
Using Text Queries to Look Up Unlabeled Images:
A Command-Line Search Tool Based on CLIP

Yurij Mikhalevich
Lightning AI

Dubai, United Arab Emirates
email: yurij@mikhalevi.ch

Abstract—This paper presents a practical, scalable implemen-
tation of an image search engine using OpenAI’s Contrastive
Language-Image Pre-Training (CLIP) model. The method pro-
vides a convenient Command-Line Interface (CLI) and intro-
duces a cache layer powered by SQLite 3 relational database
management system (RDBMS) that facilitates efficient repetitive
image searches within extensive image databases using natural
language queries. The method’s effectiveness was evaluated on
ImageNet-1k and CIFAR-100 datasets, yielding a 31.17% top-
1 accuracy on the ImageNet-1k train set and 55.15% top-1
accuracy on the CIFAR-100 test set. The scalability study showed
that indexing time scales linearly with the number of images,
and image search time increases only slightly; for example, on
an Apple M1 Max CPU, indexing over a million images took
26.36 times more than indexing 50,000 images, while querying
the larger image set took just 2.75 times longer. This approach
is particularly relevant for industries managing vast volumes
of visual data, such as media and entertainment, security, and
healthcare.

Keywords—image search, image indexing, photo man-
agement, computer vision, natural language processing

I. INTRODUCTION

The release of the Contrastive Language-Image Pre-Training
(CLIP) model by OpenAI in 2021 has generated significant
attention in the field of Natural Language Processing (NLP)
and Computer Vision (CV). This model has demonstrated
the ability to learn state-of-the-art image representations from
a massive dataset of 400 million (image, text) pairs that
were collected from the Internet. CLIP can predict the most
relevant text snippet, given an image, using natural language
instructions without explicitly optimizing for the task. This
zero-shot ability is similar to that of GPT-2 and 3 [1]. The
authors of CLIP have demonstrated that CLIP performs as
well as the original ResNet50 on ImageNet in a zero-shot
manner without using any of the original 1.28M labeled exam-
ples. This accomplishment overcomes significant challenges in
computer vision.

In addition to these capabilities, CLIP allows researchers to
perform image searches using natural language queries. This
article explores this particular application of CLIP.

The exponential growth of data, particularly in the form
of images, makes this research especially relevant. With the
proliferation of digital devices and the Internet, more and
more images are being produced and shared online every day.
As a result, it is becoming increasingly challenging to find
specific images manually. A robust and efficient image search

solution can help users and businesses quickly find the images
they need amidst this growing sea of data. Moreover, as the
volume of photos being shared online continues to increase,
it becomes increasingly critical to protect intellectual property
and online security. An efficient image search solution can
help identify and remove images that violate copyright laws or
contain sensitive or inappropriate content. Therefore, with the
growing amount of data and images being created, an efficient
image search solution is becoming increasingly necessary and
relevant.

In Section 2, the paper explores related works in the field
of image search. Section 3 describes the proposed method
for image search, which is using CLIP. Section 4 presents
the implementation details of the proposed method. Section 5
discusses the performance of the proposed method. Section 6
presents the search quality measurement results of the pro-
posed method. Finally, Section 7 concludes the paper and
discusses future work.

II. RELATED WORKS

There exist multiple methods and solutions for image
search.

Traditional image search methods rely on bag-of-features,
which are sets of features that describe the contents of an
image. These features can be manually specified by annotating
the image with descriptive labels. For instance, Fiedler et al.
[2] proposed an image tagging software that helps users enter
the labels efficiently. Another way to obtain labels is to use
labels injected into the photos by camera software, as explored
by Tesic [3], who examined camera metadata for consumer
photos.

Mobile phone software can also inject useful metadata
within photos. Kim et al. [4] explored how this metadata can
be leveraged to effectively manage and search photos using
mobile smartphones. This metadata can include information
about the location, time, or type of camera used, among others.
By using such metadata, it’s possible to automatically generate
labels for images.

One way to automatically generate labels is by using image
recognition algorithms, such as Convolutional Neural Net-
works (CNNs). CNNs can be specifically trained to recognize
and classify images based on their contents. For example,
Krizhevsky et al. [5] trained a CNN to recognize images
based on their visual features. This approach can be combined

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

with other methods, such as using camera metadata or manual
annotations, to generate more accurate and diverse labels for
images. Lee et al. [6] proposed a scalable method for image
annotation that combines manual and automatic approaches to
improve the accuracy and scalability of the labeling process.

In image retrieval, search algorithms are applied to the
features extracted from images to find relevant images based
on a user’s query. The choice of search algorithm depends on
the type of labels associated with the images and the problem
at hand. For instance, if the labels are GPS coordinates, a
distance-based search algorithm can be used to find images
related to the query location, as demonstrated by Zhang et al.
[7].

