
On the Generation of External Representations of Semantically Rich Content for
API-driven Document Delivery in the Headless Approach

Hans-Werner Sehring
Tallence AG

Hamburg, Germany
e-mail: hans-werner.sehring@tallence.com

Abstract—Complex systems often are built on the basis of
services that are composed in a loosely coupled way. Data
exchange between system components takes place in an external
format that conforms to a system-wide agreed schema. Content
Management Systems (CMSs) are one example of a class of
systems that do not process data with fixed semantics, but that
manage and publish meaningful content. Such systems require
a consistent interpretation of data as content on both ends in
order to preserve meaning. We argue that such a consistent
interpretation requires mappings between content models under-
lying CMSs and data models used for communication, and that
these mappings, therefore, must be shared by all components
of the system. In order to justify this claim, we compare the
expressiveness of plain data formats with that of content modeling
languages, and we study mappings between them. In this paper,
we use JSON and JSON Schema as a typical examples of
external data representations. We discuss content models using
the example of the Minimalistic Meta Modeling Language (M³L).
Our initial research shows that schemas for data exchange should
be tightly linked to content models in order to not only represent
content as data, but also to allow for consistent interpretations
of content.

Keywords—content model; data schema; schema mapping

I. INTRODUCTION

Content Management Systems (CMSs) are an established
tool for (in particular online) content publication. They are
software systems that incorporate various functions for content
creation, editing, management, (automated) document creation
based on layouts, and document delivery. Over time, many
CMS products started integrating additional functionality to
keep up with emerging requirements. At the same time, such
products became increasingly complex because many of them
incorporate new functions in a monolithic way.

Since they often provide a comprehensive software infras-
tructure comparable to an application server, many content
management solutions are built using a CMS as a platform.
Custom code is integrated in to the CMS, making the overall
solution an even larger monolith. This approach is often
suitable for purely content-based functionality.

With the landscape of digital communication solutions
becoming more complex, there is an increasing number of
services that integrate data and services for other entities than
structured content – media files, customer data, product data,
etc. The services need to interface with CMS solutions. Sys-
tems typically require application-specific integrations (see, for
example, [1]). These integrations make systems that rely on
data exchange with a centralized monolithic platform overly

complex since they have to deal with a variety of data
exchange formats and different entity lifecycles.

Since some years, an opposite trend become popular under
the name headless CMS. Such CMSs basically concentrate
on basic content creation, editing and management functions.
Content publication is provided by a delivery service that
makes “pure” content accessible in the form of Application
Programming Interfaces (APIs). All additional services are
provided by separate software components. This includes
document preparation and delivery that is implemented outside
of a headless CMSs.

Systems that incorporate CMSs using APIs typically are
built following microservice architectures. These consist of
multiple self-contained services that provide one functionality
each, with the CMS providing content as one of those services.
System properties are established by service orchestration in
the overall architecture.

APIs for access to content consist of service signatures and
of structured content representations that are used as input and
output parameters. Content representations typically focus on
structured content – mainly textual content and descriptions
of unstructured content. Unstructured content, be it provided
by a CMS or a Digital Asset Management system, is typically
transferred in some binary format.

RESTful APIs are a current de-facto standard for communi-
cation between distributed CMS components. The JavaScript
Object Notation (JSON) is the usual language chosen to
represent (structured) content. Section II names typical aspects
of APIs defined this way.

Though the idea of using simple interfaces based on a
simple data exchange format is appealing, it constitutes an
“impedance mismatch” with rich content structures as em-
ployed by capable CMSs. Ideally, a CMS provides various
means of structuring content. Many allow defining a schema
or content model. Such a schema is, on the one hand, used
to provide type safety to functions handling content, and on
the other it constitutes the basis to capture the meaning of
content. To make use of structure and meaning assigned to
content, content structure and semantics defined by content
models need to be preserved in external representations, and
they are used as a basis to map content to external form.

In Section III, we introduce the Minimalistic Meta Modeling
Language (M³L) as an example of a rather powerful content
modeling language.

