CONTENT 2024 : The Sixteenth International Conference on Creative Content Technologies

Visual Artifacts in Software Engineering Processes

Hans-Werner Sehring
Department of Computer Science
Nordakademie
Elmshorn, Germany
e-mail: sehring@nordakademie.de

Abstract—Generating software solutions from (formal) models
in Model-Driven Software Engineering (MDSE) approaches has
many advantages, for example, model checking and traceability.
Development processes that include a substantial amount of
creative work rely on a manual creation of visual artifacts, and
it is not feasible to work purely with formal models. As a first
step towards the inclusion of graphical artifacts into MDSE,
we propose two approaches: (1) Describe informal artifacts by
formal model elements so that content of artifacts is related to
models. (2) Generate artifacts from formal descriptions so that
models become perceivable by domain experts. While the latter
is not generally possible since visual artifacts are required as part
of a creative process, this approach is applicable to prototyping.
This way, testable designs are coherent with formal specifications.

Keywords—Creative Process; Software Engineering; Software
Development Processes; Model-driven Software Engineering

I. INTRODUCTION

Designing software solutions from (formal) models and
finally generating working software from these models in
Model-Driven Software Engineering (MDSE) or Model-Driven
Software Development (MDSD) approaches has many advan-
tages. For example, they allow model checking of intermediate
results, traceability of the results of the modeling steps [1],
(partial) automation, etc.

There is class of software applications, though, that contains
a substantial amount of creative work that cannot be captured
by formal models for three possible reasons: (1) artifacts
that result from a development step are informal in nature,
for example, a graphical design sketch, (2) the work on
the artifacts cannot be automated because of the creativity
involved, or (3) the artifacts are preferably created using tools
that do not fit into the model-driven tool chain, for example,
visual prototyping tools.

In particular, graphical artifacts that provide descriptions
of the solution play an important role in applications with
user interaction like graphical clients, web-based systems,
and mobile applications. These may be dynamic in nature.
For example, prototypes exemplify the interaction with the
software solution that is being developed under certain use
cases and the navigation between parts of the software from
a user interface perspective.

Prototypes basically provide a formal description since they
consist of code. But code in itself is too expressive as to serve
as a description since it cannot automatically be checked for
completeness, consistency, etc.

In order to gain from MDSE advantages in creative software
engineering processes, we are currently investigating means

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-159-6

of managing visual artifacts into MDSE. To this end, model
elements both serve as descriptions of visual artifacts and
as formalizations that can be related to each other, checked,
transformed, etc. Optimally, descriptions from creative tools
can automatically be read in and related to formal descriptions,
and artifacts can be updated from model elements.

In this paper, we present experiments with modeling two
kinds of visual artifacts: models that can automatically be
related to visual artifacts and thus co-exist with those artifacts,
and models that are used to continuously generate artifacts in
order to visually represent models.

We revisit model-driven as well as creative software devel-
opment processes in Section II. In Section III, we introduce
the Minimalistic Meta Modeling Language (M3L) as a basis
for our proposal for managing visual artifacts. We study the
two approaches that are proposed in this paper in Section IV.
The paper concludes in Section V.

II. ARTIFACTS IN SOFTWARE ENGINEERING PROCESSES

Software engineering processes consist of the generation of
a series of artifacts, each describing the problem domain, the
requirements to be addressed, or the solution.

Approaches differ in the degree of formalization of such
artifacts and, therefore, in the degree of automation. Here, we
specifically consider model-driven software engineering and
software development processes that incorporate creative tasks
in order to derive some requirements to their support.

A. Model-Driven Software Engineering

The artifacts created in MDSE processes are formal models
that are derived from each other by means of model refinement
and model transformations.

Figure 1 illustrates an MDSE process. It shows different
modeling stages that correspond to different phases, here
inspired by the Model-Driven Architecture (MDA) approach
of the OMG [2]. A domain model represents the solution
from the perspective of the subject domain, as domain con-
cepts or requirements. In MDA, this was originally called
a Computation-Independent Model (CIM; this term is not
used in current specifications). It typically is an informal
description, for example, done in natural language. A first
formal model is a Platform-Independent Model (PIM) that
gives a conceptual description of the software solution. It is
transformed into a Platform-Specific Model (PSM) that adds
implementation aspects. This model is used to generate a
working implementation.

