zero-shot setting
without using any of the 1.28 million labeled examples. This
breakthrough addresses some of the most daunting challenges
in the field of computer vision.

Given its capabilities, CLIP emerges as an ideal foundation
for developing a semantic image tagging tool capable of
operating in a zero-shot manner with any user-provided tags
or images. This article explores this particular application of
CLIP.

The rapid expansion of data, particularly image data, un-
derscores the timeliness and significance of this research. The
surge in digital device usage and internet accessibility has led
to an unprecedented increase in image production and sharing
online, complicating the task of manually locating specific
images. In a previous study, we introduced a method that
employs natural language queries for image searches using

the CLIP model, resulting in the development of a tool named
rclip [2]. While rclip has broad applications, there are a
lot of other use cases where it’s important to be able to tag
images to enable their manual cataloging and search using 3rd-
party software. This makes an efficient image tagging solution
increasingly necessary and relevant.

In Section 2, the paper explores related works in the field
of image tagging. Section 3 describes the proposed method
for image tagging, which is built on top of rclip powered
by CLIP. Section 4 presents the implementation details of
the proposed method. Section 5 discusses the performance of
the proposed method. Section 6 presents the tagging quality
measurement results of the proposed method. Section 6 dis-
cusses the implementation and future plans. Finally, Section 8
concludes the paper and discusses future work.

II. RELATED WORKS

The advancement of NLP and CV has been significantly
influenced by the development of models capable of under-
standing and generating insights from both text and images.
The CLIP model by OpenAI marks a pivotal moment in this
journey, leveraging a novel approach to learn visual concepts
from natural language descriptions. This section reviews the
literature that contextualizes CLIP within the broader field of
image tagging and multimodal learning.

One of the earliest attempts to bridge the gap between vision
and language is the work by Socher et al. [3], who introduced
a model for generating descriptions of image contents, paving
the way for subsequent research in multimodal learning.
Their model was among the first to use a neural network to
combine visual and textual data, setting a foundation for future
exploration in the field.

The concept of using neural networks for image classifi-
cation was revolutionized by Krizhevsky et al. [4], with the
introduction of AlexNet, which demonstrated the potential
of deep learning in computer vision tasks. This work was
instrumental in showing how deep learning could be applied
to achieve significant improvements in image classification
accuracy.

Following this, the development of the ResNet model by He
et al. [5] represented another major step forward, introducing
the concept of residual learning to enable the training of much
deeper networks. The advancements in image classification
models like ResNet laid the groundwork for more sophisti-
cated image understanding and tagging capabilities.

In parallel to improvements in image classification, research
in NLP was making strides with the development of models
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like BERT by Devlin et al. [6], which introduced a new method
for pre-training language representations. BERT’s success in
understanding context and nuance in text provided inspiration
for exploring similar pre-training approaches in multimodal
models.

The intersection of NLP and CV began to take a more
defined shape with the introduction of models like ViLBERT
by Lu et al. [7], which employed separate pathways for
processing visual and textual information before integrating
them, demonstrating improved performance on tasks requiring
both visual and textual understanding.

The development of CLIP by Radford et al. [1] stands as a
significant milestone, combining the learnings from both fields
to create a model that learns visual concepts from natural
language descriptions. This model’s ability to perform zero-
shot image classification and tagging by leveraging a vast
dataset of image-text pairs collected from the internet has
opened new avenues for research and application.

In the domain of image tagging specifically, prior works
have explored various approaches for automating the process.
Weyand et al. [8] introduced a method for geolocating images
using a deep neural network, demonstrating the potential of
using image content to infer metadata. This work highlighted
the capability of deep learning models to extract and infer
contextual information from images beyond simple object
recognition.

The advancement of deep learning in image tagging has
been notably propelled by research focusing on the intricacies
of multi-label classification. One important study by Wang et
al. [9] introduced a CNN-RNN framework that enhances the
accuracy of tagging by leveraging the correlations between
labels in a multi-label setting. Their method demonstrates how
models can be effectively trained to predict multiple relevant
tags for a single image, considering the dependencies among
these tags to improve the precision of the tagging process.
This approach underlines the complexity of image tagging as a
multifaceted problem, benefiting from models that capture and
utilize the nuanced interrelations among tags to produce more
accurate and contextually relevant annotations. The progress
highlighted by Wang et al. underscores the transformative po-
tential of deep learning techniques in the domain of semantic
image tagging, offering insights into the development of more
sophisticated and efficient tagging solutions.

Subsequently, the integration of attention mechanisms, as
seen in models like the Transformer [10], has been adapted
to multimodal learning, enhancing the ability of models to
focus on relevant parts of the input when generating tags or
descriptions. This approach has notably improved the precision
of image tagging, facilitating more nuanced interpretation of
visual and textual data. Among such models, ViLBERT [7] and
CLIP [1] exemplify the advancements in multimodal learning.
ViLBERT utilizes a co-attentional layer to process visual and
textual inputs in parallel, enabling improved performance on
tasks like visual question answering and visual commonsense
reasoning. Similarly, CLIP leverages transformer architectures
to learn visual concepts from natural language supervision,

achieving a profound understanding of images through textual
descriptions. These models underscore the significant role of
transformers in bridging the semantic gap between different
types of data, thereby enhancing AI’s capability in multimodal
understanding and interaction.

