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Abstract—We define a most specific generalization of a fuzzy
set of topics assigned to leaves of the rooted tree of a domain
taxonomy. This generalization lifts the set to its “head subject”
in the higher ranks of the taxonomy tree. The head subject is
supposed to “tightly” cover the query set, possibly bringing in
some errors, both “gaps” and “offshoots”. Our method globally
minimizes a penalty function combining the numbers of head
subjects and gaps and offshoots, differently weighted. We apply
this to a collection of about 18000 research papers published
in Springer journals on Data Science for the past 20 years.
We extract a taxonomy of Data Science from the international
Association for Computing Machinery Computing Classification
System 2012 (ACM-CCS). We find fuzzy clusters of leaf topics
over the text collection and use lifted head subjects of the thematic
clusters to comment on the tendencies of current research in the
corresponding aspects of the domain.

Keywords–Generalization; gap-offshoot penalty; fuzzy cluster;
spectral clustering; annotated suffix tree.

I. INTRODUCTION
The issue of automation of structurization and interpreta-

tion of digital text collections is of ever-growing importance
because of both practical needs and theoretical necessity.
This paper is concerned with an aspect of this, modeling
generalization as a unique feature of human cognitive abilities.

The existing approaches to computational analysis of struc-
ture of text collections usually involve no generalization as
a specific aim. The most popular tools for structuring text
collections are cluster analysis and topic modelling. Both
involve items of the same level of granularity as individual
words or short phrases in the texts, thus no generalization as
an explicitly stated goal.

Nevertheless, the hierarchical nature of the universe of
meanings is reflected in the flow of publications on text
analysis. We can distinguish between at least three directions
at which the matter of generalization is addressed. First of all,
there are activities related to developing taxonomies, especially
those involving hyponymic/hypernymic relations (see, for ex-
ample, [14] [17], and references therein). A recent paper [15]
is devoted to supplementing a taxonomy with newly emerging
research topics.

Another direction is part of conventional activities in text
summarization. Usually, summaries are created using a rather
mechanistic approach of sentence extraction. There is, how-
ever, also an approach for building summaries as abstractions
of texts by combining some templates, such as Subject-Verb-
Object (SVO) triplets (see, for example, [9]).

One more direction is what can be referred to as “op-

erational” generalization. In this direction, the authors use
generalized case descriptions involving taxonomic relations
between generalized states and their parts to achieve a tangible
goal, such as improving characteristics of text retrieval (see,
for example, [12] [16].)

This paper begins a novel direction of research by using
an existing taxonomy for straightforwardly implementing the
idea of generalization. According to the Merriam-Webster dic-
tionary, the term “generalization” refers to deriving a general
conception from particulars. The “particulars”, in our case,
are represented by a fuzzy set of taxonomy leaves, whereas
“the general conception” will be represented by a higher rank
taxonomy node to embrace the fuzzy set as tight as possible.
To the best of our knowledge, this approach has been never
explored before. We experimentally show that our method
leads to the type of conclusions which cannot be provided
by other existing approaches to the analysis of text collections
(see the end of Section III).

Our text collection is a set of about 18,000 research papers
published by the Springer Publishers in 17 journals related to
Data Science for the past 20 years. Our taxonomy of Data Sci-
ence is a slightly modified part of the world-wide Association
for Computing Machinery Computing Classification System
(ACM-CCS), a 5-layer taxonomy published in 2012 [1].

The rest of the paper is organized accordingly. Section II
presents a mathematical formalization of the generalization
problem as of parsimoniously lifting of a given fuzzy leaf
set to higher ranks of the taxonomy and provides a recursive
algorithm leading to a globally optimal solution to the problem.
Section III describes an application of this approach to deriving
tendencies in development of the Data Science according to
our Springer text collection mapped to the ACM-CCS. Its
subsections describe stages of our approach to finding and
generalizing fuzzy clusters of research topics. In the end, we
point to tendencies in the development of the corresponding
parts of Data Science, as drawn from the generalization results.