CONTENT 2024 : The Sixteenth International Conference on Creative Content Technologies

Domain Model
(CIm)

Conceptual Solution
Model
(PIM)

Concrete Solution Solution
Model (Code)
(PSM)

D, —> D, —>» D, ‘Mmi) My—> M23‘M317) My—> M ‘ My—>M,,—> Code

Formal models Formal models
UML UML

Formal models
UML

Figure 1. A typical MDSE / MDSD process.

In general, we see the typical stages of domain model,
conceptual software model, concrete software model, and
code.

The descriptions of the PIM D; and the models M;; of the
other stages in the figure indicate the (formal) artifacts created
in the various stages. Within one stage, models are refined
until the next stage can be started. Models of a subsequent
stage provide a description from a different perspective, but
they make reference to the models of the preceding stage.
Code is a formal model from which the working solution is
automatically built.

In MDSE approaches, models have to be formal in order to
be subject to transformations and to reference (parts of) each
other. In the MDA, for example, model transformations are
specified using Query View Transform based on MDA’s Meta
Object Facility [3].

B. Model-Assisted Software Creation

For some kinds of software implementations, practical pro-
cesses are based on artifacts that cannot fully be formalized.
This depends on the application domain and is particularly true
for the development of interactive applications like websites
or other web-based information systems and mobile apps.

The creation of such applications incorporates creative
tasks. These are typically not just amending other development
tasks by adding creative input to the use and presentation of
an application. On top of that, the artifacts created in creative
tasks are used to communicate ideas in the course of the
process, they provide a conceptual domain model from a user
perspective, and they provide prototypes for testing purposes.

Creative tasks are typically manual steps that involve cre-
ativity in generating artifacts and subjective opinions in tests.
As such, they do not follow a formal notation. Instead, they are
often either textual or graphical descriptions. Though certain
communication principles are used, they cannot be processed
automatically.

Figure 2 shows typical development steps and artifacts
created to model aspects of a solution. On a conceptual level,
requirements are studied from the users’ perspective. Resulting
artifacts serve to illustrate and verify the first insights, for
example, by illustrating target groups as personas or typical
usage patterns as customer journeys along which users interact
with a software system at different touchpoints. These lead to a
characterization of the general solution approach, the solution
hypothesis.

First solution aspects are created conceptually in order to
validate the solution hypothesis, for example, by studying

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-159-6

the consistency of specific parts of the solution. Feedback
can be collected from users by first visual impressions, like
wireframes, and from software developers by estimating the
implementation effort, for example, based on a catalog of
graphical modules.

More elaborate prototypes, sometimes called high-fidelity
prototypes, also address visual design aspects of the solution.
This way, they allow test users to get a good impression of
the final software and to verify the solution approach, or to
identify points that need improvement.

Based on the insights from the creative phases, the more
technical considerations of software engineering follow. In
processes that are based on creative activities, software aspects
should be derived from the previous artifacts that were created
from a user perspective. For example, the data needed at
certain touchpoints and the functionality that has to be pro-
vided in specific contexts are derived from customer journeys.
This is done in a phase solution architecture that provides an
abstract specification that brings together perspectives of users,
designers, software developers, and others.

C. Conceptual Software Description Artifacts

Many of the various artifacts that are generated in creative
software engineering processes are informal. This means that
they are not expressed in a formal language, and that they do
not have formal semantics attached to them. Instead, they are
targeted at human perceivers that interpret the artifacts in a
subjective way.

From the many artifacts, we consider screen designs and
the user interactions that lead to different presentations and
interactions. These allow test users to get an impression of
they way the final software will work. An artifact that serves
this purpose is a click dummy.

Figure 3 illustrates a flow between different dialogs and
view states. A dialog is a means of interaction, for example,
a user interface window, a webpage, or a screen of a mobile
app. A view state is one of the states a dialog can be in, for
example, a search dialog in initial form, after a search has
been executed, and after the search result has been refined.

Storyboards are in wide-spread use as a metaphor for such
flows of dialogs [4]. These can be used in a creative fashion,
but also be formalized [5].

