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Abstract—We present a new method for video segmentation
of RGB-D video data acquired from a non-stationary RGB-D
camera. Our method uses a novel method of dynamic 3D bound-
ing box estimation for moving objects that correctly classifies
foreground and background elements of a scene even in the
presence of high camera motion. Starting from the acquisition
of a dynamic object using a non-stationary RGB-D camera,
our method finds the mapping between different frames of the
video data using the image features. The mapping between the
image features derives our novel method of dynamic 3D bounding
estimation that correctly segments the moving object in spite of
the camera motion. The segmented video data can be employed
in a number of applications, e.g., video editing, motion capture,
action recognition, visual FX processing, or free-viewpoint video.

Keywords–RGB-D Video; Non-Stationary RGB-D Camera;
Video Segmentation, 3D Animation.

I. INTRODUCTION

Background segmentation is one of the important steps
that is employed at the start of a number of Computer Vision
algorithms. It deals with separating the foreground from the
background by correctly classifying the parts of the image in
either category. The algorithm when applied on the video data
to separate two or more segments is called Video Segmenta-
tion. Traditionally, the video segmentation is done against a
static background using the color cameras, and a number of
methods have been proposed in this area [1]. The resulting
segmented video from these methods is then employed in a
number of applications [2] [3] [4]. A video acquired from
a stationary camera is suitable for a static setting similar
to a recording studio that requires some dedicated space for
acquisition. The cameras are mounted at some specific points
and the moving object is confined to a specific area.

In recent years, with the advent of mobile phones and
smaller cameras, more and more video is captured from non-
stationary cameras. In addition, the arrival of consumer grade
RGB-D cameras, e.g., Microsoft Kinect [5], have opened
new ways to capture true 3D video using a single camera.
The captured 3D video is used in applications ranging from
video games to 3D visualizations on mobile, or virtual reality
devices. In order to correctly visualize a moving object cap-
tured from a non-stationary RGB-D camera, it is important
to segment the video data correctly into background and
foreground. The problem is very challenging because, in the
data from a moving camera, the background and foreground

are both moving and thus the algorithms that rely on the static
background fail on this type of data.

Recently, a number of new methods are proposed in
the area of segmentation of video data from non-stationary
cameras [6] [7]. Lim et al. [8] estimate the fundamental
matrix from frame correspondences to label the foreground
and background pixels. Kwak et al. [9] extended this approach
with a non-parametric framework. Zhang et al.[7] estimate
the full camera motion for the true 3D reconstruction of
the scene and then used the depth information to label the
foreground and the background. Sheikh et al. [10] and Cui
et al. [11] presented factorization-based approach from the
tracked points. Narayna et al. [12] presented a method of video
segmentation from a moving RGB camera using optical flow.
Yi et al. [13] presented another method for video segmentation
from a moving RGB camera using dual-mode Single Gaussian
Model. Background segmentation using depth data has also
received lots of attention in the last couple of years [14].
Koutlemanis et al. [15] presented a method of foreground
detection with a moving RGB-D camera while using an initial
background frame as the reference model. Zamalieva et al. [16]
employed a tracklets-based method to estimate the epipolar
geometry using the temporal fundamental matrix [17] of the
scene and a labeling method for video segmentation.

In this paper, we present a new method for video segmen-
tation of RGB-D video data acquired from a non-stationary
camera. We start from the data acquired from a non-stationary
Microsoft Kinect v2 RGB-D camera. Unlike the method from
Koutlemanis et al. [15], our method does not rely on any a prior
background information. Similar to Zamalieva et al. [16], we
start by estimating the feature points and their matches over
an interval in the video sequence. Our matching algorithm
does not need dense matching, as used by [16], therefore
instead of using optical flow, we only need a sparse matching.
Afterward, we present a novel dynamic 3D bounding box
estimation method that provides a solution in three-space,
which is employed to segment all the frames of the RGB-D
video sequence. The result of our work is a segmented video
data using a novel algorithm from a non-stationary RGB-D
camera.

In the following sections, we detail our segmentation
method, first, the data acquisition and calibration is presented
in Section II, afterward, the video segmentation algorithm is
explained in Section III, followed by results (Section IV) and
conclusion (Section V).
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Figure 1. (left) RGB frame, (middle) Depth frame. (right) 3D point cloud resampled from mapping the depth frame to three-space coordinates. Mapping
between the depth and RGB frames is used to determine the color of each 3D point.

II. DATA ACQUISITION AND CALIBRATION

We acquire the RGB-D data of a moving subject using
Microsoft Kinect v2 sensor [5]. This most recent version
of Kinect can record full HD (1920x1080) RGB data at 30
frames per second. Compared to Kinect v1 (640x480), it is a
significant increase. Kinect v2 can record the depth data at the
resolution of 512x424 at 30 frames per seconds. In comparison
to Kinect v1 depth data resolution of 320x240, the increase is
modest but the underlying acquisition mechanism is enhanced
to capture the higher density of depth data.

In our work, we use a single moving Kinect to acquire
the RGB-D data at these default resolutions and frame rate.
Our method is not confined to a single Kinect and can be
easily extended to a multiple Kinect setup, as demonstrated by
Ahmed et al. [18]. We capture both depth and color streams
that are directly saved to the memory to avoid IO overheads
and then later written to the disk once the recording is finished.
Our acquisition tool is implemented using Microsoft Kinect
SDK 2.0. It allows the acquisition of both RGB and depth
data through a USB 3.0 interface. While acquiring the data
we manually move the Kinect (rotation and translation) so that
the condition for the non-stationary camera is fulfilled. To this
end, we capture two images, one RGB and one depth, for each
frame of the captured sequence. A captured RGB, and depth
frame can be seen in Figure 1(left, and middle).

The acquired RGB and depth data have different resolu-
tions, i.e., RGB data is stored in an 8 bit color image of
size 1920x1080, whereas the depth data is stored in a 16
bit greyscale image of size 512x424. A camera acquisition
setup requires a number of calibrations to determine internal
(intrinsic) and external (extrinsic) camera parameters. The
intrinsic camera parameters are required to determine the
projection of 3D world on the camera’s image plane, while
the extrinsic parameters are required to estimate the camera’s
position in the real-world. A Kinect is comprised of two
cameras, RGB and depth. Thus in addition to the intrinsic
calibration of each camera, an extrinsic calibration between the
two cameras is needed, so that the depth camera can be mapped
to the color camera or vice versa. Moreover, the depth camera
returns one depth value for each pixel in the depth image that
has to be mapped to the real-world three-space coordinates, if
the depth data is to be visualized in the form of a 3D point
cloud. Since we are only working with a single Kinect, our
method does not directly need an extrinsic calibration between
multiple cameras.

We use Microsoft Kinect SDK 2.0 to determine all the

required camera calibration parameters. Kinect SDK 2.0 pro-
vides the extrinsic calibration from color to depth that is stored
in a 1920x1080 file with two floating point values stored for
each pixel. In addition, the mapping from a depth value to
the real-world three-space value is acquired after the data
acquisition is finished to store the data also in the form of a
3D point cloud. A resampled 3D point cloud with the mapping
to RGB data can be seen in Figure 1(right).

III. VIDEO SEGMENTATION

As explained in the previous section, the acquired RGB
and depth data are resampled in a 3D point cloud with
the RGB mapping. This 3D point cloud data shows all the
acquired points comprising of the moving actor and the static
background, as can be seen in Figure 1(right). In general,
for most of the applications that use the video data of a
moving actor for further analysis, the only relevant part of
the video is the actor rather than the static background. The
process of separating the foreground from the background is
the well-known process of ”Background Subtraction” or in the
case of video data ”Video Segmentation”, which has been
employed in a number of methods for a number of years.
Traditionally, most of the algorithms for video segmentation
rely on the stationary camera to correctly estimate the static
background [1], or rely on an initial manual estimate of the
foreground or background. These methods have been proved
extremely useful for a number of applications, but do not work
if the data is acquired from a moving camera. In recent times,
more and more data is acquired from the moving cameras,
thus it is imperative to have methods that can perform the
video segmentation for the non-stationary cameras.

For the non-stationary camera video segmentation, our
method relies on the acquired RGB-D video data along with
the mapping from depth to RGB data (Section II). Our method
does not make any assumptions about the background, and
does not need any initial estimate for the background. As the
starting point, we extract Speeded Up Robust Features [19]
(SURF) in all the RGB frames. These feature points are then
matched over two frames to estimate the camera and object
motion. Our main assumption is that given the moving camera,
the motion of the background and the dynamic background will
be different in terms of their velocity. The background motion
being static will be dependent on the camera motion, whereas
the foreground being dynamic will have its own motion in
addition to the camera motion. It is to be noted that the
background refers to the static part of the scene and it can
have different depth values, and thus the depth information
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Figure 2. (left) shows the feature matching if two consecutive frames are used. (right) shows the feature matching over the interval of 10 frames. The motion
is more pronounced when the frame distance is greater. Incorrect matches are automatically filtered before any additional processing.

alone cannot segment the foreground. Similarly, our method
would not work if there is no movement in the foreground.

The matching of feature points provides us with the move-
ment of each feature point over time. The matching gives
both the speed and direction (velocity) of each feature point.
The main assumption of our algorithm is that foreground and
background should exhibit different velocity in terms of their
feature points and in addition, the higher proportion of feature
points will belong to the background. Kinect records data at
30 fps, thus frame to frame motion might be very small if the
camera or the object are not moving very fast, and it would
be impossible to differentiate between the foreground and the
background based on the limited motion. Therefore, instead
of comparing two consecutive frames, we compare frames
at an interval of 10 frames that provides enough motion to
differentiate between the potential foreground and background
feature points. The interval size is chosen after analyzing the
camera motion from the SURF matching. A sequence with the
fast moving camera can have a smaller interval. In our method,
we make sure that the matching distance should be at least
greater than 2% of the image width. This satisfy the criteria
of having a difference of more than 98% dissimilarity between
the two frames. A comparison of feature point matching can
be seen in Figure 2.

The initial match at the interval of 10 frames provides
us with the starting point for our algorithm. Based on these
matches, we first discard incorrect matches. The incorrect
matches can occur due to the underlying SURF feature match-
ing algorithm that is not the contribution of our work, rather
we use it as it is. Incorrect matches are easier to discard using
simple sanity checks based on the standard deviation of the
speed and direction of all the matches. The feature matches
that do not lie within the 95% of the confidence interval are
discarded.

The filtered matches are then classified into multiple
groups. We pick a feature match at random. The selected
feature match is then used to find all the feature matches that
are closer to it in terms of its velocity. We use a threshold
of ±10% to find similar feature matches. Once the iterative
process is finished, a group of feature matches is formed.
From the remaining matches, a new feature match is randomly
selected and the same iterative process of finding similar
feature matches from the remaining set is repeated. This
process is repeated till all the feature matches are classified

in one of the groups. At the end of the process, a number
of groups of matches will be found. The number of groups
will depend on the type of the motion of the moving object.
For example, a dynamic object with a rigid body motion
couple with a static background will have small number of
groups. The background will move according to the camera
motion, while the dynamic object will have only one additional
movement in addition to the camera motion. Other non-linear
motions, e.g., a human, would depict different types of motion,
i.e., arms moving in one direction while the body moves in the
other direction. This combined with the camera motion will
result in more groups of matches for each type of motion.

Figure 3. (left) shows the 3D bounding box localizing the foreground at one
particular frame. (right) shows the dynamic bounding box spanning over the
period of 10 frames that is used to segment the foreground over that interval.

In the end, once the groups are formed, our main assump-
tion is that the group with the maximum matches will belong
to the background and the rest of the groups will be classified
as the foreground matches. This assumption is valid in our
case, as most our scene is made up of the static background
that appears to move because of the camera motion and
there is only one dynamic object. If there are more than one
dynamic objects in the scene then a different approach would
be required to further classify the foreground into different
segments, as discussed in Section IV.

Now that the feature points that belong to the foreground
are identified, they are used to estimate a dynamic 3D bound-
ing box over the interval of 10 frames. To get this bounding
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Figure 4. (left) the original RGB frame, (middle) segmented background, and (right) segmented foreground. The motion of the object and the camera is
evident from these images.

box, the calibration results (Section II) are used to first find
the mapping of the foreground feature points to the depth
image. The depth to three-space mapping provides the 3D
points corresponding to each feature point. Based on the depth
data of all the feature points that belong to the foreground, we
find the minimum and maximum depth value in these feature
points. This provides us a 3D bounding box in the depth image
at both frames. This bounding box is expanded by 20% on each
side to get a conservative estimate of the true foreground. If
the grown bounding box incorporates a background matching
feature then its size is reduced unless the background feature
point is removed from the bounding box. All the pixels in
the depth image inside this bounding box at each frame are
then classified as the foreground. The depth to three-space
mapping also provides us with the bounding box that can
segment the 3D point cloud at each frame, Figure 3(left). The
minimum and maximum values of the two bounding boxes at
10 frame interval provide a stretched 3D dynamic bounding
box that encompasses the motion of the object over these
frames, Figure 3(right).