II. GENERALIZATION BY PARSIMONIOUSLY LIFTING A
FUZZY THEMATIC SUBSET IN TAXONOMY: MODEL AND

METHOD
Mathematically, a taxonomy is a rooted tree whose nodes

are annotated by taxonomy topics.
We consider the following problem. Given a fuzzy set S

of taxonomy leaves, find a node t(S) of higher rank in the
taxonomy, that covers the set S in a most specific way. Such a
“lifting” problem is a mathematical explication of the human
facility for generalization.
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The problem is not as simple as it may seem to be.
Consider, for the sake of simplicity, a hard set S shown with
five black leaf boxes on a fragment of a tree in Figure 1.
Figure 2 illustrates the situation at which the set of black
boxes is lifted to the root, which is shown by blackening
the root box, and its offspring, too. If we accept that set S
may be generalized by the root, this would lead to a number,
four, white boxes to be covered by the root and, thus, in this
way, falling in the same concept as S even as they do not
belong in S. Such a situation will be referred to as a gap.
Lifting with gaps should be penalized. Altogether, the number
of conceptual elements introduced to generalize S here is 1
head subject, that is, the root to which we have assigned S,
and the 4 gaps occurred just because of the topology of the
tree, which imposes this penalty. Another lifting decision is
illustrated in Figure 3: here the set is lifted just to the root of
the left branch of the tree. We can see that the number of gaps
has drastically decreased, to just 1. However, another oddity
emerged. A black box on the right belongs to S but is not
covered by the head subject in the root of the left branch. This
type of error will be referred to as an offshoot. At this lifting,
three new items emerge: one head subject, one offshoot, and
one gap. Which of the errors is greater?

Figure 1. A crisp query set, shown by black boxes, to be conceptualized in
the taxonomy.

Figure 2. Generalization of the query set from Figure 1 by mapping it to the
root, with the price of four gaps emerged at the lift.

Figure 3. Generalization of the query set from Figure 1 by mapping it to the
root of the left branch, with the price of one gap and one offshoot emerged

at this lift.

We are interested to see whether a fuzzy set S can be
generalized by a node t from higher ranks of the taxonomy,
so that S can be thought of as falling within the framework
covered by the node t. The goal of finding an interpretable
pigeon-hole for S within the taxonomy can be formalized as
that of finding one or more “head subjects” t to cover S with
the minimum number of all the elements introduced at the

generalization: head subjects, gaps, and offshoots. This goal
realizes the principle of Maximum Parsimony (MP).

Consider a rooted tree T representing a hierarchical taxon-
omy so that its nodes are annotated with key phrases signifying
various concepts. We denote the set of all its leaves by I . The
relationship between nodes in the hierarchy is conventionally
expressed using genealogical terms: each node t ∈ T is said
to be the parent of the nodes immediately descending from t
in T , its children. We use χ(t) to denote the set of children
of t. Each interior node t ∈ T − I is assumed to correspond
to a concept that generalizes the topics corresponding to the
leaves I(t) descending from t, viz. the leaves of the subtree
T (t) rooted at t, which is conventionally referred to as the leaf
cluster of t.

A fuzzy set on I is a mapping u of I to the non-negative
real numbers that assigns a membership value, or support,
u(i) ≥ 0 to each i ∈ I . We refer to the set Su ⊂ I , where
Su = {i ∈ I : u(i) > 0}, as the base of u. In general, no
other assumptions are made about the function u, other than,
for convenience, commonly limiting it to not exceed unity.
Conventional, or crisp, sets correspond to binary membership
functions u such that u(i) = 1 if i ∈ Su and u(i) = 0
otherwise.