On the other hand, if the labels are in text form, a text-based
search algorithm can be employed to retrieve images based
on textual queries. There are various techniques available
for text-based search, ranging from substring matching to
lemmatization-based search, as shown by Balakrishnan et al.
[8], or even using word embeddings, as explored by Günther
[9] and Kenter et al. [10].

In practice, combining multiple features and approaches,
such as GPS coordinates, text labels, image capture date,
camera model, focal distance, etc. can yield more accurate
and relevant results. Ismail [11] investigated image annotation
and retrieval based on multi-modal feature clustering and
found that this approach can significantly improve the retrieval
performance of the system.

Therefore, in summary, image retrieval is a complex process
that involves the extraction of features from images, the
selection of suitable search algorithms based on the type of
labels and the integration of multiple features and approaches
to improve retrieval accuracy.

The methods mentioned earlier do not facilitate searching
for images using a text query without first identifying the
features. Moreover, they do not permit searching for a concept
that is not included in the image labels, even if the concept
exists within the image. These are the problems that OpenAI’s
CLIP [1] enables us to solve.

III. METHOD

With CLIP’s text transformer, it is possible to convert a text
query to a n-dimensional vector (where n differs depending
on the CLIP model used). With CLIP’s image transformer,
it is possible to convert an image to a n-dimensional vector.
Then, we can calculate the dot product (Equation 1) of the
normalized query vector and each of the normalized image
vectors. After this, we sort the images by the decreasing dot
product and take first k images; this gets us the k images that
match the query the most.

aaa · bbb =
n∑

i=1

aibi = a1b1 + a2b2 + · · ·+ anbn (1)

While this approach works reasonably fast on a few images,
it may not be scalable when dealing with a large number of
images. This is particularly challenging if there is no access

to GPUs to run the CLIP model. In order to address this
scalability issue, the solution proposed in this paper suggests
caching the image vectors. By caching the image vectors,
repeated queries can be executed quickly, without having to
wait for the image to be processed each time that a query is
made.

Caching involves storing the computed image vectors on
disk after the initial processing of images so that they can be
accessed later. When a new query is received, the system re-
trieves the cached image vectors and computes only the query
vector. This approach reduces the computational overhead
associated with image querying and improves the response
time for users. This is particularly useful when dealing with
large image databases, where repeated queries are common.
By leveraging caching, the system can handle repeated queries
quickly and efficiently without having to recompute the image
vectors each time.

The proposed solution also allows adding new images to the
cache to avoid recomputing the whole cache when the image
catalog is updated.

The main advantage of the proposed method over the
methods described in Section 2 is that method does not
require any metadata, labels, or annotations, which enables
using it with any image catalog. Moreover, if used on labeled
images, the proposed method allows searching for concepts
not included in the image labels. The presence of these
mechanisms enables users to utilize CLIP effectively in real-
world scenarios involving image search.

IV. IMPLEMENTATION

The method described above is implemented in the Python
utility called rclip [12]. rclip provides an easy-to-use
CLI interface that allows users to search images within any
directory on a computer where rclip is installed. Search
within nested directories is also supported. To use it, the user
should open the terminal, navigate to the directory containing
the files that they want to search through, type rclip
<search query>, and hit “Enter.”

The solution uses OpenAI’s clip library [1] to load
the model and compute the feature vectors. rclip uses
ViT-B/32 version of the CLIP model. The code of the
feature computing methods is shown in Figure 1 and Figure 2.
The vectors produced by these methods are then used to
compute the dot product (Equation 1).
rclip features the image vector cache implemented using

SQLite 3 RDBMS [13]. The image vector is computed and
added to the index only if the cache does not already contain
an entry for a given image. The vectors are cached by image
paths. This allows the user to execute repeated queries over
the same image catalog without waiting for the image vectors
to be recomputed. Figure 3 defines the structure of the table
storing the cached image vectors.

The implementation introduces a cache layer of a design
described above, a module to manage (add, remove, and
update) entries in the cache, a module to perform image and
text vector computations using the CLIP model, and a module

8Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

def c o m p u t e i m a g e f e a t u r e s (s e l f , images) :
i m a g e s p r e p r o c e s s e d = (t o r c h

. s t a c k ([s e l f . p r e p r o c e s s (thumb) f o r
thumb in images])

. t o (s e l f . d e v i c e))

w i th t o r c h . no grad () :
i m a g e f e a t u r e s = s e l f . model .

encode image (i m a g e s p r e p r o c e s s e d)
i m a g e f e a t u r e s /= i m a g e f e a t u r e s . norm

(dim = −1 , keepdim=True)

re turn i m a g e f e a t u r e s . cpu () . numpy ()

Figure 1. Image vector computing method

def c o m p u t e t e x t f e a t u r e s (s e l f , t e x t) :
w i th t o r c h . no grad () :

t e x t e n c o d e d = s e l f . model .
e n c o d e t e x t (c l i p . t o k e n i z e (t e x t) . t o
(s e l f . d e v i c e))

t e x t e n c o d e d /= t e x t e n c o d e d . norm (dim
= −1 , keepdim=True)

re turn t e x t e n c o d e d . cpu () . numpy ()

Figure 2. Text vector computing method

to provide the user with a convenient command-line interface
to perform image search.

