
Color Manipulation in Images by Using a Modified HSV Algorithm

Samuel Kosolapov

Department of Electronics

Braude Academic College of Engineering

Karmiel, Israel

e-mail: ksamuel@braude.ac.il

Abstract— There are several situations in which the HSV (Hue,

Saturation, Value) algorithm is preferred to execute color

manipulations in a specific image. Unfortunately, whereas

Value and Saturation can be calculated in any situation, Hue

cannot be calculated when the specific pixel is gray. Even

more, for dark regions, nearly gray regions, and for

overbleached regions, the calculation of the Hue is non-

reliable. Inherent to digital image noise makes the calculations

of Hue in the above situations even more problematic. In an

attempt to provide more control during color manipulations,

an extended structure “sHSVF” was defined, in which F is a

"Validity Flag". Additionally, the structure

"sValidityParameters" was defined. Values of the fields in this

structure make it possible to classify the specific pixel as

"IS_VALID", “HAS_ZERO”, "IS_TOO_GRAY",

IS_OVERBLEACHED", "IS_TOO_DARK",

"IS_TOO_LIGHT", and properly set the "Validity Flag" for

each pixel of the image. This flag may be instrumental in color

recognition and in reliably modifying the color of the pixels in

accordance with the selected rules. By selecting values of the

“sValidityParameters”, the user of the algorithm can specify

situations when the color of the specific pixel is set to the pre-

defined value, marking problematic situations. Provided

examples demonstrate that this approach can be used for

reliable color recognition and advanced color manipulations

for synthetic and real-life images..

Keywords-Image Processing; HSV; color manipulations;

reliable color recognition.

I. INTRODUCTION

The standard inexpensive color digital camera on its
output produces a sequence of bytes. In order to apply to this
sequence basic imaging processing algorithms, this sequence
is organized as a two-dimensional matrix of picture elements
(pixels). Each pixel is a vector in the {R (red), G (green), B
(blue)} space. In the inexpensive cameras values of color
components are in the range {0..255}. Presentation of the
color as an {R, G, B} vector is quite natural for a human
observer, having three types of color receptors. However, for
applications used in machine vision, this presentation is not
always convenient. An alternative presentation uses {H
(hue), S (saturation) V (value)} space, or {H, S, L
(lightness)} space. Presentations of the pixels in the RGB,
HSV, and HSL spaces are described in a number of classical
image processing books [1]-[3]. Functions converting pixels
in the RGB space to HSV and HSL spaces and back are well
known. The value of H actually describes the color of the

pixel and thus can be used to recognize the color of the pixel
in a simple and convenient way for machine vision.

There is a number of alternative approaches – for
example, a sophisticated approach based on a sequence of
different image processing algorithms designed for the
specific goal [4]. However, algorithms of that type are in
most cases too heavy for real-life applications.

Unfortunately, plain and simple HSV and HSL
algorithms have an inherent problem: Hue cannot be
calculated if R, G, and B values are equal. When the
presentation of pixel values in the range of byte {0..255] is
used, classic presentation HSV and HSL became
problematic. One solution is to use the zero value of S
(saturation) as a marker, pointing out that the value of H
cannot be calculated in that case. However, practically when
an image has a noise (and images of digital cameras always
have significant noise), the situation becomes even more
problematic. It is clear that pixel {100,100,100} is gray, and
in this situation, Hue cannot be calculated. But if a digital
camera produces a noise of, say 5 units, then pixel {98, 101,
104} must be treated as problematic for the reliable Hue
calculation. Despite the fact that the value of Hue can be
calculated in that case, it is clear that using this value for
color recognition may lead to unreliable results.

Detailed analysis of the properties of digital cameras
reveals a number of additional problematic situations. For
the synthetic image (an image created by software), pixel
{100, 0, 0} is a legal description of a RED pixel. But for the
digital camera having noise 5 units this zero value is
electronically problematic. The same is valid for the value
equal to 255 – this value, in most cases, means that the object
is overbleached. Those and some other situations make the
classic HSV/HSL approach at least problematic for real-life
applications.

The upper image in Figure 1 demonstrates a real-life
photo of the mandarins. Vertical and horizontal orange
arrows point to the marker (cross) in the clearly
overbleached region of this selected mandarin. The lower
image presents the profile of the row of the marker in the
upper image. The blue arrow point to the values that arrived
at the maximal value of 255. Despite the human observer
probably recognizing those pixels as “pixels of orange”,
machine vision must reject Hue calculations of those pixels
as non-reliable. The green arrow is pointing to the regions in
which the blue value is very low and even arrives at the
minimal zero value. In the upper image, those pixels are
green leaves in the shadow. In this situation, the color of
those pixels cannot be reliably evaluated as by a human

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

observer, as by hue calculation by using a computer
algorithm.

Earlier attempts to improve HSV/HSL algorithm were
described in [5] and [6]. This article described a more
elaborated approach in an attempt to provide a more reliable
algorithm of color recognition and color manipulation based
on a modification of the classic HSV algorithm.