Given a fuzzy set u defined on the leaves I of the tree
T , one can consider u to be a (possibly noisy) projection of
a general concept, u’s “head subject”, onto the corresponding
leaf cluster. Under this assumption, there should exist a head
subject node h among the interior nodes of the tree T such
that its leaf cluster I(h) more or less coincides (up to small
errors) with Su. This head subject is the generalization of u to
be found. The two types of possible errors associated with the
head subject, if it does not cover the base precisely, are false
positives and false negatives, referred to in this paper, as gaps
and offshoots, respectively. They are illustrated in Figures 2
and 3. Given a head subject node h, a gap is a node t covered
by h but not belonging to u, so that u(t) = 0. In contrast, an
offshoot is a node t belonging to u so that u(t) > 0 but not
covered by h. Altogether, the total number of head subjects,
gaps, and offshoots has to be as small as possible. To this end,
we introduce a penalty for each of these elements. Assuming
for the sake of simplicity, that the black box leaves on Figure
1 have membership function values equal to unity, one can
easily see that the total penalty at the head subject raised to
the root (Figure 2) is equal to 1+4λ where 1 is the penalty for
a head subject and λ, the penalty for a gap, since the lift on
Figure 2 involves one head subject, the root, and four gaps, the
blank box leaves. Similarly, the penalty for the lift on Figure
3 to the root of the left-side subtree is equal to 1 + γ + λ
where γ is the penalty for an offshoot, as there is one copy of
each, head subject, gap, and offshoot, in Figure 3. Therefore,
depending on the relationship between γ and λ either lift on
Figure 2 or lift on Figure 3 is to be chosen.

Consider a candidate node h in T and its meaning relative
to fuzzy set u. An h-gap is a node g of T (h), other than h,
at which a loss of the meaning has occurred, that is, g is a
maximal u-irrelevant node in the sense that its parent is not u-
irrelevant. Conversely, establishing a node h as a head subject
can be considered as a gain of the meaning of u at the node.
The set of all h-gaps will be denoted by G(h). A node t ∈ T
is referred to as u-irrelevant if its leaf-cluster I(t) is disjoint
from the base Su. Obviously, if a node is u-irrelevant, all of

21Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-707-8

CONTENT 2019 : The Eleventh International Conference on Creative Content Technologies



its descendants are also u-irrelevant.
An h-offshoot is a leaf i ∈ Su which is not covered by h,

i.e., i /∈ I(h). The set of all h-offshoots is Su − I(h). Given
a fuzzy topic set u over I , a set of nodes H will be referred
to as a u-cover if: (a) H covers Su, that is, Su ⊆

⋃
h∈H I(h),

and (b) the nodes in H are unrelated, i.e., I(h)∩I(h′) = ∅ for
all h, h′ ∈ H such that h 6= h′. The interior nodes of H will
be referred to as head subjects and the leaf nodes as offshoots,
so the set of offshoots in H is H ∩ I . The set of gaps in H
is the union of G(h) over all head subjects h ∈ H − I .

We define the penalty function p(H) for a u-cover H as:

p(H) =
∑

h∈H−I

u(h) +

+
∑

h∈H−I

∑
g∈G(h)

λv(g) +
∑

h∈H∩I

γu(h).
(1)

The problem we address is to find a u-cover H that
globally minimizes the penalty p(H). Such a u-cover is the
parsimonious generalization of the set u.

Before applying an algorithm to minimize the total penalty,
one needs to execute a preliminary transformation of the tree
by pruning it from all the non-maximal u-irrelevant nodes, i.e.,
descendants of gaps. Simultaneously, the sets of gaps G(t) and
the internal summary gap importance V (t) =

∑
g∈G(t) v(g) in

(1) can be computed for each interior node t. We note that the
elements of Su are in the leaf set of the pruned tree, and the
other leaves of the pruned tree are precisely the gaps. After
this, our lifting algorithm ParGenFS applies. For each node t,
the algorithm ParGenFS computes two sets, H(t) and L(t),
containing those nodes in T (t) at which respectively gains
and losses of head subjects occur (including offshoots). The
associated penalty p(t) is computed too.

An assumption of the algorithm is that no gain can happen
after a loss. Therefore, H(t) and L(t) are defined assuming
that the head subject has not been gained (nor therefore lost)
at any of t’s ancestors. The algorithm ParGenFS recursively
computes H(t), L(t) and p(t) from the corresponding values
for the child nodes in χ(t).