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

We use the M³L’s capabilities for binding to external rep-
resentations to study some aspects of interfaces for content
access and interchange. In particular, we demonstrate different
cases of JSON generation and parsing in Section IV and
discuss general differences of custom generated JSON and
such generated by content models formulated in the M³L in
Section V.

We conclude the paper in Section VI.

II. STANDARDS: RESTFUL APIS, JSON, AND GRAPHQL
Approaches for (remote) APIs and their implementations

are of general interest since the advent of distributed systems.
After a series of technological approaches, a current de-facto
standard for online interfaces has emerged from REST, JSON,
and (increasingly) GraphQL.

A. RESTful APIs

Representational State Transfer (REST) was proposed by
Fielding as the principle of communication in the Internet [2].
It calls for stateless servers and clients that handle state
between request. In conjunction with URLs that represent
services calls, the definition of so-called RESTful APIs allows
defining simple APIs for Web-based services.

Such APIs consist of service call signatures composed of
an HTTP method and a URL that specify the service to be
used and the input parameters. The response to a service call
is a regular HTTP response. A typical response format for
structured data is JSON as discussed in the subsequent section.

RESTful APIs can be implemented with existing Web
technologies, for example, typical software libraries available
for all relevant programming languages and existing software
components to build a service infrastructure.

B. Content Interchange with JSON

JSON is an object language for JavaScript, allowing to
formulate JavaScript object instances, where instance refers
to data contained in object properties, not any internal object
state. It can be used for data storage, transmission, and
aggregation.

JSON is typically used as a response format of RESTful
interfaces. It provides a simple means of structuring data with
typical collection types, and encoding of data as character
strings.

Most API-based CMSs use JSON to distribute content. They
typically do so by representing content in a straight-forward
manner using the structuring means and primitive data types
of JSON.

Internally, CMSs allow the definition of content models that
describe content. Such models are the basis for describing
content, for content editing, and also for JSON generation.

Document rendering presents content in visible form for
consumption, for example, in the form of HTML files. In
API-based CMS solutions, rendering is performed by exter-
nal rendering engines (on client-side or on server-side). The
rendering process is driven by templates that define how to
layout content. Template code makes use of knowledge about
the meaning of content to be represented.

Its external form in JSON is rather generic, though. JSON
can be generated in an application-specific form, but basically
contains structured data. The representation of content in
JSON and interpretation from that format rely on consistent
code on both producer’s and consumer’s side. Such interpre-
tation cannot rely on JSON representations of content alone.

C. JSON Schema Languages

JSON is appealing because of its simplicity combined
with reasonable expressivity. It was defined merely for the
description of single records of data. Many applications call
for a schema, though, that describes how classes of data are
structured.

Several schema languages have been defined for JSON,
most prominently JSON Schema [3]. Another proposal for
a JSON schema language is JSound [4]. Other approaches
are Joi [5] for JavaScript applications and Mongoose [6] for
configurations of the database system MongoDB.

In this paper, we use JSON Schema for the discussion of
schema properties.

III. A SHORT INTRODUCTION INTO THE MINIMALISTIC
META MODELING LANGUAGE (M³L)

For the discussion in this paper, we use the M³L since
it proved to be a suitable language for the modeling of
various aspects of content management. To this end, we briefly
introduce the M³L, and we present some exemplary base
models for content management and for content interchange
based on RESTful APIs.

A. A Short Introduction into the M³L

In this section, we briefly introduce the M³L by highlighting
those features that are central to the underlying experiments.

The basic M³L statements are:
• A: the declaration of or reference to a concept named A
• A is a B: refinement of a concept B to a concept A.

A is a specialization of B, B is a generalization of A.
• A is a B { C }: containment of concepts. C belongs

to the content of A, A is the context of C.
• A |= D: the semantic rule of a concept. Whenever A is

referenced, actually D is bound. If D does no exist, it is
created in the same context as A.

• A |- E F G.: the syntactic rule of a concept that
defines how a string is produced from a concept, re-
spectively how a concept is recognized from a string.
When the representation of A is requested, it is produced
by a concatenation of the strings produced out of E, F,
and G. When no syntactic rule is defined, a concept
is represented by its name. Vice versa, an input that
constitutes the name of a concept without a syntactic rule
leads to that concept being recognized.