In processes that center around the user and that incorporate
creative activities, it is more common to use working software
a user can interact with. There is no actual functionality
underlying such software. But it gives test users the impression
of working software so they can judge whether the final

CONTENT 2024 : The Sixteenth International Conference on Creative Content Technologies

Concept Lo-Fi Prototypes Hi-Fi Prototypes
Dlaaneiia el Information
7 Architecture Style guide
Personas X
K % Solution Software
\4 W ‘ Wireframes v Click dummy Architecture Architecture + Code
Customer journeys Module catalog Touchpoint- .
‘ / N ‘ data mapping Software architecture
v v v YR Tests Touchpoint- ¥
Solution hypothesis Navigation function mapping y Code
‘ (Semiyformal (code. ‘ v\ Libraries
fil f prototyping tool: .
iles of prototyping tools) High-level Y Configuration
architecture [P

Informal descriptions
Formal descriptions

Architecture description

Figure 2. A typical software development process that integrates creative activities.

Dialog 1 » Dialog 2 » .
State a State b, Rislegle
A
» Dialog 2
State by T

Figure 3. A sample flow of dialogs and dialog states.

software works as expected [6]. To this end, it simulates
changes between dialogs and changing the status of a dialog.

In practice, such shallow prototypes are created as con-
figurations in prototyping software tools. In such cases, the
prototypes do not evolve into working software. They are
maintained as singular artifacts that can later be analyzed.

In an MDSE scenario, prototypes can be generated from
evolving models, though. In this case, they directly reflect the
current modeling state. Models can be updated based on user
feedback, and then a new revision of the prototype can be
generated. This way, work on the client does not only lead
to improved prototypes, but it directly leads to an improved
model.

III. MINIMALISTIC META MODELING LANGUAGE (M3L)

For the discussion in this paper, we use the M3L since it
proved to be a suitable language for the modeling of content of
various artifacts. To this end, we briefly introduce the M3L, and
we present some exemplary base models for the representation
of artifacts.

A. Basic M3L Constructs

In this section, we briefly introduce the M3L by highlighting
those features that are central to the underlying experiments.
The basic M3L statements are:
o A: the declaration of or reference to a concept named A
e A is a B: refinement of a concept B to a concept A.
A is a specialization of B, B is a generalization of A.

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-159-6

e A is a B { C }:containment of concepts. C belongs
to the content of A, A is the context of C.

e A |= D: the semantic rule of a concept. Whenever A is
referenced, actually D is bound. If D does not exist, it is
created in the same context as A.

e A |- EF G .: the syntactic rule of a concept that
defines how a string is produced from a concept, respec-
tively how a concept is recognized from a string. When
the representation of A is requested, it is produced by
a concatenation of the strings produced out of FE, F,
and G. When no syntactic rule is defined, a concept
is represented by its name. Vice versa, an input that
constitutes the name of a concept without a syntactic rule
leads to that concept being recognized.

If a concept that is referenced by one of the statements
exists or if some other concept evaluates (see below) to the
reference, then this one is bound. Otherwise, the concept is
created as defined by the statement.

Existing concepts can be redefined. For example, with the
definitions above, a statement
A is an H { C is the I }
redefines A to have another generalization H and C (in the
context of A) to be the only specialization of I.

Every context constitutes a scope. A redefinition of a
concept in a context is only applied in that context. When
a redefinition of a concept takes place in another context as
the original definition, we call that redefinition a derivation.

Scopes also define visibility. A concept is visible in the
context it is (re-) defined in, and all contained contexts.
Concepts from foreign contexts can be made visible with

ForeignConcept from ForeignContext

B. Concept Evaluation

The concepts that are defined by such statements are eval-
uated when used. Evaluation means looking up or creating
concepts and applying semantic rules. This is done in the
following form:

1) Evaluation is performed with respect to a context from
which concept definitions are taken.

CONTENT 2024 : The Sixteenth International Conference on Creative Content Technologies

2) The effective definition of a concept in some context
is the set of all definitions in that context and its
surrounding base contexts (transitive).

3) A concept (transitively) inherits base concepts and con-
tent from its base concepts

4) A concept A is a derived base concept of a concept B
if B matches A. Matching is defined as:

e A and B share a common base concept (or A has
none).

o For every content C' of A there exists content D of
B where D matches C.

