
Fast Parallel k-NN Search in High-Dimensional Spaces

Hyun-Hwa Choi, Seung-Jo Bae
High Performance Computing Software Team

Electronics and Telecommunications Research Institute
Daejeon, Rep. of Korea

{hyunwha, sbae} @etri.re.kr

Kyu-Chul Lee
Dept. of Computer Science

Chungnam National University
Daejeon, Rep. of Korea

kclee@cnu.ac.kr

Abstract—We are currently witnessing a rapid growth of image
data, triggered by the popularity of the Internet and the huge
amount of user-generated content from Web 2.0 applications.
To address the demanding search needs caused by large-scale
image collections, two major approaches for high-dimensional
data in cluster systems have been proposed: Speeding up the
search by using distributed index structures, and speeding up
the search by scanning a Vector Approximation-file (VA-file)
in parallel. We propose to combine both techniques to search
for large k-nearest neighbors (k-NN) in a high-dimensional
space. We develop a distributed index structure, called a
Distributed Vector Approximation-tree (DVA-tree), with a
two-level structure: the first level is a hybrid spill-tree
consisting of minimum bounding spheres, the second level is
VA-files. We also introduce a new approximate k-NN search
algorithm on this structure and derive cost formulae for
predicting the response time of the k-NN search. We then
provide a detailed evaluation on large, high dimensional
datasets. In an experimental evaluation, we show that our
indexing scheme can handle approximate k-NN queries more
efficiently for high-dimensional datasets.

Keywords-knn search; distributed indexing structure; high
dimensionality

I. INTRODUCTION
We are currently witnessing a rapid growth of image data,

triggered by the popularity of the Internet and the huge
amount of user-generated content from Web 2.0 applications.
Given such image collections, performing similarity search
to find objects most similar to a given object is a classical
problem with many practical applications. A common
approach to similarity search is to extract so-called features
from the objects, e.g., color, shape and texture information,
and to utilize special index structures for these features.

To address the demanding search needs caused by large-
scale image collections, several distributed index structures
for high-dimensional data spaces have been proposed. Most
of the approaches recently published focus mainly on
supporting range queries or operating in peer-to-peer systems
[1 - 4]. However, in order to provide similarity on massive
high-dimensional data in cloud computing services or web
search services, we need efficient ways of providing a k-
nearest neighbors (k-NN) search for high-dimensional data
in cluster environments. The k-NN search is a central

requirement in database applications such content-based
multimedia retrieval, because it has no input parameters that
require prior knowledge of data. The “best” indexes have the
following properties:

· The index should be deployable over multiple nodes
in cluster environments.

· The index should require no special tuning of
parameters required for each specific dataset.

· The set of candidates retrieved by the index should
contain the most similar objects to the query.

· The number of candidates retrieved must be as small
as possible, to reduce I/O and computation costs.

Over the years, little work for providing an efficient and
scalable access to high-dimensional data in centralized
systems have been done on the parallelization of trees or
Vector Approximation-files (VA-files). In [5 - 6], the authors
used R-trees [7] as underlying data structure, because they
guarantee good space utilization and treat geometric objects
as a whole. Koudas et al. [5] proposed a “Master R-tree”
architecture. A master server contains all the internal nodes
of the parallel R-tree, and the leaf level nodes are declustered
across several data servers. The major focus of the work is
on finding the optimal declustering “chunk size”. Schnitzer
et al. [6] designed a “Master Client R-tree” as parallel multi-
dimensional indexing structure. The Master Client R-tree is a
two-level distributed R-tree that has a single global index on
a master server and local indexes on the other data servers.
The Master Client R-tree is similar to the Master R-tree in
the sense that it declusters leaf level nodes across data
servers. However each data server creates a complete R-tree
as its own local index using the leaf level nodes that are
assigned to it. Liu et al. [8] introduced a parallel version of a
hybrid spill tree. A top-tree is built on the sample feature
vectors. Each leaf node in this top-tree then defines the
partition, for which a hybrid spill-tree is built on a separate
machine.