If a concept that is referenced by one of the statements exists
or if an equivalent concepts exists, then this one is bound.
Otherwise, the concept is created as defined by the statement.

Existing concepts can be redefined. For example, with the
definitions above, a statement

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

A is an H { C is the I }
redefines A to have another generalization H and C (in the
context of A) to have I as its only generalization.

Every context constitutes a scope. A redefinition of a
concept in a context is only applied in that context. When
a redefinition of a concept takes place in another context as
the original definition, we call that redefinition a derivation.

The concepts that are defined by such statements are eval-
uated when used. Evaluation means looking up or creating
concepts and applying semantic rules.

Before a concept is referenced and before a statement is
evaluated, all concepts are narrowed down. The narrowing of
a concept is computed as follows:

1) The effective definition of a concept in some context is
the set of all definitions in that context and all of its
base contexts (transitive).

2) If a concept A has a subconcept B, and if all concepts
defined in the context of B are equally defined in the
context of A, then each occurrence of A is narrowed
down to B.

Given the sample M³L statements:
Person { Name is a String }
PersonMary is a Person { Mary is the Name}
PersonPeter is a Person {Peter is the Name

42 is the Age }

the result of an additional statement
Person { Peter is the Name 42 is the Age}

is narrowed down to PersonPeter since PersonPeter is special-
ization of Person and its whole content matches. The statement
Person { Mary is the Name 42 is the Age }

is not narrowed down further. It does not match PersonPeter
since Name has a different specialization, and it does not match
PersonMary since it has no matching content concept called
Age or 42.

B. Basic Content Management and Document Rendering

The M³L is universal and has many applications. Amongst
other modeling tasks, it has proven useful to describe content
as lined out in, e.g., [7]. This applies both to content models
as well as content items since the M³L does not distinguish
model layers, such as type and instance.

For example, with a content model like:
Article is a Content {
Title is a String
Text is a FormattedString }

according content can be created:
NewsArticle123 is an Article {
"Breaking News" is the Title
"This is a report on . . ." is the Text }

For textual formats, like HTML and JSON, documents can
be rendered from content through syntactic rules of content
as introduced in the previous subsection. On the level of the
content model, syntactic rules describe document templates, on
the content item level they render single document instances.

For the sample content definitions above, a JSON template
may look like:
Article |- "{\"title\":\"" Title

"\",\"text\":\"" Text "\"}"

This syntactic rule produces as JSON output for the con-
cept NewsArticle123 from above: {"title":"Breaking
News","text":"This is a report on . . ."}

The syntactic rule defines a JSON structure into which
the concepts from the content are integrated. These may
themselves evaluate to content strings of embedded JSON
structures.

Please note that, e.g., {\"title\":\" is a valid concept name,
as is \"}. Since new concepts are declared the first time they
are referenced, and because they syntactically evaluate to their
name by default, they can be used like string literals. The
concept name \" is an escape sequence for the quote character
(not a quote sign for identifiers).

IV. PRODUCING JSON USING THE M³L
As outlined in the preceding section, the M³L can serve as

an example of a an expressive content modeling language. For
API-driven content distribution, structured content needs to be
represented in an external form. In state-of-the-art services,
this external form is JSON.

JSON Schema allows defining valid forms of JSON struc-
tures so that content can be transferred in a reliable manner.
It is not expressive enough by itself, however, to recover
equivalent content on the receiver’s side. Custom code is
required to generate JSON out of rich content structures.
Appropriate code that shares the same conception of content
is required to interpret JSON data.

Reference [8] points out that schema design for JSON
requires careful consideration and that even finding sample
instances for a given schema is a non-trivial task since
semantics is scattered over a set of definitions and constraints.

JSON Schema provides various ways of defining and relat-
ing schemas. There are multiple ways of expressing equivalent
schemas and equivalence cannot generally be proven [9].

One way of sharing content concepts between sender and
receiver is to have a common content model and mappings to
and from external representations. We exemplify this by uti-
lizing the capabilities of the M³L for some sample constructs.

A. Defining Lexical Rules for JSON

M³L’s lexical rules can produce JSON code out of concepts
as sketched in Section III-B.