Specifically, for each leaf node that is not in Su, we set
both L(·) and H(·) to be empty and the penalty to be zero. For
each leaf node that is in Su, L(·) is set to be empty, whereas
H(·), to contain just the leaf node, and the penalty is defined
as its membership value multiplied by the offshoot penalty
weight γ. To compute L(t) and H(t) for any interior node t,
we analyze two possible cases: (a) when the head subject has
been gained at t and (b) when the head subject has not been
gained at t.

In case (a), the sets H(·) and L(·) at its children are not
needed. In this case, H(t), L(t) and p(t) are defined by:

H(t) = {t}, L(t) = G(t), p(t) = u(t) + λV (t). (2)

In case (b), the sets H(t) and L(t) are just the unions of those
of its children, and p(t) is the sum of their penalties:

H(t) =
⋃

w∈χ(t)

H(w), L(t) =
⋃

w∈χ(t)

L(w),

p(t) =
∑

w∈χ(t)

p(w).
(3)

To obtain a parsimonious lift, whichever case gives the smaller
value of p(t) is chosen.

When both cases give the same values for p(t), we may
choose, say, (a). The output of the algorithm consists of the
values at the root, namely, H – the set of head subjects and
offshoots, L – the set of gaps, and p – the associated penalty.

It was mathematically proven that the algorithm ParGenFS
leads to an optimal lifting indeed [5].

III. HIGHLIGHTING TENDENCIES IN THE CURRENT
RESEARCH BY CLUSTERING AND LIFTING A COLLECTION

OF RESEARCH PAPERS
Being confronted with the problem of structuring and

interpreting a set of research publications in a domain, one
can think of either of the following two pathways to take. One
is so-to-speak empirical and the other theoretical. The first
pathway tries to discern main categories from the texts, the
other, from knowledge of the domain. The first approach is
exemplified by the LDA-based topic modeling [2]; the second
approach, by using an expert-driven taxonomy, such as ACM-
CCS [1] (see, for example, [13]).

This paper follows the second pathway by moving, in
sequence, through the following stages:
• preparing a scholarly text collection;
• preparing a taxonomy of the domain under consider-

ation;
• developing a matrix of relevance values between tax-

onomy leaf topics and research publications from the
collection;

• finding fuzzy clusters according to the structure of
relevance values;

• lifting the clusters over the taxonomy to conceptualize
them via generalization;

• making conclusions from the generalizations.
Each of the items is covered in a separate subsection further
on.

A. Scholarly text collection
Because of a generous offer from the Springer Publisher,

we were able to download a collection of 17685 research
papers together with their abstracts published in 17 journals
related to Data Science for 20 years from 1998-2017 [5]. We
take the abstracts to these papers as a representative collection.

B. DST Taxonomy
Taxonomy building is a form of knowledge engineering

which is getting more and more popular. Most known are
taxonomies within the bioinformatics Genome Ontology (GO)
project [6], Health and Medicine SNOMED CT project [8]
and the like. Mathematically, a taxonomy is a rooted tree, a
hierarchy, whose all nodes are labeled by main concepts of the
domain the taxonomy relates to. The hierarchy corresponds to
the inclusion relation: the fact that node A is the parent of B
means that B is part, or a special case, of A.

The subdomain of our choice is Data Science, comprising
such areas as machine learning, data mining, data analysis, etc.
We take that part of the ACM-CCS 2012 taxonomy, which
is related to Data Science, and add a few leaves related to
more recent Data Science developments. The Taxonomy of
Data Science, DST, with all its 317 leaves, is presented in [5].