On the other hand, most multi-dimensional indexing
structures have an exponential dependence upon the number
of dimensions. In recognition of this, a VA-file [9] was
developed to accelerate the scan through the feature vectors.
The VA-file consists of two separated files: the vector file
containing the feature vectors, and the approximation file
containing a compressed representation of each feature
vector. Nearest neighbor queries are processed using two

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies

phases. In the filtering phase, the entire approximation file is
scanned sequentially to prune the majority of feature vectors.
The candidates that cannot be pruned are refined by a
random search of the vector file in the refinement phase.
Weber et al. [10] and Chang et al. [11] proposed a parallel
NN-search based on the VA-file to achieve a linear increase
on search speed as the number of servers grows. However,
the query response times of these solutions have not been
satisfactory for a search engine which enables similarity
search on the World-Wilde Web.

In this paper, we present a new distributed indexing
structure for fast nearest neighbor search in high-dimensional
feature space, called a Distributed Vector Approximation-
tree (DVA-tree). The core problem of designing a fast
parallel nearest neighbor search algorithm is to find an
adequate clustering algorithm which distributes the data onto
the nodes such that the data, which have to be read in
executing a query, are distributed as equally as possible
among the nodes. We create a sample small enough to fit on
a single machine from large-scale feature vectors and build a
hybrid spill tree on the sample. The feature vectors
partitioned to each cluster by the built hybrid spill tree are
stored into a separate machine. A local index server, which
operates on the separate machine, manages a VA-file as local
index to process k-NN queries. We also describe how
parallel k-NN search based on the DVA-tree works and
derive cost formulae for predicting the response time of the
parallel k-NN search. We present an experimental evaluation
of our indexing scheme using both real and synthetic data
sets, and compare it against previous techniques. The
experimental results show that our indexing scheme can
handle approximate k-NN queries more efficiently for high-
dimensional datasets.

The remainder of this paper is organized as follows. In
the next section, we first define the similarity queries and
briefly present existing methods for similarity query
processing. In Section III, we introduce our newly proposed
DVA-tree structure. We also present the approximate k-NN
search operation on the DVA-tree and derive cost formulae
for predicting the response time of the k-NN search. Section
IV reports the findings of an experimental study conducted
to evaluate the proposed scheme. Finally, in Section V, we
draw some conclusions.

II. PRELIMINARY
A promising and widely used approach for similarity

searching in multimedia databases is to map the multimedia
objects into points in a metric space. The metric spaces
include high-dimensional vector spaces, where objects are
compared using Euclidean (L2) distance.

A metric space M=(D, d), where D is a domain of objects
and d is a total distance function with the following
properties:

Symmetry: d(Ox, Oy) = d(Oy, Ox)
Non negativity: d(Ox, Oy) > 0 (Ox≠Oy) and d(Ox, Ox)=0

Triangle inequality: d(Ox, Oy) ≤ d(Ox, Oz) + d(Oz, Oy)

The distance between two points P and Q in the metric space
is defined by Euclidean distance function:

2

1

0

2
2)(),(),(å

-

=

-==
d

i
ii PQQPdQPL (1)

The similarity queries in a D-dimensional space may be
defined as follows:

Definition II.1 Range Query
Given a query object Q∈D and a maximum search distance
r, the range query range(Q, r) selects all indexed objects Oj
such that d(Oj, Q) ≤ r.

Definition II.2 k- Nearest Neighbors (k-NN)
Given a query object Q∈D and an integer k ≥1, the k-NN
query NN(Q, k) selects the k indexed objects which have the
shortest distance from Q.

In order to achieve a better performance of k-NN search,
two classes of techniques (index structures and scan
methods) have been proposed for high-dimensional data. The
basic idea of most high-dimensional indexing structures is to
construct a tree structure by partitioning the data space or
clustering data. These methods can prune the search space
for queries using the partitioning. In a M-tree [12], for each
routing object Or, there is an associated sub-tree T(Or), called
the covering tree of Or. All objects in the covering tree T(Or)
are within the distance r from Or, r > 0. Given a query Q, a
lower bound dmin(T(Or)) on the distance of any object in
T(Or) from Q is

 }0,),(max{))((min rQOdOTd rr -= (2)

Upper bound is

 rQOdOTd rr +=),())((max
 (3)

Consider the largest distance dk in current nearest neighbors.
At the execution of k-NN search, the order in which nodes
are visited can be determined by selecting the node for which
the dmin lower bound is minimum, and any sub-tree for
which dmin(T(Or)) > dk can be pruned from the search.
According to experimental observations, these lead to better
performance.