To cope with the above problems, in an attempt to
provide more control during color recognition and color
manipulations, an extended structure “sHSVF” was defined,
in which F is a "Validity Flag".

Additionally, the structure "sValidityParameters" was
defined. Values of the fields in this structure make it possible
to classify the specific pixel as "IS_VALID", “HAS_ZERO”,
"IS_TOO_GRAY", IS_OVERBLEACHED",
"IS_TOO_DARK", "IS_TOO_LIGHT", and properly set the
"Validity Flag" for each pixel of the image. By selecting
values of the “sValidityParameters”, the user of the modified
HSV algorithm can specify situations when the color of the
specific pixel is set to the pre-defined value, marking
problematic situations.

Section II describes the definition of sHSVF structure
(subsection ‘A’), sValidityParameter (subsection ‘B’), and
flags that are used in specific situations (subsection ‘C’).

Section III presents changes in the classical HSV
algorithm.

Section IV presents exemplary analyses and processing
of synthetic and real-life images demonstrating the properties
of a modified algorithm.

Section V shortly summarizes the results obtained.

II. STRUCTURES SHSVF, SVALIDITYPARAMETER AND

FLAGS

To store {R, G, B} values of the pixel, standard sRGB
structure was used without changes:
 struct sRGB

 {

 unsigned char r;

 unsigned char g;

 unsigned char b;
};

Standard sHSV structure was modified by using the

“double” type and by adding the integer “ValifityFlag”.

A. Structure sHSVF

The resulting sHSV structure was defined as:
 struct sHSVf

 {

 double H; // Hue

 double S; // Saturation

 double V; // Value

 int validityFlag; // Validity flag
}; .

B. Structure sValidityParameter

Structure sValidityParameter was designed to set
numerical values needed to mark problematic pixels. It was
defined as:
 struct sValidityParameter

 {

 double rgbMeanVmin;

 double rgbMeanMax;

 double SaturationMin;
 };
Usage of this structure will be described later.

C. Definitions of FLAGS

In order to properly mark problematic situations, the
following FLAGS were defined:

#define IS_VALID (0)
 This flag is set when the value of HUE can be

calculated. In this situation value in the HUE map and in the
Saturation map is gray in the range {0..255}.

#define HAS_ZERO (1)
This flag was set when at least one of the {R, G, B}

values were zero. This situation is electronically problematic,
hence those pixels on the HUE and Saturation maps were
marked by a MAGENTA color.

#define IS_TOO_DARK (2)
This flag was set if the mean value calculated as

(R+G+B)/3 was lower than the value set in the rgbMeanMin
parameter of the structure sValidityParameter. Those pixels
in the HUE and Saturation maps were marked by a RED
color.

#define IS_TOO_LIGHT (3)
This flag was set if the mean value calculated as

(R+G+B)/3 was higher than the value set in the
rgbMeanMax parameter of the structure sValidityParameter.
Those pixels on the HUE and Saturation maps were marked
by a YELLOW color.

#define IS_OVERBLEACHED (4)
This flag was set if at least one value in {R,G,B} is 255.

Those pixels on the HUE and Saturation maps were marked
by a GREEN color.

#define IS_TOO_GRAY (5)
This flag was set if the calculated saturation value was

lower than the value of SaturationMin in the structure
sValidityParameterat. Those pixels on the HUE and
Saturation maps were marked by a BLUE color.

Again, if none of the above flags was set,
sValidityParameter is set to the IS_VALID value defined as
zero. Then pixels in the Hue and Saturation maps are gray
pixels, whereas the level of gray mapping Hue and
Saturation values to the range of [0..255}. It must be noted
that historically, in the Windows OS, values of Hue and
Saturation were mapped in the {0..239} range. Some authors
mapped values of Hue in the {0..360} range, however, this
range cannot be presented in the standard displays designed
for humans. Hence, the range [0..255} is better suited the
goal of this research.

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

III. CHANGES IN THE CLASSICAL HSV ALGORITHM

Classical function RGBtoHSV which is described at [1]-
[3], and C-code of which is available in the public domain
was modified by adding flags defined before. A number of
exemplary code fragments of the reworked function
ConvertRGBtoHSVf are presented in Figure 2. This function
is defined as:
 void ConvertRGBtoHSVf(

 sRGB rgb, sHSVf & hsvf,

 sValidityParameter param,
 int useLimits);
Arguments of the function are “rgb” values of the current

pixel as defined in the sRGB structure; calculated values of
the Hue, Saturation, Value, and Validity flag of the above
pixel as defined in the sHSVF structure; “param” specifying
parameters used as limits for the processing of this pixel; and
flag useLimits, which can be set to FALSE or TRUE. When
this flag is set to FALSE, this values of Hue and Saturation
are calculated in the “classical way”. The value of the “V”
can be calculated in any situation. The code and comments
of the code fragments presented in Figure 2 are self-
explanatory.