The M³L does not distinguish between “types” and “in-
stances”. This distinction is, however, required in classical
approaches as JSON and JSON Schema.

In addition to the above sample rules that generate JSON,
the lexical rules of other concepts may produce JSON Schema.
See the following simple rules for the content example:
Article |-
"{\"type\":\"object\",\"properties\":{\""

Title "\":{\"type\":\"string\"},"
Text "\":{\"type\":\"string\"}}}"

19Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

Such a definition resulting in the production of the following
JSON Schema definition:
{ "type": "object",

"properties": {
"Title": { "type": "string" },
"Text": { "type": "string" }}}

Lexical rules for both JSON and JSON Schema require to
distinguish between schema and instances. Contextual defini-
tions allow defining both layers for a concept. The decision
between schema and instance has to be made explicitly which
is atypical for M³L applications. For the content example:
SchemaRules { Article |- . . . }
InstanceRules { Article |- . . . }

In any case, a fair amount of extra code is required to state
the obvious lexical rules per concept. It is approximately the
same effort like providing custom mappings in software.

The effort of mapping an internal content model to its
external forms is beneficial, though, to be able to recover the
semantics of content. This way, schema definitions contribute
to the exchange of meaningful content. In the subsequent
subsections, we compare the modeling capabilities of JSON
Schema and the M³L for the generation of JSON representa-
tions of content.

B. Basic Model Mapping from M³L to JSON

Simple M³L expressions that represent content instances
can be expressed in a straight-forward manner as outlined by
the content example. Some information is lost in the JSON
representation, though. In the example above, the concept
name Article is not communicated.

Such concept information may be reflected in dedicated
properties. But more information on the content is lost if we
add content types and descriptions, for example in M³L:
Person {
FirstName is a String
LastName is a String
Address }

Address {
Street is a String
City is a String }

JohnSmith is a Person {
John is the FirstName
Smith is the LastName
JohnSmithsAddress is the Address {
"Main Street" is the Street
Lincolnshire is the City } }

Syntactic rules may product the following JSON:
{ "FirstName": "John",
"LastName": "Smith",
"Address": { "Street": "Main Street",

"City": "Lincolnshire" } }

The intended data structure can be defined by means of
JSON schema that is also generated from the content concepts,
for example, as follows:

{"title": "Person",
"type": "object",
"properties": {
"FirstName": {"type": "string"},
"LastName": {"type": "string"},
"Address": {"$ref":"#/$defs/Address"} },

"$defs": {
"Address": {
"type": "object",
"properties": {
"Street": {"type": "string"},
"City": {"type": "string"} } } } }

Here, the concept names Person and JohnSmith are not
present in JSON. The content name JohnSmithsAddress is also
missing; the “type” name Address is used instead.

Note that information is distributed over two structures,
instance and schema, and declared in different languages. A
JSON (instance) file does not make reference to the schema it
is intended to comply with. Therefore, the matching schema
has to be found by distinct means. Names – concept names
in the case of the M³L – are not included in JSON, but are
required for schema selection (Person in the above example).
Additional information like an envelope structure, for example,
{ "JohnSmith": { "Firstname": "John" . . . },
"type": "Person" }

or explicit properties, for example,
{ "$name": "JohnSmith",
"$type": "Person",
"Firstname": "John", . . . }

would be required.
In order to generate two external forms – JSON and JSON

Schema – out of one integrated internal content representation,
two lexical rules are required as mentioned in Section IV-A.
When parsing JSON on the receiver’s side, the unrelated files
need to be recombined in a content representation. JSON
(Schema) provides no means to do so.

C. Capturing Type Variations

Variants of content are commonly found in CMSs since
one schema typically does not cover all aspects content used
for communication. Few CMSs cover variations explicitly in
content models. The M³L, however, allows reflecting variants
by means of concept refinement and by contextualization.