The scan based VA-File [9] divides the data space into 2b
rectangular cells where b denotes a user specified number of
bits. For each dimension j, a small number of bits (bj) is
assigned. There are 2bj partitions along dimension j,
requiring 2bj + 1 marks, i.e., mj[0], …, mj[2bj]. An
approximation a for a data point p is generated as follows.
Let aj be the number of the partition into which pj falls. A
point falls into a partition only if it lies between the lower
and upper bounds of that partition:

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies

]1[][+<£ jjjjj amPam (4)

The approximation a is simply the concatenation of the
binary bj-bit patterns for each partition.

Figure 1. lower and upper bounds for L2(Q, P)

In Fig.1, the lower and upper bounds on the distance
between a query point Q and a data point P are determined
by the equations:

 uBoundPQLlBound ££),(2 (5)

ï
î

ï
í

ì

>-

=

<+-

=

= å
=

jjjjj

jj

jjjjj

j

D

j
j

QaQam

Qa

QaamQ

lBoundwhere

lBoundlBound

][

0

]1[

)(2

1

2

 (6)

ï
î

ï
í

ì

>-+

=-+-

<-

=

= å
=

jjjjj

jjjjjjjj

jjjjj

j

D

j
j

QaQam

QaQamamQ

QaamQ

uBoundwhere

uBounduBound

]1[

)]1[],[max(

][

)(2

1

2

 (7)

In the VA-file, the approximations are scanned linearly.

A feature vector is a candidate whenever less than k feature
vectors have been encountered, or whenever the lower bound
is less than the k-th largest upper bound currently in the
candidate set. The actual distance based on L2 is evaluated
only for these candidate feature vectors. In practical
experiments, between 95% and 99% of the feature vectors
were eliminated during scan step of approximations. The
main advantage of the VA-file is that it retains good
performance as dimensionality increases.

III. THE DVA-TREE
In order to improve the data access performance through

the benefit of parallel process, it is important to distribute
large data across multiple machines. For skewed
distributions, the data density in some parts of a data space is
higher than in other parts. Therefore, the core idea for a
distributed indexing structure is to find an adequate

clustering algorithm which distributes the data onto the
nodes such that the data, which have to be read in executing
a query, are distributed as equally as possible among the
nodes. On the other hand, a sequential scan is superior to
tree-based structures on a single machine, if the
dimensionality of feature vectors exceeds a certain threshold
[9]. We employ a tree structure as a clustering strategy. The
tree is utilized for query processing, as usual, to restrict the
search to relevant parts of the data space. The data points in
each leaf node of the tree are stored into a separate machine
with the VA-file.

A. The Strucuture
The structure of a DVA-tree is illustrated in Fig. 2. The

DVA-tree is a distributed version of a two-level index
scheme. The first level is a hybrid spill-tree consisting of
minimum bounding spheres, the second level contains data
points in a compressed representation.

Figure 2. Structure of the DVA-tree

We first create a sample small enough to fit on a single
machine from large-scale feature vectors. To accurately
predict clusters of the entire feature vectors, we use the
subset obtained from the feature vectors using random
sampling method, and then build a hybrid spill tree on the
sample. The hybrid spill-tree is the latest data partition
method that is efficient in both accuracy and time of retrieval.
The feature vectors partitioned to each cluster by the built
hybrid spill tree are stored into a separate machine. Each of
the separate machines manages a VA-file as local index to
process a k-NN queries. The overall DVA-tree can be
viewed conceptually as a single hybrid spill-tree, spanning a
large number of machines.