5) Let EC4 be the union of all base concepts and all
derived base concepts of a concept A. If a concept in
EC 4 has a defined or inherited semantic rule, then the
result of this rule defines candidates for the evaluation
of A. If no concept in EC 4 carries a semantic rule, then
the whole set forms the set of candidates.

6) Finally, all candidate concepts are narrowed down: for
each concept, the most specific matching subconcept is
added to the result.

C. M3L Example

For a simple modeling example, consider the following M3L
statements from the area of programming language design:

Boolean is a Type

Statement

IfThenElse is a Statement ({

Condition is a Boolean

ThenStatement is a Statement
ElseStatement is a Statement }

IfTrue is an IfThenElse {

True is the Condition } |= ThenStatement
IfFalse is an IfThenElse {

False is the Condition } |= ElseStatement

These describe the behavior of a conditional statement as it is
found in typical imperative programming languages.

Adding an additional statement in order to provide a con-
crete program,

MyCond {
ConceptEvaluatingToBool is the Condition
SomeStatement is the ThenStatement
SomeOtherStatement is the ElseStatement}

leads to the following evaluation: depending on the evaluation
result of ConceptEvaluatingToBool, either IfTrue or IfFalse
is a derived base concept of MyCond (shared base concept
Statement and matching Content True). Thus, MyCond inherits
the semantic rule from this derived base concept, making it
evaluate to the right conditional branch. Candidates are either
ThenStatement or ElseStatement that are finally narrowed
down to SomeStatement or SomeOtherStatement, respectively.

IV. MANAGING MODELS OF VISUAL ARTIFACTS

To allow some of the creative artifacts to be integrated into
a model-driven development process, we propose to define
models that reflect the content of those artifacts. These models

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-159-6

allow handling the representations in model transformation
processes. This way, for example, traceability between models
and thus between artifacts is achieved. It can be made explicit,
which artifacts provided input to which other artifacts.

We see two basic approaches that are handled by the
following two subsections: artifacts that are entities in their
own right where models are representing the current state of
the artifacts, and artifacts that are generated from models that
provide one aspect of the development process.

A. Co-existence of Artifacts and Models

The MB3L is universal and has many applications. Among
other modeling tasks, it has proven useful for describing
content and creating documents from content [7]. This applies
both to content models, as well as content items since the M3L
does not distinguish model layers, such as type and instance.

Using the M3L to define a content management structure,
the content of artifacts can be maintained in models and
be represented by documents generated out of the models.
Changes to documents can be re-read in order to update the
content concepts.

For an example of structured content, with a content model
like:

UserStory is a Content {
Title is a String
Text is a FormattedString
StoryPoints is a FibonacciNumber }

according content can be created:

UserStoryl23 is a UserStory ({
"As a sales person I ..." is the Title
"When a sales person ..." is the Text
8 is the StoryPoints }

For presentation purposes, content is added to document
descriptions. For example, when creating text documents, there
might be definitions like:

PublishedDocPart { Content }
UserStoryDetailPage is a PublishedDocPart {
Content is a UserStory }
WebPage is a PublishedDocPart {
Title is a String }
PrintDocumentPage is a PublishedDocPart ({
PageNumber is a Number }

For textual formats, like HTML and JSON, documents can
be rendered from concepts through syntactic rules of content as
introduced in the previous section. On the level of a content
model, syntactic rules describe document templates, on the
content item level they render single document instances.

For the sample content definitions above, an HTML tem-
plate may look like outlined in Figure 4. In this example, there
are some basic definitions for HTML code generation (or code
parsing) in the context HTML. These include the redefinition
of the concept WebPage from above with a syntactic rule
for HTML generation. The sample code sketches a simple
skeleton of HTML code.

CONTENT 2024 : The Sixteenth International Conference on Creative Content Technologies

HTML ({
<html> </html> <head> </head>
<title> </title> <body> </body>
WebPage
| - <html>
<head> <title> Title </title> </head>
<body> Content </body>
</html> . }
UserStoryHTML is an HTML ({
UserStoryDetailPage
Title is the Title from Content
Content {
Title |- "<hl>" Title "</hl>"
Text |- "<p>" Text "</p>"
StoryPoints |- "SP: " StoryPoints
} |- Title StoryPoints Text . }

Figure 4. Sketch of an HTML publication model.