The stretched 3D dynamic bounding is then used to seg-
ment all the in-between frames. The approach works in both
depth image, or in the three-space. All points that lie within

this stretched 3D dynamic bounding box from frame 2 to 9
are classified as the foreground and the background points are
discarded. The algorithm is then trivially extended iteratively
over the next 10 frames till the end of the sequence. Some
more results of the video segmentation can also be seen in
Figure 4.

IV. RESULTS

We recorded a data set to test and validate our method. The
data set is 200 frames long and was acquired using Kinect v2
via our acquisition system (Section II). In the recorded RGB-
D sequence, the object depicts a walking motion towards the
camera, while the camera rotates and moves freely. Our method
was able to segment the foreground from the static background
completely, even with the camera motion and the classification
of the foreground and background was excellent based on the
visual analysis. It can be seen in the results, Figure 3 and
Figure 4 that our method is able to successfully segment the
foreground even in the case of high camera motion. As our
method depends on the depth data for the segmentation, the
slight artifacts in the results are due to the missing depth data
that is a limitation of Kinect, rather than our method.

Our method is very efficient. We consider calculating
SURF features and matching as a pre-processing step. In terms
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of actual run-time of the algorithm, it takes around a second
to estimate the dynamic 3D bounding box over 10 frames and
segment the remaining 8 frames. Thus, a sequence of 200
frames is processed within 20 seconds. The main bottleneck is
the file output that can take additional 40 seconds for all the
frames for the segmented foreground and background.

Our method is subject to a couple of limitations. The
method relies on the SURF matching that depends on the
quality of RGB data. In general, it works fine because Kinect
v2 captures full HD video at 30 fps that results in the sharp
high quality video that is suitable for finding a good number
of feature points and matches under the assumption that the
motion is not very fast. For a very fast motion, a higher frame-
rate camera will be required. Our choice of 10 frames interval
seems arbitrary but it works well in practice. The number of
frames in the interval depend on the type of motion. If the
motion is fast then the interval should be short and vice versa.
One can quantify the interval by creating a heuristic over the
velocity of feature points. If the speed is very high over 10
frames then the interval can be reduced to bring the speed
within a certain limit. In future, we would like to implement
this method to further automate the segmentation process.
Additionally, our method works fine for a scene comprising
of a single dynamic object, but at the moment we do not
provide any method to further segment the foreground in case
of multiple dynamic objects. It is a challenging problem that
we are considering for the future work. Finally, we do not
validate the goodness of our method quantitatively but rather
through the visual analysis. It is to be noted that as the camera
is moving there is no ground truth available for us to compare
the background to the foreground. So far, we have resorted to
the visual analysis of the results for the validation, but for the
future work we will also generate synthetic data for the ground
truth validation.

Despite the limitations, our method shows that it is possible
to do segmentation of the video data from a moving RGB-D
camera using both RGB and depth data.

V. CONCLUSIONS

We presented a new method to segment video data from a
moving RGB-D camera. Our method uses Kinect v2 to acquire
both the RGB and depth video data together with intrinsic
and extrinsic parameters of both RGB and depth cameras.
Initially, SURF algorithm is used to find feature points in
RGB images that are matched over an interval of 10 frames
to get a meaningful classification of feature points belonging
to foreground and background based on their velocities. The
feature points are segmented into two clusters, and the size of
the clusters is used to identify the foreground feature points.
The foreground feature points are then mapped to depth coor-
dinates that are used to find a bounding box of the foreground
in each frame based on the minimum and maximum depth
value. The two 3D bounding boxes at 10 frames interval is
then used to estimate a dynamic 3D bounding box over the
10 frames interval that is used to segment the foreground
over the in-between frames. The method is then iteratively
extended over the next 10 frames till the end, to segment
the complete sequence. The method allows a general purpose
video segmentation of dynamic objects from a non-stationary
RGB-D cameras. It can be used in a number of scenarios
where an RGB-D camera can be arbitrarily deployed to capture

a scene without any constraints in terms of positioning the
camera. In future, we plan to extend our work to include
validation using the synthetic data and further segment the
foreground to identify multiple dynamic objects.
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