B. K-NN Queries
The k-NN queries are processed by the three phases as

shown in Fig. 3. In the first phase, the k-NN queries are
submitted to the global index server owning the hybrid spill-
tree. The global index server traverses the hybrid spill-tree in
order to determine which VA-file(s) must be accessed. At
this time, the global index server transforms the k-NN
queries into range queries with arbitrary thresholds. The
thresholds for the range queries are the average k-th distance
between the sample data. They are computed while building
the hybrid spill-tree. In the DVA-tree, whole clusters can be
pruned by traversing the hybrid spill-tree. The k-NN queries

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies

are forwarded to the local index servers determined by the
global index server. In the second phase, the local index
servers process the k-NN queries on the VA-files in parallel.
In the third phase, final results of the k-NN queries are
obtained from candidate neighbors returned by the multiple
local index servers.

Figure 3. K-NN Search

The cost of k-NN query processing TQP on a DVA-tree
consists of the following components:

· Cost for traversing a hybrid spill-tree
· Cost for searching a k-NN query on a VA-file
· Cost for merging candidates

Relevant symbols and their descriptions are given in Table 1.

TABLE I. SUMMARY OF SYMBOLS AND RESPECTIVE DEFINITIONS

Symbol Descriptions
D number of dimensions
Q query point
k number of nearest neighbors

k average kth distance between points in a sample

F(x) distance distribution
Or routing point stored in an internal node on a hybrid spill- tree
r(Nr) covering radius of node Nr
l number of nodes in a hybrid spill-tree

m number of leaf nodes accessed for processing a range query on
a hybrid spill-tree

v number of points stored in a local index server
b number of bits used for bit encoding (compressing)

tapprox
time to compute lower and upper bounds per dimension in a
filtering step for a VA-file search

tvector
time to compute the distance between two points per
dimension

w number of points remained after the filtering step of a VA-file
search

tread time to load a block from a disk

tcompare
time to compare two distances between two points and a query
point

For simplicity, we assume that data points are uniformly

and independently distributed in the data space. First,
consider a range query rang(Q,k). A node Nr of the hybrid
spill-tree has to be accessed iff the ball of radius k centered
in the query object Q and the region associated with Nr

interset. This is the case iff d(Q, Or) ≤ r(Nr) +k . For instance,

the distribution of distance is F(x) = Pr{d(O1, O2) ≤x}. The
probability that Nr has to be accessed can be expressed [13]
as

))(())((

})(),(Pr{}Pr{

kNrFkNrF

kNrOQdaccessedisNnode

rrQ

rrr

+»+=

+£= (8)

The expected number of nodes accessed for a range query is

))(()),((

1

kNrFkQrangenodes
l

i
ri

+= å
= (9)

If the hybrid spill-tree fits entirely into main memory, no IO
operation are necessary. Therefore, the average cost for a
range query is the sum of the costs of distance computation
among the query point and the accessed nodes.

)()),((1 vectorst tDkQrangenodesT ××= (10)

The local index servers corresponding to m leaf nodes
determined by tree search process the k-NN query using a
VA-file in parallel. The points v in each local index sever
may be represented by a unique bit-string of length b. We
consider the case that the approximation file fits into main
memory. The cost of the filtering phase is

)(btDvT approxf ××= (11)

After the filtering phase, a small set of candidiates remain.
In the refinement phase, the number w of points visited is
represented in [14]. The disk IO occurs by random access to
the vector file. The cost of the refinement step can be derived
as

)(vectorreadr tDtwT ×+×= (12)

Finally, the total cost of theVA-File based k-NN search is the
sum of the costs of the two phases.

rfnd TTT +=2
 (13)

Each local index server returns k sorted candidate points. The
final k nearest neighbors are determined by comparing m×k
candidate points obtained from m local index servers. The
merge cost of the candidate points is estimated as

comparerd tmkT ×-×=)1(3

 (14)

Finally, the estimated total cost for k-NN query processing is

rdndstQP TTTT 321 ++= (15)

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies

IV. EXPERIMENTAL RESULTS
In this section, we present an experimental study to

evaluate the performance of the DVA-tree. The performance
is evaluated using the average execution time and accuracy
of a k-NN search over 100 different queries. We compare the
performance of the DVA-tree with that of the distributed
hybrid spill-tree [8] because the distributed hybrid spill-tree
is a recent indexing structure based on a cluster environment.