When the user executes the rclip command, the tool
first recursively processes the current directory and all its
subdirectories, finds all of the images in them, and, if the
image is not already present in the cache, computes their
feature vectors and saves them to the SQLite cache database.
This step is quick on repeated queries because the images are
already cached, but if the user wants to skip the process of
checking that the cache is up-to-date, they can pass the -n
argument to rclip to skip the indexing step completely and

s e l f . con . e x e c u t e (’ ’ ’
CREATE TABLE IF NOT EXISTS images (

i d INTEGER PRIMARY KEY ,
d e l e t e d BOOLEAN,
f i l e p a t h TEXT NOT NULL UNIQUE ,
m o d i f i e d a t DATETIME NOT NULL ,
s i z e INTEGER NOT NULL ,
v e c t o r BLOB NOT NULL

)
’ ’ ’)

Figure 3. Structure of the “images” table storing the cached image vectors

speed up the rclip command execution even more.
Then, rclip computes the query vector, fetches from the

cache database image vectors for all of the images located in
the current directory, computes the similarity score between
the query vector and each of the image vectors, sorts the scores
by the decreasing order, and gets the first k images with the
highest similarity scores.

Finally, rclip prints the paths to the images that match
the query to the terminal. Users can then open the images in
their favorite image viewer or editor.

The rclip source code is published on GitHub under the
MIT license [12].

V. PERFORMANCE

rclip was benchmarked using two different CLIP models,
ViT-B/32 (smaller CLIP model) and ViT-L/14@336px
(larger CLIP model), on a NAS running Intel(R)
Celeron(R) CPU J3455 @ 1.50GHz. Table I shows
how rclip performs when indexing and searching through
269 photos when running on this CPU.

As Table I shows, the ViT-L/14@336px performance
will not scale well, which makes rclip unusable in practical
scenarios when running CLIP on low-level and mid-level
consumer CPUs. This is why rclip uses ViT-B/32.

Running rclip indexing with ViT-B/32 on 72,769 pho-
tos on the same NAS powered by Intel(R) Celeron(R)
CPU J3455 @ 1.50GHz took 23 hours. Performing a
query over 72,769 photos takes 56 seconds.

To give a better understanding of how rclip performance
scales, Table II shows how rclip performs when indexing
and searching through 50k images and 1.28m images on the
Apple M1 Max CPU. As the Table II shows, the indexing
time scales linearly with the number of images when the search
time increases only slightly even when going from searching
through 50 thousand images to searching through 1.28 million
images.

It should be noted that real-life rclip application possibil-
ities go far beyond results demonstrated in these benchmarks

TABLE I
INDEXING AND SEARCH PERFORMANCE ON INTEL(R) CELERON(R)

CPU J3455 @ 1.50GHZ USING DIFFERENT CLIP MODELS

Model Indexing Time Search Time
ViT-B/32 3m56.626s 0m18.064s

ViT-L/14@336px 125m0.507s 3m19.742s
Difference x31.70 x11.06

TABLE II
INDEXING AND SEARCH PERFORMANCE ON APPLE M1 MAX CPU USING

VIT-B/32

Dataset # of images Indexing Time Search Time
ImagNet-1k
validation set 50k 19m24.750s 0m4.04s

ImagNet-1k
train set 1.28m 8h31m26.680s 0m11.49s

Difference x25.62 x26.35 x2.84

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

because rclip can be applied be used to execute any queries
and not just the ones present in the dataset labels.

VI. SEARCH QUALITY

As Table III shows, rclip achieves 31.17% top-1 accuracy
and 44.80% top-5 accuracy rate on the ImageNet-1k [14]
1.28 million images train set and 55.15% top-1 and 81.34%
top-5 accuracy on the CIFAR-100 [15] 10 thousand images
test set.

To get a better understanding of rclip’s performance, see
Figure 5, Figure 6, and Figure 7 showing search results for
a search performed on an unlabeled demo set of 142 images.
Figure 4 gives a glimpse into the set and shows that there is
a variety of different images present there.