The exploration of CLIP [1] and its application to image tag-
ging, as discussed in this paper, builds upon these foundational
works. By leveraging CLIP’s zero-shot learning capabilities,
we propose a novel method for semantic image tagging that
can adapt to a wide range of tags and images, addressing
the challenges posed by the ever-increasing volume of digital
images.

III. METHOD

CLIP’s text transformer allows us to convert a text label
(tag) into a n-dimensional vector (where n differs depending
on the CLIP model used). With CLIP’s image transformer,
it is possible to convert an image to a n-dimensional vector.
Then, we can calculate the dot product (Equation 1) of the
normalized image vector and each of the normalized tag
vectors. After this, we pick tags with the dot product higher
than the configured threshold; this gets us the tags that match
the image the most.

aaa · bbb =
n∑

i=1

aibi = a1b1 + a2b2 + · · ·+ anbn (1)

To allow tagging any kind of image with any set of tags, the
approach suggests allowing the input of a custom list of tags.
While this approach works reasonably fast on a few images
and tags, it may not be scalable when dealing with a large
number of images or tags. This is particularly challenging
if there is no access to GPUs to run the CLIP model. In
order to address this scalability issue, this article proposes two
optimizations:

• pre-compute tag feature vectors and reuse them when
processing all of the images;

• utilize the rclip’s [11] cache layer to avoid computing
feature vectors for images already processed by rclip
and allow us to retag the images quickly.

The cache layer implemented by rclip stores the com-
puted image vectors on disk after the initial processing of
images so that they can be accessed later. We propose to reuse
this logic in the image tagging process. This approach reduces
the computational overhead associated with image tagging
and improves the response time for users. This is particularly
useful when the user needs to retag the images with a different
set of tags or when the user already has their images indexed
by rclip.
rclip also handles adding new images to the cache to

avoid recomputing the whole cache when the image catalog
is updated.

Once we obtain the tags, we store them in the image
metadata. This allows other software to utilize the tags. For
example, the user can use the tags to search for images using
the operating system’s file manager or a third-party image
management software.

8Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-159-6

CONTENT 2024 : The Sixteenth International Conference on Creative Content Technologies



IV. IMPLEMENTATION

The method described above is implemented in the Python
utility called rtag [12]. rtag provides an easy-to-use CLI
interface that allows users to tag images within any directory
on a computer where rtag is installed. Tagging images
within nested directories of a complex directory subtree is
also supported. To use it, the user should open the terminal,
navigate to the directory containing the files that they want to
tag, type rtag, and hit “Enter.”

The solution uses the rclip library [11] to compute
the feature vectors. rclip uses ViT-B/32 version of the
OpenAI’s CLIP model [1]. The tool writes the computed tags
to the image IPTC metadata [13] using the IPTCInfo3 Python
library [14]. A simplified version of the image processing loop
source code is shown in Figure 1.

By default, rtag uses the list of the ImageNet-1k
[15] labels as tags. The user can provide their own list of
tags by specifying the --tags-filepath argument when
running rtag. For example, rtag --tags-filepath
./path/to/tags.txt. ./path/to/tags.txt should
contain a newline-separated list of tags. Figure 2 shows how
the tags are loaded from the file.
rtag supports two modes of operation: append and

overwrite. In the append mode, the tool appends the
computed tags to the existing tags in the image metadata.
In the overwrite mode, the tool overwrites the existing
tags with the computed tags. The user can specify the mode
by providing the --mode argument when running rtag.
For example, rtag --mode append. Figure 1 shows how
setting the mode changes the tool behavior.
rtag also supports the --threshold argument, which

allows the user to specify the similarity threshold. The user
can use this argument to control the number of tags that are
written to the image metadata. The default value is 0.25, which
produces optimal results.

Another useful rtag feature is the ability to do a dry
run. The user can use the --dry-run argument to see what
tags would be written to the image metadata without actually
writing them. This is particularly useful when the user wants
to see how the tool behaves with a specific set of tags and
images and wants to adjust the similarity threshold.

The rtag source code is published on GitHub under the
MIT license [12].

V. PERFORMANCE

rtag was benchmarked on the ObjectNet 50,273 images
dataset [16], on the Apple M1 Max CPU. Table I shows
how rtag performs when tagging previously indexed and
unindexed images. As you can see from the table, running
rtag on 50,273 unindexed images took 6m21.250s, while
tagging 965 unindexed images took 0m12.040s. A similar
linear scaling relationship is preserved when running rtag
on indexed images. Tagging 50,273 indexed images took
4m44.790s while tagging 965 indexed images took 0m09.140s.

t a g f e a t u r e s = (
model . c o m p u t e t e x t f e a t u r e s ( t a g s )

)

f o r image in tqdm (
rc l ipDB . g e t i m a g e v e c t o r s b y d i r p a t h (

c u r r e n t d i r e c t o r y ) ,
u n i t = ’ images ’ ,

) :
image pa th = image [ ’ f i l e p a t h ’ ]
i m a g e f e a t u r e s = np . f r o m b u f f e r (

image [ ’ v e c t o r ’ ] ,
np . f l o a t 3 2 ,

)

s i m i l a r i t i e s = i m a g e f e a t u r e s @
t a g f e a t u r e s . T

new tags = [ ]
f o r t ag , s i m i l a r i t y in z i p ( t a g s ,

s i m i l a r i t i e s ) :
i f s i m i l a r i t y > a r g s . t h r e s h o l d :

new tags . append ( t a g )

i f not new tags :
c o n t i nu e

image me tada t a = IPTCInfo (
image path ,
f o r c e =True ,

)

i f a r g s . mode == ’ append ’ :
e x i s t i n g t a g s = image me tada t a [ ’

keywords ’ ]
image me tada t a [ ’ keywords ’ ] = [* s e t (

e x i s t i n g t a g s + new tags ) ]
e l i f a r g s . mode == ’ o v e r w r i t e ’ :

image me tada t a [ ’ keywords ’ ] = new tags
e l s e :

r a i s e V a l u e E r r o r ( f ’ I n v a l i d mode : {
a r g s . mode} ’ )

image me tada t a . s ave ( )

Figure 1. Image processing loop
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def l o a d t a g s f r o m f i l e ( p a t h : s t r ) :
w i th open ( pa th , ’ r ’ ) a s f :

re turn f . r e a d ( ) . s p l i t l i n e s ( )

t a g s f i l e p a t h = a r g s . t a g s f i l e p a t h or
g e t i m a g e n e t t a g s f i l e p a t h ( )

t a g s = l o a d t a g s f r o m f i l e ( t a g s f i l e p a t h )

Figure 2. Tags loading

It should be noted that before running the benchmarks,
the dataset was resized to 224px by smaller dimension and
converted to JPG using ImageMagick [17].

The real-life rtag application possibilities go far beyond
results demonstrated in these benchmarks because rtag can
be used with any tags and images and not just the ones present
in the dataset.

VI. TAGGING QUALITY

As Table II shows, rtag achieves 27.22% top-1 accuracy
and 50.42% top-5 accuracy rate on the ObjectNet [16]
50,273 images dataset. The ObjectNet dataset was chosen
for the quality measurement because it is a diverse and
challenging dataset that contains images of objects in their
natural environments.

The table also shows that rtag shows better results when
we compute label feature vectors from a photo of [tag]
string instead of using the [tag] as is. Further research is
needed to understand whether it is a good idea to default to
using photo of [tag] in rtag.

The benchmark source code is available in the project
repository on GitHub [12].

To get a better understanding of rtag’s performance, see
Figure 3, Figure 4, and Figure 5 showing a few images from
the ObjectNet dataset tagged by rtag.

TABLE I
TAGGING PERFORMANCE ON APPLE M1 MAX CPU

Dataset # of images Indexed Processing time
ObjectNet

dataset 50,273 No 6m21.250s

ObjectNet
dataset 50,273 Yes 4m44.790s

ObjectNet
subset 965 No 0m12.040s

ObjectNet
subset 965 Yes 0m09.140s

TABLE II
RTAG TAGGING QUALITY

Model Top-1 accuracy Top-5 accuracy
ObjectNet 25.28% 48.05%
ObjectNet
photo of [tag] 27.22% 50.42%

VII. DISCUSSION

ObjectNet is a large, real-world, challenging test set for
object recognition with control where object backgrounds,
rotations, and imaging viewpoints are random. Despite this
making the test set perfect for benchmarking rtag, it would
be interesting to see how rtag performs on other datasets.

The development of the command-line tool, rtag, which
is based on rclip and employs OpenAI’s CLIP model, has
resulted in an efficient and user-friendly utility for image
tagging. However, there are still possibilities for further im-
provements.

Future plans include:
• to improve the tool’s tagging performance by processing

multiple images in parallel;
• to add support for writing tags into the XMP sidecar files

and leaving the image files intact;
• to improve the tool’s performance by preventing it from

re-indexing files when they are renamed;
• to assess the tool’s performance on other datasets;
• to enrich rtag’s tagging capabilities by utilizing meta-

data, which already exists within the images, e.g., existing
GPS coordinates can be used to tag images with human-
readable location-based tags;

• to do an in-depth comparison of rtag with other existing
image tagging tools.

Even with its current performance and capabilities, rtag
is an incredibly valuable tool.

VIII. CONCLUSION

In summary, this paper introduces a practical and scalable
method of tagging images of any kind with any set of labels.
The method is based on the CLIP model. The approach has
demonstrated impressive results on the ObjectNet dataset,
indicating its potential applicability to a wide range of indus-
tries reliant on visual data and using image processing tools
requiring images to be tagged.
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Figure 3. An image of speakers tagged by rtag

Figure 4. An image of a soap tagged by rtag
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Figure 5. An image of a camera tagged by rtag
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