The distributed hybrid spill-tree and DVA-tree algorithms
were developed using the M-tree C++ package [15]. We
report our experimental results based on real and synthetic
datasets. We use a real data set, Aerial40 [16]. Aerial40
contains 270,000 feature vectors with 61 dimensions.

All the experiments were conducted on eight server
machines in a Linux cluster based on a global file system.
Each of the eight servers has a 3.40 GHz Pentium® D CPU
processor with 2.4 GB of memory capacity. For the
distributed hybrid spill-tree or DVA-tree, we dedicated a
master server and six other servers as local index servers that
execute k-NN queries either on the local hybrid spill-tree or
VA-file. Meanwhile, we used the last server as a merger to
integrate the k-NN search results from the local index servers.
This is to construct a similar query execution environment as
the MapReduce operations for the nearest neighbor search
proposed in [8]. In order to emulate a larger configuration
including more than six local index servers, we also ran
multiple local index servers on a single machine. The
intercommunication between the master server and local
index servers is done via TCP/IP.

For a fair performance comparison, the top trees of the
DVA-tree and distributed hybrid spill-tree are built on same
sample data, and all the indexing structures have the same
number of index servers. The number of bits per dimension
of approximation cell used in the VA-file is 8.

In many applications, data points are often correlated in
different ways. We test the performance of the DVA-tree and
the distributed hybrid spill-tree on the skewed dataset of
Aerial40. For a fair performance comparison, the top trees of
the DVA-tree and distributed hybrid spill-tree are built on
same sample data.

Figure 4. The search time on the skewed dataset.

Fig. 4 depicts the performance of the approximate k-NN

searches as the number of the required nearest neighbors

increases. The results show that the average execution time
of the approximate k-NN searches on the DVA-tree runs up
to 1.78 times faster than on the distributed hybrid spill-tree.
Moreover, we can notice that the performance gap between
the DVA-tree and the distributed hybrid spill-tree steadily
widens as the number of the nearest neighbors increases.
This is based on the fact that the DVA-tree executes the
nearest neighbor search based on the VA-file, which scans
the entire approximation data regardless of the number of
required neighbors and performs disk operations for few
vector data. However, the distributed hybrid spill-tree has an
amount of overhead for processing directories of the tree,
and this overhead increases when increasing the number of
desired nearest neighbors. Therefore, the processing delay
for a nearest neighbor search increases more slowly for the
DVA-tree than for the distributed hybrid spill-tree.

On the other hand, both the DVA-tree and distributed
hybrid spill-tree yield better performances, when we use the
smaller page capacity of leaf nodes in the top tree. This can
be explained by the fact that the top tree with smaller page
capacity of leaf nodes enables the parallel k-NN queries to be
performed over more local index servers. We observe that
the DVA-tree yields better performance than the distributed
hybrid spill-tree regardless of the size of the leaf pages in the
top-tree. The results are shown in Fig. 4.

Figure 5. The search accuracy of the skewed dataset.

Fig. 5 shows the search accuracy by varying the page

capacity of the tree from 128 KBytes to 256 KBytes. The
DVA-tree obtains a better search accuracy compared to the
distributed hybrid spill-tree when using the same sized leaf
pages, because it performs k-NN queries based on the VA-
file, which provides an exact k-NN search.

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies

Figure 6. The k-NN search time for different data size.

Fig. 6 shows the performance of the approximate 100-

NN search by varying the number of data from 200,000 to
1,000,000. This result is similar to those of experiments
using the real dataset and clearly shows the effectiveness of
the DVA-tree. The DVA-tree outperforms the distributed
hybrid spill-tree in terms of execution time as the number of
data increases. This is due to the fact that local index servers
in the DVA-tree utilize the VA-file technique without any
processing overhead of the directory of the tree. In
recognition of this fact, if we consider a larger dataset or a
higher number of dimensions, such as 100, the difference
between search performances will widen even more.