Obviously, the reverse function ConvertHSVfToRGB is
defined as:
 void ConvertHSVfToRGB(

 sHSVf hsvf,
 sRGB& rgb);
Additionally, were defined functions converting source

image to the Hue, Saturation, and Value maps, and to the
image presenting validityFlag values as a human-readable
gray map, in which different values are encoded by using
different levels of gray.

To demonstrate this approach to the well-known
procedure of “recoloring”, the exemplary function
ChangeHue was defined as:
void ChangeHue(

 unsigned char trueColorSource[][..][..],

 unsigned char trueColorDestination[][..][..],

 double oldHue, double newHue,

 double hueHalfRange,
 sValidityParameter param, int useLimits);
It must be noted that most recoloring algorithms replace

the specified value of Hue with a new one. But this approach
is adequate only for synthetic images. Hence, in this
function, the additional parameter “hueHalfRange” is added.
Then, all pixels having valid values of Hue in the range from
(oldHue – hueHalfRange) to the (oldHue + hueHalfRange)
will be replaced with the “newHue” value. Naturally, this
function uses validity parameters to exclude from the
processing problematic pixels. By setting values of those
parameters different image processing and color
manipulation effects can be achieved.

IV. EXAMPLES OF ANALYSIS AND PROCESSING OF

SYNTHETIC AND REAL-LIFE IMAGES

The upper left image in Figure 3 presents a synthetic
image specially prepared for the tests of a modified approach

and its HSVF maps. The upper part of this image is strips
having different gray levels and 6 basic colors Pseudo
random noise with a magnitude of 5 units was added. The
effect of this noise is clearly seen in the top right map of the
Validity flag. The central part of the synthetic image is a
pure green ramp, whereas the lower part of this image is a
sum of a gray ramp with a green ramp. The lower left image
in Figure 3 represents the Hue map, whereas the lower right
image represents a Saturation map. Detailed analysis of
images presented in Figure 3 validated that the HSVF
algorithm works as expected.

Figure 4 represents an example of color manipulation
with a real-life photo. Yellow Lemons in the left image were
marked in the right image by using non-natural Blue color.
In this image, only one lemon was not properly illuminated
by the Sun, so all lemons (except the darker part of one
lemon) were successfully recognized and recolored.

The left top image in Figure 5 presents somehow
problematic real-life photo. In this photo, some mandarins
and leaves are in the deep shadow, whereas some mandarins
are clearly overbleached. Parameters of the algorithms were
selected in such a way, that only reliably validated parts of
the mandarins will be recolored to the blue color (see top
right image). The lower left image presents a fragment of the
Hue map, whereas the lower right image represents a
fragment of the Saturation map of the above photo.
Problematic pixels are marked as green (overbleached) and
red (too dark).

V. SUMMARY AND CONCLUSIONS

An exemplary recoloring algorithm can be fine-tuned by
setting relevant parameters and flags. Examples presented in
section IV demonstrated that the described approach could
be used to analyze and process real-life photos. It is planned
to add more parameters and flags in future research.

REFERENCES

[1] J. Russ, and F.Neal, “The Image Processing Handbook”, CRC

Press, 2017.

[2] R. Jain, R. Kasturi, and D. Schunck, “Machine Vision”, MIT
Press and McGraw Hill, Inc. 1995.

[3] J. Foley, A. van Dam, S. Feiner, and J. Hughes , “Computer
Graphics Principles and Practice”. Second Edition in C,
ADDISON-WESLEY, 1997.

[4] J. Siyi and C. Heng, “Color Recognition Algorithm Based on
Color Mapping Knowledge for wooden Building Image”,
Scientific Programming, Volume 2022, pp 1-15, 2022.

[5] S. Kosolapov, “Comparison of Robust Color Recognition
Algorithms”, Journal of International Scientific Publications,
Materials, Methods and Technologies, Volume 15, pp 274 –
283, 2021.

[6] S. Kosolapov, “Evaluation of Robust Color Recognition
Algorithms”, Journal of International Scientific Publications,
Materials, Methods & Technologies, Volume 16, pp 83-93,
2022.

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

Figure 1. Real-life image of mandarines and profile of the row marked by a cross and by orange arrows. Blue arrow points to the overbleached region.

Gren arrow points to the unrealistically low blue values.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

Figure 2. Extracts of the code from the file HSV.cpp demonstrating some situations when validity flags are set to the relevant values.

Figure 3. Upper left: Synthetic image with simulated noise. Upper right: Map of validity flags. Lower left: Hue Map. Lower right: Saturation map.

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

Figure 4. Left: Real-life image of lemons. Right: Example of color manipulation: Objects having Hue in the selected range of values are recolored to the

blue color.

Figure 5. Top Left: Real-life image of mandarins. Top Right: Right: Example of color manipulation: Objects having reliably calculated Hue values in the

selected region of the Hue values are recolored to the blue color. Bottom left: Extract from the Hue Map. Bottom right: Extract from the Saturation map.
Problematic regions are marked as green (overbleached) and red (too dark)

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-048-3

CONTENT 2023 : The Fifteenth International Conference on Creative Content Technologies