C. Deriving fuzzy clusters of taxonomy topics
Clusters of topics should reflect co-occurrence of topics:

the greater the number of texts to which both t and t′ topics
are relevant, the greater the interrelation between t and t′,
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the greater the chance for topics t and t′ to fall in the same
cluster. We have tried several popular clustering algorithms
at our data. Unfortunately, no satisfactory results have been
found. Therefore, we present here results obtained with the
FADDIS algorithm developed in [11] specifically for finding
thematic clusters. This algorithm implements assumptions that
are relevant to the task:

LN Laplacian Pseudo-Inverse Normalization (LaPIN):
Similarity data transformation, modeling – to an
extent – heat distribution and, in this way, making
the cluster structure sharper.

AA Additivity: Thematic clusters behind the texts are
additive, so that co-relevance similarity values are
sums of contributions by different hidden themes.

AN Non-Completeness: Clusters do not necessarily cover
all the key phrases available, as the text collection
under consideration may be irrelevant to some of
them.

1) Co-relevance topic-to-topic similarity score: Given a
keyphrase-to-document matrix R of relevance scores is con-
verted to a keyphrase-to-keyphrase similarity matrix A for
scoring the “co-relevance” of keyphrases according to the text
collection structure. The similarity score att′ between topics t
and t′ is computed as the inner product of vectors of scores
rt = (rtv) and rt′ = (rt′v) where v = 1, 2, . . . , V = 17685.
The inner product is moderated by a natural weighting factor
assigned to texts in the collection. The weight of text v is
defined as the ratio of the number of topics nv relevant to it
and nmax, the maximum nv over all v = 1,2,...,V. A topic is
considered relevant to v if its relevance score is greater than
0.2 (a threshold found experimentally, see [4]).

2) Fuzzy thematic clusters: To obtain fuzzy clusters of
topics we used a method FADDIS, that was developed in
[10]. FADDIS finds clusters one-by-one. Paper [11] provides
some theoretical and experimental computation results to
demonstrate that FADDIS is competitive over popular fuzzy
clustering approaches.

After computing the 317× 317 topic-to-topic co-relevance
matrix, converting it to a topic-to-topic LaPIN transformed
similarity matrix, and applying FADDIS clustering, we se-
quentially obtained 6 clusters, of which three clusters appear
to be obviously homogeneous. They relate to “Learning”,
“Retrieval”, and “Clustering”. These clusters, L, R, and C, are
presented in Tables I, II, and III, respectively.

D. Results of lifting clusters L, R, and C within DST
To apply ParGenFS algorithm, values of λ and γ should be

defined first. This may highly affect the results. In the example
above, lifting in Figure 2 is more parsimonious than lifting in
Figure 3 if γ > 3λ, or the latter, if otherwise. We define
off-shoot penalty γ = 0.9 to make it almost as costly as a
head subject. In contrast, the gap penalty is defined as λ =
0.1 to take into account that every node in the taxonomy tree
has about 10-15 children so that half-a-dozen gaps would be
admissible. The clusters above are lifted in the DST taxonomy
using ParGenFS algorithm with these parameter values.

The results of lifting of Cluster L are shown in Figure
4. There are three head subjects: machine learning, machine
learning theory, and learning to rank. These represent the
structure of the general concept “Learning” according to the
text collection under consideration. The list of gaps obtained
is less instructive, reflecting probably a relatively modest

TABLE I. CLUSTER L “LEARNING”: TOPICS WITH MEMBERSHIP
VALUES GREATER THAN 0.15

u(t) Code Topic
0.300 5.2.3.8. Rule Learning
0.282 5.2.2.1. Batch Learning
0.276 5.2.1.1.2. Learning to Rank
0.217 1.1.1.11. Query Learning
0.216 5.2.1.3.3. Apprenticeship Learning
0.213 1.1.1.10. Models of Learning
0.203 5.2.1.3.5. Adversarial Learning
0.202 1.1.1.14. Active Learning
0.192 5.2.1.4.1. Transfer Learning
0.192 5.2.1.4.2. Lifelong Machine learning
0.189 1.1.1.8. Online Learning Theory
0.166 5.2.2.2. Online Learning Settings
0.159 1.1.1.3. Unsupervised Learning and Clustering