Consider concepts modeled after an example from [10]:
Address {
"street_address" is a String
"city" is a String
"state" is a String
Type }
BusinessAddress is an Address {
Business is the Type
Department is a String }
ResidentialAddress is an Address {
Residential is the Type }

20Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

JSON Schema introduces the "if"..."then"..."else" construct
for content variants. An example from [10] reflects the above
M³L definitions:
{
"type": "object",
"properties": {
"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" },
"type": {
"enum": ["residential", "business"] }

},
"required": ["street_address",

"city", "state", "type"],
"if": {
"type": "object",
"properties": {
"type": { "const": "business" }

},
"required": ["type"]

},
"then": {
"properties": {
"department": { "type": "string" }

}
},
"unevaluatedProperties": false
}

In fact, M³L would (also) work the other way round: if an
Address with an extra Department is given, it is derived to be
a BusinessAddress. The Type attribute is not required by the
M³L. This narrowing of the M³L – and similar, yet implicit
behavior of typical CMS applications – makes matching JSON
data to JSON Schema definitions yet more difficult.

V. COMPARISON OF PLAIN JSON AND M³L CONSTRUCTS

In contrast to typical data schemas, content models are not
only concerned with constraints on values, references, and
structure, but additionally try to capture some semantics. Fur-
thermore, while data aims at representing one consistent state
of entities, content deals with varying forms and utilizations
used in communication: different communication scenarios,
contexts of users who perceive content, language and other
localizations, etc.

This section points out some of the differences in ex-
pressiveness of data schemas and content models using the
examples of JSON schema and the M³L.

A. Subtypes

Type hierarchies allow intensional descriptions of schema
elements and are, therefore, found in content models. They
are not ubiquitous in data models, though. JSON schema does
not feature subtyping.

JSON schema does have means to express schema variants
("if", "dependentRequired") and to relate different schemas
("dependentSchemas", "allOf", "anyOf", "oneOf").

These can be used to model specializations of data as
variants. An example is presented in Section IV-C above.

Any forms of refinements (“subtypes”) in JSON weakens
the constraints of a JSON Schema since not all properties
can be "required" or "additionalProperties" and "unevaluat-
edProperties" must be allowed - very much as in the M³L.

The additional Department property from the exam-
ple above can be introduced conditionally using the
"if"..."then"..."else" construct in JSON schema. This allows
representing subtypes. The information that a BusinessAddress
is an Address is lost, however, both on instance and schema
level. Therefore, this is not a suitable representation of refine-
ment that conveys semantics.

B. Single and Multi-valued Relationships
It is quite common in content models to be vague about

arity. For example, some pieces of content may typically have
a 1:1-relationship, making it unary in the content model. But
there are exceptions of n-ary cases that also need to be covered.
The M³L allows to define concepts with is a and is the to take
this into account.

A typical data model would define an n-ary relationship,
even though in most cases the data are 1:1.

JSON itself allows to easily vary between unary and n-ary
properties by simply stating either "a":"b" or "a":["b","c"].
JSON Schema, though, needs to define arity or to define
variations with "if"..."then"..."else".

Consider as an example a person with two addresses:
Person {
FirstName is a String
LastName is a String
Address }
Address {
Street is a String
City is a String }

JohnSmith is an Employee {
John is the FirstName
Smith is the LastName
JohnSmithsAddress is an Address {
"Main Street" is the Street
Lincolnshire is the City }

JohnSmithsOffice is an Address {
"High Street" is the Street
Lincolnshire is the City }

}

A JSON structure reflecting this content is:
{
"FirstName": "John",
"LastName": "Smith",
"Address": [
{ "Street": "Main Street",
"City": "Lincolnshire" },

{ "Street": "High Street",
"City": "Lincolnshire" }

]
}

21Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

Though this is a small change to the JSON structure, it has
to be explicitly foreseen in JSON Schema. It is not as easy
to vary between one or multiple addresses (in this example)
as it is in content models like the M³L or the Java Content
Repository [11].

C. Content Conversions and Computed Values
It is common for content models to not only contain

content itself but also descriptive information about the content
(sometimes referred to as “meta data”).

For example, a simple data property like
{"price": 42}

requires additional information to be interpreted correctly (the
currency in this example). In simple data models, there is
an additional documentation that establishes an agreement on
how applications should deal with the data. The possibility to
state the unit of measurement is typically found in Product
Information Management systems.