VII. CONCLUSION

The development of the command-line tool, rclip, which
employs OpenAI’s CLIP model, has resulted in an efficient
and user-friendly utility for image search. However, there are
still possibilities for further optimizing its performance. Future
plans include:

• to create a separate model for the CLIP text transformer
and to load only it when users initiate a search that does
not require indexing, thereby avoiding the loading of the
CLIP vision transformer;

• to push the tool’s scaling limits even further by introduc-
ing the sharded cache;

• to improve the tool’s performance by preventing it from
re-indexing files when they are renamed;

• to enable rclip write tags to the image file metadata
for third-party software to utilize them;

• to enrich rclip’s search capabilities by utilizing meta-
data, which already exists within the images, like GPS
coordinates, image capture date, camera model, tags, etc.;

• to do an in-depth comparison of rclip with other
existing image search tools;

• to explore how well CLIP handles distorted and corrupted
images.

Even with its current performance and capabilities, rclip
is an incredibly valuable tool.

In summary, this paper introduces a practical and scalable
method of searching images using natural language queries
based on the CLIP model. The approach has demonstrated im-
pressive results on the ImageNet-1k and CIFAR-100 datasets,
indicating its potential applicability to a wide range of indus-
tries reliant on visual data.

TABLE III
RCLIP SEARCH QUALITY

Model Top-1 accuracy Top-5 accuracy
ImageNet-1k 1.28m 31.17% 44.80%
CIFAR-100 10k 55.15% 81.34%

REFERENCES

[1] A. Radford et al., “Learning transferable visual models
from natural language supervision,” arXiv, 2021. [On-
line]. Available: https://arxiv.org/abs/2103.00020.

[2] N. Fiedler, M. Bestmann, and N. Hendrich, “Imagetag-
ger: An open source online platform for collaborative
image labeling,” in RoboCup 2018: Robot World Cup
XXII 22, Springer, 2019, pp. 162–169.

[3] J. Tesic, “Metadata practices for consumer photos,”
IEEE MultiMedia, vol. 12, no. 3, pp. 86–92, 2005.

[4] J. Kim, S. Lee, J.-S. Won, and Y.-S. Moon, “Photo
cube: An automatic management and search for photos
using mobile smartphones,” in 2011 IEEE Ninth In-
ternational Conference on Dependable, Autonomic and
Secure Computing, IEEE, 2011, pp. 1228–1234.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” Communications of the ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[6] B. N. Lee, W.-Y. Chen, and E. Y. Chang, “A scalable
service for photo annotation, sharing, and search,” in
Proceedings of the 14th ACM international conference
on Multimedia, 2006, pp. 699–702.

[7] J. Zhang, A. Hallquist, E. Liang, and A. Zakhor,
“Location-based image retrieval for urban environ-
ments,” in 2011 18th IEEE International Conference
on Image Processing, IEEE, 2011, pp. 3677–3680.

[8] V. Balakrishnan and E. Lloyd-Yemoh, “Stemming
and lemmatization: A comparison of retrieval perfor-
mances,” Lecture Notes on Software Engineering, vol. 2,
no. 3, pp. 262–267, 2014.

[9] M. Günther, “Freddy: Fast word embeddings in
database systems,” in Proceedings of the 2018 Inter-
national Conference on Management of Data, 2018,
pp. 1817–1819.

[10] T. Kenter and M. De Rijke, “Short text similarity
with word embeddings,” in Proceedings of the 24th
ACM international on conference on information and
knowledge management, 2015, pp. 1411–1420.

[11] M. M. B. Ismail, Image annotation and retrieval based
on multi-modal feature clustering and similarity prop-
agation. University of Louisville, 2011.

[12] Y. Mikhalevich, rclip, version 1.2.5, Jan. 2023. [Online].
Available: https://github.com/yurijmikhalevich/rclip.

[13] R. D. Hipp, SQLite, version 3.31.1, 2020. [Online].
Available: https://www.sqlite.org/index.html.

[14] O. Russakovsky et al., “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Com-
puter Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[15] A. Krizhevsky et al., “Learning multiple layers of
features from tiny images,” University of Toronto, 2009.
[Online]. Available: https://www.cs.toronto.edu/∼kriz/
learning-features-2009-TR.pdf.

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

https://arxiv.org/abs/2103.00020
https://github.com/yurijmikhalevich/rclip
https://www.sqlite.org/index.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Figure 4. Demo set sample

Figure 5. Search result for query “cat”

Figure 6. Search result for query “leading lines”

Figure 7. Top result for query “a kitten peeking from behind a corner”

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

	Introduction
	Related Works
	Method
	Implementation
	Performance
	Search Quality
	Conclusion