TABLE II. CLUSTER R “RETRIEVAL”: TOPICS WITH MEMBERSHIP
VALUES GREATER THAN 0.15

u(t) Code Topic
0.211 3.4.2.1. Query Representation
0.207 5.1.3.2.1. Image Representations
0.194 5.1.3.2.2. Shape Representations
0.194 5.2.3.6.2.1 Tensor Representation
0.191 5.2.3.3.3.2 Fuzzy Representation
0.187 3.1.1.5.3. Data Provenance
0.173 2.1.1.5. Equational Models
0.173 3.4.6.5. Presentation of Retrieval Results
0.165 5.1.3.1.3. Video Segmentation
0.155 5.1.3.1.2. Image Segmentation
0.154 3.4.5.5. Sentiment Analysis

TABLE III. CLUSTER C “CLUSTERING”: TOPICS WITH
MEMBERSHIP VALUES GREATER THAN 0.15

u(t) Code Topic
0.327 3.2.1.4.7 Biclustering
0.286 3.2.1.4.3 Fuzzy Clustering
0.248 3.2.1.4.2 Consensus Clustering
0.220 3.2.1.4.6 Conceptual Clustering
0.192 5.2.4.3.1 Spectral Clustering
0.187 3.2.1.4.1 Massive Data Clustering
0.159 3.2.1.7.3 Graph Based Conceptual Clustering
0.151 3.2.1.9.2. Trajectory Clustering

coverage of the domain by the publications in the collection
(see in Table IV).

Similar comments can be made with respect to results of
lifting of Cluster R: Retrieval. The obtained head subjects:
Information Systems and Computer Vision show the structure
of “Retrieval” in the set of publications under considerations.

For Cluster C 16 (!) head subjects were obtained: cluster-
ing, graph based conceptual clustering, trajectory clustering,
clustering and classification, unsupervised learning and clus-
tering, spectral methods, document filtering, language models,
music retrieval, collaborative search, database views, stream
management, database recovery, mapreduce languages, logic
and databases, language resources. As one can see, the core
clustering subjects are supplemented by methods and environ-
ments in the cluster – this shows that the ever increasing role
of clustering activities perhaps should be better reflected in the
taxonomy.
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Figure 4. Lifting results for Cluster L: Learning. Gaps are numbered, see Table IV.

TABLE IV. GAPS AT THE LIFTING OF CLUSTER L

Number Topics
1 ranking, supervised learning by classification,

structured outputs
2 sequential decision making in practice,

inverse reinforcement learning in practice
3 statistical relational learning
4 sequential decision making, inverse reinforcement learning
5 unsupervised learning
6 learning from demonstrations, kernel approach
7 classification and regression trees, kernel methods,

neural networks, learning in probabilistic graphical models,
learning linear models, factorization methods,
markov decision processes, stochastic games,
learning latent representations, multiresolution,
support vector machines

8 sample complexity and generalization bounds,
boolean function learning, kernel methods,
boosting, bayesian analysis, inductive inference,
structured prediction, markov decision processes,
regret bounds

9 machine learning algorithms

E. Making conclusions
We can see that the topic clusters found with the text

collection do highlight areas of soon-to-be developments.
Three clusters under consideration closely relate, in respect,
to the following processes:
• theoretical and methodical research in learning, as well

as merging the subject of learning to rank within the
mainstream;

• representation of various types of data for information
retrieval, and merging that with visual data and their
semantics; and

• various types of clustering in different branches of the
taxonomy related to various applications and instru-
ments.

In particular, one can see from the “Learning” head subjects
(see Figure 4 and comments to it) that main work here still
concentrates on theory and method rather than applications.
A good news is that the field of learning, formerly focused
mostly on tasks of learning subsets and partitions, is expanding
currently towards learning of ranks and rankings. Of course,
there remain many sub-areas to be covered: these can be seen
in and around the list of gaps in Table IV.