In these cases, the information needs to be state explicitly,
as it is done in typical master data management systems:
{"price": {"value":42, "currency":"C"}}

Such a record allows a mutual understanding of the value.
It prevents an easy mapping from JSON to a numeric price
variable, though.

As a slight improvement, values should be replaced by
named concepts. The M³L captures meaning by defining
relevant concepts. For example, a concept like EuroCurrency
as a refinement of a concept Currency would be used instead
of the string value C.

On top of descriptive information on content, a content
model may also define a limited set of computational rules
in order to define consistent arithmetics.

The M³L is expressive enough to define some (symbolic)
computation. Assume, for example, a concept Integer, concrete
“instance” concepts like 100, and concepts describing compu-
tations like FloatDivision, the division of numeric values.

On the basis such definitions, it is possible to state conver-
sion rules like the following:
Price {
Value is a FloatNumber
Currency }

PriceInEuro is a Price {
C is the Currency }

PriceInEuroCents is a Price {
Value is an Integer
Cents is the Currency }

|= PriceInEuro {
Value is a FloatDivision {
Value is the Dividend
100 is the Divisor } }

These sample definitions define (on schema level) how
values are converted so that all clients using this model share
the same arithmetics.

VI. SUMMARY AND OUTLOOK

We conclude with a summary and an outlook.

A. Summary

We compare rich content models – using the example of the
modeling capabilities of the M³L – with typical data schemas,
in particular JSON Schema. We conclude that models for
meaningful content cannot adequately be expressed by data
schemas alone.

JSON became a de-facto standard for content exchange. We
present examples showing that the currently evolving schema
language, JSON Schema, is not sufficient for content modeling
in its current form.

B. Outlook

Additional research is required to identify the full expres-
sivity required to define external representations of content
for modern content management approaches. This will guide
future investigations towards a suitable set of modeling capa-
bilities for JSON Schema.

The M³L is not intended to be a data schema language.
Therefore, it lacks some features of such languages. It will be
an experiment, though, to define a M³L derivate that is able
to serve as an alternative schema language for JSON.

ACKNOWLEDGMENT

The author thanks numerous colleagues, partners, and
clients for fruitful discussions on various topics centered
around digital communication. He thanks his employer,
Tallence AG, for the support in the publication and presen-
tation of this work.

REFERENCES

[1] H.-W. Sehring, “On the integration of lifecycles and processes for
the management of structured and unstructured content: a practical
perspective on content management systems integration architecture,”
International Journal On Advances in Intelligent Systems, volume 9,
numbers 3 and 4, pp. 363–376, 2016.

[2] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Doctoral dissertation, University of California,
2000.

[3] A. Wright, H. Andrews, B. Hutton, and G. Dennis, “JSON Schema:
A Media Type for Describing JSON Documents,” Internet Engineering
Task Force, 2022.

[4] C. Andrei, D. Florescu, G. Fourny, J. Robie, and P. Velikhov, JSound
2.0. [Online]. Available from: http://www.jsound-spec.org/publish/en-
US/JSound/2.0/html-single/JSound/index.html [retrieved: May, 2023]

[5] The most powerful schema description language and data validator
for JavaScript. [Online]. Available from: https://joi.dev/ [retrieved: May,
2023]

[6] Mongoose. [Online]. Available from: https://mongoosejs.com/ [retrieved:
May, 2023]

[7] H.-W. Sehring, “On Integrated Models for Coherent Content Man-
agement and Document Dissemination,” Proceedings of the Thirteenth
International Conference on Creative Content Technologies, CONTENT
2021, ThinkMind, 2021, pp. 6–11.

[8] L. Attouche et al., “A Tool for JSON Schema Witness Generation,”
Proceedings of the 24th International Conference on Extending Database
Technology. OpenProceedings.org, March 2021, pp. 694–697.

[9] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Finding
Data Compatibility Bugs with JSON Subschema Checking,” Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2021. Association for Computing Machinery,
July 2021, pp. 620—632.

[10] M. Droettboom, “Understanding JSON schema,” Space Telescope Sci-
ence Institute, 2023.

[11] D. Nuescheler et al., “Content Repository API for Java™ Technology
Specification,” Java Specification Request 170, version 1.0, May 2005.

22Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