Also, some tags for HTML elements are defined to indicate
that several basic definitions will be provided here. Please note
that, e.g., <html> is a valid concept name. Since new concepts
are declared the first time they are referenced, and because they
syntactically evaluate to their name by default, they can also
be used in all syntactic rules like string literals.

The particular HTML generation of representations of user
stories is defined in a subcontext UserStoryHTML. Here, the
different parts of a user story’s content are equipped with
syntactic rules that produce (or recognize) page fragments.

HTML for a webpage that represents a user story is gen-
erated by creating a UserStoryDetailPage with a specific user
story as content:

MyUserStoryPage is a UserStoryDetailPage {
SomeUserStory is the Content }

The syntactic rule of WebPage from HTML is inherited by
UserStoryDetailPage. Therefore, the page skeleton will be
generated, and Content is embedded. For Content, a syntactic
rule is defined in the context of UserStoryDetailPage that
triggers the syntactic rule of the user story’s content.

Manual changes to an HTML page can be re-read by the
syntactic rules, leading to the M3L concepts being updated.

B. Generation of Artifacts from Models

Artifacts can be generated from models in many cases, but
changes to the artifacts cannot automatically be re-engineered
to models. In such scenarios, we can use “micro-MDSE”
processes that drive the creation of but one artifact. Eventually,
several such processes are running for co-evolving artifacts.

As an example, we consider click dummies in this section.
Click dummies are shallow prototypes that give an impression
of the final software product by offering a consistent part of
a User Interface (UI) to test users. When click dummies are
generated from models, any changes to the UI because of user
feedback will be applied by reworking those models. This way,
UI designs become manageable in MDSE processes.

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-159-6

UIElement { Id }

VisibleUIElement is a UIElement {
Dimension is a

}

Container is a UIElement {
Components is a UIElement }
TextField is a VisibleUIElement {
Text is a String }

Figure 5. Sketch of a base model of static UI elements.

ActivatableUIElement is a UIElement ({
ActionHandler }
Button is a VisibleUIElement,
an ActivatableUIElement {
Label is a String
Icon is an Image }
ActionHandler
Condition is a Boolean
Effect }
ExecutedActionHandler {
True is the Condition
} |= Effect
UIEvent {
Target is an ActivatableUIElement
} |= ActionHandler from Target {
True is the Condition }
[— "{" "\"target\"" ":"
"\""Id from Target"\""
ClickEvent is a UIEvent

"}"

Figure 6. Sketch of a base model of dynamic UI elements.

The considerations of model-based UI generation are based
on earlier work on the topic [8]. In the meantime, quite some
related work emerged [9].

1) Base Ul Model: Static aspects of a Ul consist of a
definition of Ul components and possible combinations of
them. Figure 5 outlines an example.

UlElement is a base definition of all UI components. Visible
Ul elements are categorized as VisibleUIElement that adds
some parameters required to draw a component. A Container
is an example of an invisible component that defines a Ul
layout.

To relate input to components, we assume that every Ul
component carries an ID. Alternative approaches might, for
example, use a component’s path in the UI layout hierarchy.

2) Dynamic UI Aspects: To define the dynamic behavior of
a Ul, user interactions have to be modeled. A UI description
needs a runtime environment that visualizes the defined UI
elements, and that handles user input. For an example, assume
a runtime environment that hands over events as JSON strings,
for example, for mouse clicks, and that receives Ul updates
by marshaled/HTML components.

Events are handled by ActionHandlers as lined out in
Figure 6. Dynamic UI components are ActivatableComponents

CONTENT 2024 : The Sixteenth International Conference on Creative Content Technologies

SearchDialog is a UIModel ({
SearchView is a Panel {
1 is the Id
QueryField is a TextField
SearchButton is a Button {
2 is the Id
Search is the Label }

} } |- SearchView
SearchDialogInitial is a SearchDialog ({
SearchView {
SearchButton {
Actionl is an ActionHandler {
"manyres" is the Text from QueryField
SearchDialogManyResults is the Effect}
Action2 is an ActionHandler {
"fewres" is the Text from QueryField
SearchDialogFewResults is the Effect }
Py
SearchDialogManyResults is a SearchDialog{
}
SearchDialogFewResults is a SearchDialog {

}

Figure 7. Example of views and view transitions.

that may have a handler. A handler that shall execute its action
is activated by its Condition set to true, making it become a
derived subconcept of ExecutedActionHandler and its Effect
to be the result.