Moving to the lifting results for the information retrieval
cluster R, we can clearly see the tendencies of the contem-
porary stage of the process. Rather than relating the term
“information” to texts only, as it was in the previous stages of
the process of digitalization, visuals are becoming parts of the
concept of information. There is a catch, however. Unlike the
multilevel granularity of meanings in texts, developed during
millennia of the process of communication via languages in
the humankind, there is no comparable hierarchy of meanings
for images. One may only guess that the elements of the R
cluster related to segmentation of images and videos, as well
as those related to data management systems, are those that are
going to be put in the base of a future multilevel system of
meanings for images and videos. This is a direction for future
developments clearly seen from lifting results.

Regarding the “clustering” cluster C with its 16 (!) head
subjects, one may conclude that, perhaps, a time moment has
come or is to come real soon, when the subject of clustering
must be raised to a higher level in the taxonomy to embrace all
these “heads”. At the beginning of the Data Science era, a few
decades ago, clustering was usually considered a more-or-less
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auxiliary part of machine learning, the unsupervised learning.
Perhaps, soon we are going to see a new taxonomy of Data
Science, in which clustering is not just an auxiliary instrument
but rather a model of empirical classification, a big part of the
knowledge engineering.

It should be pointed out that analysis of tendencies of
research is carried out by several groups using co-citation
data, especially in dynamics (see, for example, a review in
[3]). This approach leads to conclusions involving “typical”,
rather than general, authors and/or papers, and, therefore, is
complementary to our approach.

IV. CONCLUSION AND FUTURE WORK
This paper presents a formalization of the concept of

generalization, an important part of the human ability for
conceptualization. According to Collins Dictionary, concep-
tualization is “formation (of a concept or concepts) out of
observations, experience, data, etc.” We assume that such an
operation may require a coarser granularity of the domain
structuring. This is captured by the idea of lifting a query
set to higher ranks in a hierarchical taxonomy of the domain.

The hierarchical structure of taxonomy brings in possible
inconsistencies between a query set and the taxonomy struc-
ture. These inconsistencies can be of either of two types, gaps
or offshoots, potentially emerging at the coarser “head subject”
to cover the query set. A gap is such a node of the taxonomy,
that is covered by the head subject but does not belong in
the query set. An offshoot is a node of the taxonomy, that
does belong in the query set but is not covered by the head
subject. The higher the rank of a candidate for the conceptual
head subject, the larger the number of gaps. The lower is the
rank of the head subject, the larger the number of offshoots.
Our algorithm ParGenFS allows to find a globally optimal
lifting to balance the numbers of head subjects, gaps, and
offshoots depending on relative penalties for these types of
inconsistencies.

The proposed approach to generalization can be used in
a number of similar tasks, such as positioning of a research
project, interpretation of a concept which is not present in the
taxonomy, annotation of a set of research articles. These all
are parts of the processes of long-term research analysis and
planning at which our approach should be positioned.

Among major issues requiring further development in this
direction, two of the most relevant are taxonomy developments
and specifying penalty weights. The former needs more at-
tention both from research communities and planning com-
mittees. Specifically, most urgent directions for development
here are: developing better methods to automate the process
of taxonomy making and open discussion of the taxonomies at
conferences and meetings of research communities and com-
mittees. Our current approach could be used for automation of
updating taxonomies at the situations at which there are too
many head subjects, like in the case of “Clustering” cluster
in this paper. As to the latter, a reasonable computational
progress over penalty weights can be achieved, in our view, by
replacing the criterion of maximum parsimony by the criterion
of maximum likelihood if each node of the taxonomy can be
assigned probabilities of “gain” and “loss” of topic events.