V. CONCLUSIONS
In this paper, we presented the design of a new high-

dimensional indexing scheme, called a DVA-tree, to solve
the distributed k-nearest neighbor search problem over large-
scale high-dimensional data in cluster environments. The
DVA-tree employs a hierarchical clustering method and
distributed VA-file management in order to allow a parallel
k-NN search on each of the VA-files. We use a hybrid spill-
tree as a clustering method and build the hybrid spill-tree on
the sample data of large-scale high-dimensional data,
because the sampling is independent of the dimensionality
and the sampled data maintain the cluster information of the
data set stored in the database. The data sets clustered by the
hybrid spill-tree are managed on distributed VA-files. We
proposed an algorithm for approximate k-NN searches over
multiple machines. Our experimental evaluation indicates
that the DVA-tree can efficiently provide a k-NN search with
high accuracy. Moreover, since our algorithms are very
simple, they are appropriate for data sets of tremendous size
or dimensions.

ACKNOWLEDGMENT
This work was supported by the IT R&D program of

MKE/KEIT. [10038768, The Development of
Supercomputing System for the Genome Analysis]

REFERENCES

[1] S. Blanas and V. Samoladas, “Contention-base performance
evaluation of multidimensional range search in peer-to-peer
networks”, Journal of Future Generation Computer System,
Vol. 25, Iss.1, pp.100-108, 2009

[2] H. V. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou,
“VBI-tree: a peer-to-peer framework for supporting multi-
dimensional indexing schemes,” Proc. IEEE International
Conference on Data Engineering (ICDE 06), p 34, 2006.

[3] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-
tunning indexes for similarity search,” Proc. International
World Wide Web (WWW 05), pp. 353-366, 2005.

[4] C. Schmidt and M. Parashar, “Flexible information discovery
in decentralized distributed systems,” Proc. IEEE
International Symposium on High Performance Distributed
Computing (HPDC 03), 2003.

[5] N. Koudas, C. Faloutsos, and I. Kamel, “Declustering spatial
on multi-computer architecture,” Proc. International
Conference on Extending Database Technology (EDBT 96),
pp. 592-614, 1996.

[6] B. Schnitzer and S. T. Leutenegger, “Master-Client R-trees: a
new parallel R-tree architecture,” Proc. International
Conference on Scientific ad Statistical Database Management
(SSDBM 99), pp. 68-77, 1999.

[7] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” Proc. ACM SIGMOD International conference on
Management of Data, pp. 47-57, 1984.

[8] T. Liu, C. Rosenberg, and H. A. Rowley, “Clustering billions
of images with large scale nearest neighbor search,” Proc.
IEEE Workshop on Application of Computer Vision (WACV
07), pp. 28-33, 2007.

[9] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis
and performance study for similarity-search methods in high-
dimensional spaces,” Proc. International Confernce on Very
Large Databases (VLDB 98), pp. 194-205, 1998.

[10] R. Weber, K. Böhm, and H.-J. Schek, “Interative-time
similarity search for large image collections using parallel
VA-files,” Proc. IEEE International Conference on Data
Engineering (ICDE 00), pp. 83-92, 2000.

[11] J. Chang, and A. Lee, “Parallel high-dimensional index
structure for content-based information retrieval,” Proc.
International Conference on Convergence Information
Technology (ICCIT 08), pp. 101-106, 2008.

[12] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient
access method for similarity search in metric spaces,” Proc.
International Conference on Very Large Database (VLDB 97),
pp. 426-435, 1997.

[13] P. Ciaccia, M. Patella, and P. Zezula, “A cost model for
similarity queries in metric spaces”, Proc. ACM SIGPODS
conference, pp. 65-76, 1998.

[14] R. Weger, and K. Böhm, “Trading quality for time with
nearest-neighbor search,” Technical report, Dept . of
Computer Science, 1999.

[15] M-tree homepage, http://www-db.deis.unibo.it/research/Mtree
, retrieved: March, 2012.

[16] Real data source website, retrieved: March, 2012
http://www.autolab.org/autoweb/15960.html

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies

