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Abstract—We present the general idea of a computer vision 

structure-from-motion framework that makes use of sensor 

fusion to provide very accurate and efficient multi-view 

reconstruction results that can capture internal geometry. 

Given the increased ubiquity and cost-effectiveness of 

embedding sensors, such as positional sensors, into objects, it 

has become feasible to fuse such sensor data and camera-

acquired data to vastly improve reconstruction quality and 

enable a number of novel applications for structure-from-

motion. Application areas, which require very high accuracy, 

include medicine, robotics, security, and additive 

manufacturing (3D printing). Specific examples and initial 

results are discussed, followed by a discussion on proposed 

future work. 

Keywords-sensor fusion; embedded sensors; multi-view 

reconstruction; structure-from-motion; Kinect. 

I.  INTRODUCTION 

In the past few years, there has been a great increase in 
the amount of sensors that are embedded into every day 
devices on account of the positive trends in lower costs and 
miniaturization. For example, consider a modern Android® 
or iOS® phone whose internal sensors (Global Positioning 
System (GPS), camera, gyroscope, magnetometer, 
accelerometer, proximity, audio, and more) drastically 
outnumber the bigger and less capable cellular phones of 
prior generations. This trend extends outside of industry and 
into research where other common sensors, including radar, 
sonar, LIDAR, infrared, seismic, and magnetic have become 
utilized more often. 

The ubiquity of such sensors and their data creates a 
sensor fusion problem. Sensor fusion involves combining 
data acquired from different sources in order to provide more 
accurate or complete information about the sensed target 
than if these sources were utilized individually. Fusion is 
non-trivial, and is a very relevant topic today in fields such 
as computer vision. 

In computer vision, one specific instance of sensor fusion 
is the Red-Green-Blue-Depth (RGB-D) camera, such as the 
Microsoft Kinect®, which jointly acquires color (RGB) data 
and depth (D) values for each pixel. The addition of depth 
freed the Kinect from a certain amount of dependence on 
analyzing only color to do feature detection, object 
identification, edge detection, and other fundamental parts of 
object reconstruction. This boon for research in 
reconstruction and many other fields culminated in 
KinectFusion [1], which we describe in the next section. But 
even the KinectFusion has practical limitations for high-

accuracy applications because depth estimates tend to be 
noisy, and without very accurate filtering, are generally not 
accurate enough to provide reliable data for up-and-coming 
applications in medicine, 3D printing and robotics. More 
traditional methods, like structure-from-motion, space 
carving and others [2] can be more accurate but are typically 
less dense. These issues are only exacerbated for additively 
manufactured objects, which are typically texture-less and 
mono-colored when produced by current consumer 
hardware. Figure 1 shows some examples of these objects, 
including a fully functional ball bearing whose 
reconstruction would have to be very precise and take into 
account internal geometry (something the systems discussed 
cannot do due to occlusions) to maintain functional geometry 
once reconstructed. 

Inspired by the gains achieved from adding depth 
measurements, we investigate the benefits of using positional 
sensors to assist in multi-view scene reconstruction. To that 
end, we present initial results on the development of a 
generalized framework for 3D scene reconstruction aided by 
any mix of positional data, such as RGB-D or sonar and 
photographic imagery. Furthermore, we explore the idea of 
placing these sensors internally in order to reconstruct 
internal structure. We show that fusing positional data with 
traditional images improves the accuracy of camera pose 
estimation and scene reconstruction, especially when dealing 
with texture-less or mono-colored objects.  This fusion also 
has the potential to capture internal structure as opposed to 
standard structure- from-motion approaches. Background 
and related work is discussed in Section II. Some concrete 
applications and results will be discussed in Section III. 
Conclusions and future work will be discussed in Section IV. 

 
Figure 1. Additively manufactured objects that present challenges. 

 

65Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-342-1

CONTENT 2014 : The Sixth International Conference on Creative Content Technologies



II. BACKGROUND AND RELATED WORK 

To our knowledge, we are the first to propose using 

internally embedded sensors for multi-view reconstruction. 

We provide a general background on computer vision and 

contributions towards scene reconstruction in Section II-A, 

and discuss recent work on fusing sensing technology with 

imagery, specifically RGB-D cameras, in Section II-B. We 

will also discuss recent work on the imaging of internal 

geometry in Section II-C. 

A. General Background of Scene Reconstruction 

The broad field of computer vision includes important 
sub-fields such as object detection, tracking, and the multi- 
view reconstruction of scenes. The goal of multi-view scene 
reconstruction is to extract a 3D point cloud representing a 
scene when given multiple views (such as photographs) of 
the scene. Detailed analysis and comparisons between 
methods are available in the literature [2]. Most of these 
methods seek to create correspondences between views, 
usually by detecting features and tracking them from view to 
view. One of the main algorithms used to do this is Scale-
Invariant Feature Transform (SIFT) [3]. For an excellent 
overview of many classical vision algorithms, the reader is 
referred to Hartley and Zisserman [4]. 

One drawback of current computer vision methods is that 
many are based on the mathematical optimization of initial 
parameter estimates to achieve accurate results. Though such 
optimization is provably necessary, such as in the case of the 
well-known bundle adjustment [5] in structure-from-motion, 
the final accuracy is simply not enough for applications that 
require an extreme amount of accuracy. Furthermore, the 
density of these reconstructions often leaves something to be 
desired. 

B. RGB-D Cameras 

To alleviate the density problem, there has been interest 
in utilizing depth sensing technologies for object 
reconstruction for a long time [6], but it is only recently that 
the technology has become very affordable and easy to use 
with the release of the Microsoft Kinect® in late 2010. With 
it, came a plethora of reconstructions of people [7] and 
indoor environments [8]. One of the biggest successes is 
KinectFusion, which fuses depth data and RGB data from a 
movable Kinect in real time to create a dense scene 
reconstruction as the user moves through the scene. Given its 
ubiquity and success, we will further detail the KinectFusion 
algorithm [1][9], since this is the main algorithm we want to 
challenge as far as reconstruction density and accuracy for 
our intended applications. The main goal of KinectFusion is 
to fuse depth data acquired from a Kinect sensor into a 
single, global surface model of the viewed scene, in real-
time. Additionally, 6DOF sensor pose is simultaneously 
obtained by tracking the live depth frame relative to the 
global model using a coarse-to-fine Iterative Closest Point 
(ICP) algorithm [20].  

The KinectFusion algorithm can be considered an 
upgrade to previous ‘monocular Simultaneous Localization 
and Mapping (SLAM)’ systems [21], the most successful 

being the Parallel Tracking and Mapping (PTAM) system 
[10]. The main drawback of those systems is that they are 
optimized for efficient camera tracking, but produced only 
sparse point cloud models. Even in novel systems, which 
combine PTAM’s camera tracking capability with dense 
surface reconstruction methods (such as described in [1]) in 
order to enable better occlusion prediction and surface 
interaction [11][12], dense scene reconstruction in real-time 
remains a challenge. Results are still highly dependent on 
factors such as camera motion and scene illumination. 

KinectFusion has been proven to work well for situations 
with a dynamic element involved: either the objects in the 
scene or the camera itself is moving. In our applications, 
we're more interested in acquiring a very high level of detail, 
even from a completely static setup. For instance, the 
KinectFusion algorithm relies on bilateral filtering on the 
initial depth maps, for noise removal. Though very helpful 
towards the original algorithm, such smoothing must be 
further analyzed in our framework, since it reduces noise but 
effectively also smooths sharp contrasts and levels of detail. 
Also, though there are proven advantages of tracking against 
the growing full surface model with respect to frame-to-
frame tracking, there is still likely to be drift over long 
sequences, which will ultimately affect accuracy. Our 
intended use of ground-truth information effectively 
eliminates drift, aiding in more-accurate pose estimation and 
hence scene reconstruction. Furthermore, our framework can 
fuse any source of positional information, such as embedded 
internal sensors, and by virtue potentially capture geometry 
that is not visible to the naked eye. In the next section, work 
on viewing such “hidden” geometry is discussed. 

C. Internal Imaging 

Research in internal imaging has been existent for a long 
time and has resulted in tremendous advances in both 
medicine and security. Breakthroughs in these domains have 
largely been a result of physics and biology research. For 
example, magnets are used to image the gastrointestinal 
track, radio waves produced by excited hydrogen atoms are 
used to image the brain (Magnetic Resonance Imaging), and 
x-rays (Computerized Axial Tomography) and small 
amounts of radioactive substances (Positron Emission 
Tomography) are used for tomography. All of these 
procedures were revolutionary and are now routine. Similar 
techniques and technologies have recently been used in 
tandem with computer vision to enhance security. For 
example, Taddei and Sequeira demonstrated that x-ray 
tomography equipment could be calibrated using Automatic 
Pose Estimation (APE) on the silhouettes of shapes [13]. 

We are also motivated by structural health monitoring, 
which is concerned with using embedded sensor networks to 
evaluate structures such as buildings and bridges and provide 
feedback on cracks, torsion, and other instabilities. For a 
great overview see Tignola et al. [14]. We believe the 
sensors and technology used in structural health monitoring 
will eventually be miniaturized and can thus be expanded 
upon to be utilized for geometric reconstruction on much 
smaller objects than bridges. This has motivated us to begin 
our preliminary exploration of using such internal sensor 
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networks and fusing them with imagery to improve current 
reconstruction approaches. 

III. SENSOR-AIDED RECONSTRUCTION 

In order to provide a valid comparison point for our 
approach, the first thing we did was perform our own re- 
constructions using structure-from-motion, space carving, 
and KinectFusion using a new dataset. For these 
reconstructions, we used an additively manufactured chess 
piece and Utah teapot, both in red polylactic acid (PLA) 
plastic via the Makerbot Replicator 2®. Our motivation in 
creating this new dataset using 3D printed objects was a) we 
have ground-truth knowledge about the correct geometry b) 
we intend to show the potential benefits of embedding 
sensors as part of the manufacturing process and c) it allows 
for the object to be materialized by anyone who wishes to try 
their own physical approach (for example, KinectFusion). 

Our results, shown in Figure 2, demonstrate the various 
problems with these standard approaches for the objects in 
(a) and (e). Structure-from-motion results, (b) and (f), are 
meshed reconstructions retrieved from running Visual SfM 
[15][16] and using Patch-based Multi-view Stereo (PMVS) 
[17] to densify. While this approach does a decent job of 
accurately capturing some important details like the crown 
on the queen and the handle and spout of the teapot, it is 
clear that the reconstruction is full of holes and not dense 
enough. It is important to note that the lack of texture and 
color variance is one of the major problems for structure- 
from-motion since it largely depends on the presence of lots 
of unique features for tracking. Another common approach 
that doesn’t depend on texture or color is space carving [18]. 
In images (c) and (g), you can see that although it does a 
great job of creating a dense, water-tight, reconstruction by 
virtue of the approach, it is not accurate enough to capture 

the sharp tips of the crown and none of the spout or handle of 
the teapot. Similarly, KinectFusion [1], (d) and (h), creates 
wonderfully dense objects but fails to capture small details 
due to the smallness of the objects, inherent noise and 
hardware limitations. It is also important to note that 
although these methods will yield better results for larger 
objects, the results are only aesthetically pleasing and not 
actually precise, hence why small features will be missed. 

In light of these results, we developed an alternative 
reconstruction pipeline which couples positional information 
with structure-from-motion. In general, accurate structure- 
from-motion based reconstruction typically relies on accurate 
feature tracking [4]. A feature track is a set of pixel positions 
representing a scene point tracked over a set of images. 
Given a 3D position computed from multi-view stereo, its 
reprojection error with respect to its corresponding feature 
track is the only valid metric to assess error, in the absence 
of ground truth. Highly inaccurate individual track positions 
adversely affect subsequent camera pose estimation and 
structure computation, as well as bundle adjustment. Such 
inaccuracies can be improved upon by including external 
sensor information, such as positional information, into 
solving for scene reconstruction. The advantage of counting 
with embedded positional information inside an object is that 
it avoids having to compute accurate feature tracks in order 
to perform camera parameter and structure computation. 

A diagram of our pipeline is shown in Figure 3. The 
process begins by collecting both the positional sensor data 
and image data. Provided with a mechanism for locating the 
positional sensor in each image, the accurate position 
information is used to perform camera pose estimation. This 
leads to accurate camera rotation and translation 
measurements and is void of the inaccuracies present when 
using feature tracks to estimate camera pose. Feature 

 
Figure 2. Input (a), structure-from-motion (b), space carving (c), and KinectFusion (d) reconstructions for a 3D-printed red chess piece. The same is shown 
for the “Utah teapot” in (e) - (h). 
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tracking is performed on the image data and is combined 
with the accurate camera data to perform triangulation of the 
scenes 3D structure. Errors in the feature tracking stage are 
manifested as inaccurate scene points and bundle adjustment 
is used to optimize the reprojection error of the given 
structure and camera parameters. After bundle adjustment 
has been performed, the scene geometry can be stored and 
manipulated using standard modeling techniques. 

While our pipeline is only a work-in-progress, initial 
results show the positive effect of embedded positional 
sensors on reconstruction. We successfully performed a 
simulated reconstruction using synthetic data from the chess 
piece’s geometrical definition (a .obj file) in order to sanity-
check the camera estimation portion of our pipeline. To 
simulate surface-level embedded sensors we chose 185 
random vertices from the definition file, whose locations 
appear in Figure 4a. By creating 10 randomly placed 
synthetic cameras (not pictured) and reprojecting the sensor 
locations into the synthetic image plane of each camera, we 
created feature tracks for each sensor.  Using these feature 
tracks and the corresponding ground-truth locations of the 
sensors, we performed camera pose estimation using the 
Efficient Perspective-n-point (EPNP) algorithm [19]. Using 
feature tracks for all 18504 ground-truth vertices and using 
our computed cameras to triangulate we were able to achieve 
a reconstruction with essentially zero reprojection error (see 
Figure 4b). While this result is expected given that we have 
perfect feature tracks, we have shown that the camera pose 
estimation section of our pipeline has been implemented 
correctly and embedded sensors can be used for nearly 
perfect camera pose estimation. To complete our work, we 
would use additional feature tracks derived from SIFT-
analyzed photography of an object with real surface-level 
embedded sensors, we discuss how to do so and the 
implications in the next section. 

IV. CONCLUSION AND FUTURE WORK 

This paper presented the general idea of using sensor 
fusion as a strong tool for improving accuracy in computer 
vision structure-from-motion with the end goal of enabling 
high accuracy applications. Concrete results were shown for 
synthetic data, where a simulated object with surface-level 
position sensors was used to very accurately estimate the set 
of cameras viewing the object. Given these initial results, we 
believe the future is bright with regards to fusing sensor 
measurements for improved multi-view reconstruction, 
which is the focus of our ongoing work. 

We have identified a number of uses in potential 
applications. One is the additive manufacturing process. By 
embedding positional sensors as part of the 3D-printing 
process, a whole host of opportunities open up. First, you can 
monitor and analyze the object during the printing process 
and verify key geometric qualities, such as distances or 
angles. Secondly, if the sensors are miniaturized to a 
sufficient degree and placed very densely, it becomes 
unnecessary to even use structure-from-motion or other 
techniques since a meshed point cloud of sensor locations 
can be used as a reconstruction by itself (see Figure 4b). 
Third, a designer could manipulate the printed object with 
real world tools, such as chisels and saws, and be able to 
”scan” the object back into virtual space. A similar process 
already occurs in structural health monitoring where sensors 
are mixed with concrete; it is our belief that is only a matter 
of time before the technology is miniaturized enough for 
small scale objects and additive manufacturing. 

Furthermore, at that miniaturized scale, we can expand 
the concept of structural health monitoring to medical 
applications and devices. By embedding sensors in artificial 
human parts, such as hearts and prosthetics, we enable the 
medical community to non-invasively monitor any defects 
that may occur by periodically reconstructing the object and 
analyzing it. 

We strongly believe that miniaturized positional sensors 
are achievable with some combination of modern 
technologies such as ultrasound, magnets, and piezoelectrics. 
Simpler, surface-level sensors requiring manual effort could 
be created with highly reflective targets or glow-in-the-dark 
plastic/stickers for easy 2D localization by hand or 
automated process.  Our future work will focus on using 
prototyped positional sensors to proof-of-concept our 
approach and its revolutionary applications. 

 
Figure 3. Our proposed reconstruction pipeline that utilizes sensors. 

 
                           (a)                                                   (b) 
Figure 4.  (a) Simulated surface-level embedded sensor locations.     

(b) A reconstruction using synthetically perfect feature tracks but 

computed cameras confirms nearly perfect camera pose estimation. 
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