ACKNOWLEDGMENT
D.F. and B.M. acknowledge continuing support by the

Academic Fund Program at the National Research Univer-

sity Higher School of Economics (grant 19-04-019 in 2018-
2019) and by the International Decision Choice and Analysis
Laboratory (DECAN) NRU HSE, in the framework of a
subsidy granted to the HSE by the Government of the Russian
Federation for the implementation of the the Russian Academic
Excellence Project “5-100”. S. N. acknowledges the support
by FCT/MCTES, NOVA LINCS (UID/CEC/04516/2013)

REFERENCES
[1] The 2012 ACM Computing Classification System. [Online]. Avail-

able:http://www.acm.org /about/class/2012 (Retrieved 17 March, 2019).
[2] D. Blei, “Probabilistic topic models,”Communications of the ACM, 55

(4), pp. 77–84, 2012.
[3] C. Chen, “Science mapping: A systematic review of the literature”,

Journal of Data and Information Science, vol. 2, no. 2, pp. 140, 2017.
[4] E. Chernyak, “An approach to the problem of annotation of research

publications.” Proceedings of the 8th ACM international conference on
web search and data mining, ACM, pp. 429-434, 2015.

[5] D. Frolov, B. Mirkin, S. Nascimento, and T. Fenner, “Finding
an appropriate generalization for a fuzzy thematic set in
taxonomy”, Working paper WP7/2018/04, Moscow, Higher
School of Economics Publ. House, 60 p., 2018 (URL:
https://wp.hse.ru/data/2019/01/13/1146987922/WP7 2018 04
.pdf, retrieved 17 March, 2019).

[6] Gene Ontology Consortium, “Gene ontology consortium: going for-
ward”, Nucleic Acids Research, vol. 43, pp. D1049-D1056, 2015.

[7] R. Klavans and K. W. Boyack, ”Which type of citation analysis
generates the most accurate taxonomy of scientific and technical
knowledge?”, Journal of the Association for Information Science and
Technology, 68(4), pp. 984-998, 2017.

[8] D. Lee, R. Cornet, F. Lau, and N. De Keizer, “A survey of SNOMED
CT implementations,” Journal of Biomedical Informatics, vol. 46, no.
1, pp. 87-96, 2013.

[9] E. Lloret, E. Boldrini, T. Vodolazova, P. Martnez-Barco, R. Munoz, and
M. Palomar, “A novel concept-level approach for ultra-concise opinion
summarization”, Expert Systems with Applications, 42(20), pp. 7148-
7156, 2015.

[10] B. Mirkin and S. Nascimento, “Additive spectral method for fuzzy
cluster analysis of similarity data including community structure and
affinity matrices,” Information Sciences, vol. 183, no. 1, pp. 16-34,
2012.

[11] B. Mirkin, Clustering: A Data Recovery Approach, Chapman and
Hall/CRC Press, 2012.

[12] G. Mueller and R. Bergmann, “Generalization of Workflows in Process-
Oriented Case-Based Reasoning”, In FLAIRS Conference, pp. 391-396,
2015.

[13] S. Nascimento, T. Fenner, and B. Mirkin, “Representing research
activities in a hierarchical ontology,” in Procs. of 3rd International
Workshop on Combinations of Intelligent Methods and Applications
(CIMA 2012), Montpellier, France, August, pp. 23-29, 2012.

[14] Y. Song, S. Liu, X. Liu, and H. Wang, “Automatic taxonomy con-
struction from keywords via scalable bayesian rose trees,” In IEEE
Transactions on Knowledge and Data Engineering, 27(7), pp. 1861-
1874, 2015.

[15] N. Vedula, P.K. Nicholson, D. Ajwani, S. Dutta, A. Sala, and S.
Parthasarathy, “Enriching Taxonomies With Functional Domain Knowl-
edge,” In The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval, ACM, pp. 745-754, 2018.

[16] J. Waitelonis, C. Exeler, and H. Sack, “Linked data enabled generalized
vector space model to improve document retrieval,” In Proceedings of
NLP & DBpedia 2015 workshop in conjunction with 14th International
Semantic Web Conference (ISWC), CEUR-WS, vol. 1486, 2015.

[17] C. Wang, X. He, and A. Zhou, “A Short Survey on Taxonomy Learn-
ing from Text Corpora: Issues, Resources and Recent Advances,” In
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 1190-1203, 2017.

25Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-707-8

CONTENT 2019 : The Eleventh International Conference on Creative Content Technologies