JSON messages from the environment are parsed using the
syntactic rule of UlEvent. The Id of a resulting UIEvent’s
Target is set to the ID contained in the JSON message. As a
consequence, Target evaluates to the actual target component
and the target’s Action is activated.

3) Example of a User Interaction Model: Figure 7 shows
a sample application of such a UI model. When an event is
sent to the SearchButton, the Condition of all action handlers,
here Actionl and Action2, is set to True. When evaluating
ActionHandler in the semantic rule of UlEvent, it evaluates to
those actions for whom also the text of the query field matches.
This way, different paths through the sequence of dialogs are
selected by test users. If none is applicable, the event just
evaluates to the target’s base ActionHandler that has no defined
Effect. The Effect of the search actions (Actionl and Action2)
is a new SearchDialog, that “replaces” the current one. The
assumed surrounding runtime environment is responsible for
rendering the new search dialog through the syntactic rule
defined for SearchDialog.

V. CONCLUSION

We conclude with a summary and an outlook.

A. Summary

We presented two approaches to the management of in-
formal artifacts by formal modeling elements. The first ex-

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-159-6

periment demonstrates the possibility to generate textual de-
scriptions from abstract descriptions by using typical content
management functionality.

Prototypical implementations can be generated the same
way as the final software solution. A second experiment
showed that this can be done in the same modeling framework
as the first experiment.

Therefore, potentially different ways of including creative
work can be combined. For example, a graphical design
specification can be created using the first approach of co-
evolving documentation and models, and can finally be used
to related to a prototype description on the level of models.

B. Outlook

Additional research is need to fully investigate round-trip
engineering that consists of alternating (manual) creative and
(automated) modeling steps that operate on the same set of
artifacts.

Implementation work, for example extending the M3L, is
required to include other formats of visual artifacts into the
process so that models do not prescribe the form of those
artifacts. With the incorporation of such formats, practical
processes in which proprietary design tools are used can be
subject to further experiments.

ACKNOWLEDGMENT

The author thanks NORDAKADEMIE gAG for funding
of this work. Various colleagues from the fields of user
experience design and software engineering helped define the
initial experiments.

REFERENCES

[1] I Galvao and A. Goknil, “Survey of Traceability Approaches in Model-
Driven Engineering,” Proceedings of the 11th IEEE International Enter-
prise Distributed Object Computing Conference, 2007, pp. 313-313.

[2] Object Management Group. Model Driven Architecture (MDA), MDA
Guide rev. 2.0, OMG Document ormsc/2014-06-01, [Online] Available
from: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf. 2024.2.10.

[3] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, OMG Document
Number formal/2008-04-03, [Online] Available from:

https://www.omg.org/spec/QVT/1.0/PDF/. 2024.2.10.

[4] C. van der Lelie, “The value of storyboards in the product design
process,” Personal and Ubiquitous Computing, volume 10, pp. 159-162,
2006.

[5] K.-D. Schewe and B. Thalheim, “Storyboarding,” Design and Develop-
ment of Web Information Systems, Springer, pp. 61-109, 2019.

[6] S. Bohm and S. Graser, “Al-based Mobile App Prototyping: Status
Quo, Perspectives and Preliminary Insights from Experimental Case
Studies,” Proceedings Sixteenth International Conference on Advances
in Human-oriented and Personalized Mechanisms, Technologies, and
Services, ThinkMind, 2023, pp. 29-37.

[71 H.-W. Sehring, “On Integrated Models for Coherent Content Man-
agement and Document Dissemination,” Proceedings of the Thirteenth
International Conference on Creative Content Technologies, ThinkMind,
2021, pp. 6-11.

[8] H.-W. Sehring, “Adaptable and adaptive visualizations in concept-
oriented content management systems,” International Journal on Ad-
vances in Software, volume 3, numbers 1 and 2, ThinkMind, pp. 265-
279, 2010.

[9] J. C. Mejias, N. Silega, M. Noguera, Y. I. Rogozov, and V. S. Lapshin,
“Model-Driven User Interface Development: A Systematic Mapping,”
Proceedings of the 8th Iberoamerican Workshop on Human-Computer
Interaction, Springer, 2022, pp. 114—129.

