
1

PPETP: A Peer-to-Peer Overlay Multicast Protocol
for Multimedia Streaming

Riccardo Bernardini, Roberto Cesco Fabbro, Roberto Rinaldo
DIEGM – Università di Udine, Via delle Scienze 208, Udine, Italy

{riccardo.bernardini,roberto.cesco,roberto.rinaldo}@uniud.it

Abstract—One major issue in multimedia streaming over the
Internet is the large bandwidth that is required to serve good
quality content to a large audience. In this paper we describe a
protocol especially designed for peer-to-peer data distribution
to a large number of users. The protocol is suited for the
efficient distribution of live multimedia and it can exploit even
the limited resources of residential users. Special care was paid to
make the protocol back-compatible with existent multimedia tools
and protocols, so that software and protocols already multicast-
enabled require only minor changes to be adapted to the new
protocol. The flexibility, the openess and the features of the
proposed protocol makes it an interesting solution for streaming
content to large audiences.

Keywords-Data transmission; multimedia streaming; overlay
multicast; peer-to-peer network; push networks

I. INTRODUCTION

A problem that is currently attracting attention in the
research community is the problem of streaming live content
to a large number of nodes. The main issue to be solved is due
to the amount of upload bandwidth required to the server that,
unless multicast is used, is equal to the bandwidth required by
a single viewer (some Mb/s for DVD quality) multiplied by
the number of viewers (that can be very large, for example,
it is reported that in 2009 the average number of viewers per
F1 race was approximately 6 ·108).

The upload bandwidth problem is not limited to the “large
audience” scenario, but it can also be found at smaller scales.
Consider, for example, the case of a medium-size community
with 100–1000 members (e.g., a political party or a fan
club) that wants its own IPTV channel to stream events
to its members or, maybe, organize virtual meetings. If the
association aims to “YouTube quality” video (hundreds of
Kbit/s), the overall bandwidth is in the order of hundreds of
Mbit/s. Although this is within current technology capabilities,
the implementation of such services could prove too expensive
for the association.

Multicast is of course a possible solution, but it has its draw-
backs too. Maybe the most difficult issue in using multicast,
in applications like these, is that the audience is expected to
be spread among several different Internet Service Providers
(ISPs) and multicast across different Autonomous System (AS)
is not trivial, both on a technical and on a administrative side.

An approach that recently attracted interest in the research
community is the use of peer-to-peer (P2P) solutions [1] [2]
[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]. With the P2P
approach each viewer re-sends the received data to other users,

implementing what could be roughly defined as an overlay
multicast protocol where each user is also a router. Ideally, if
each user retransmitted the video to another user, the server
would just need to “feed” a handful of nodes and the network
would take care of itself. This could be beneficial to both the
“large audience” and the “fan club” scenarios.

Unfortunately, the application of the P2P paradigm to mul-
timedia streaming has some difficulties such as

• Asymmetric bandwidth Depending on the media type
and quality, the typical residential users, connected to
the Internet via an ADSL, could have enough download
bandwidth to receive the stream, but not enough upload
bandwidth to retransmit it. Therefore, the solution of
having the user retransmit the content to another user
is not applicable and more sophisticated solutions are
needed.

• Heterogeneous nodes The network can include nodes
with different upload capabilities, from residential users
with few hundreds kbit/s up to nodes with upload band-
width of several Mbit/s. A good P2P structure should
be able to exploit the bandwidth of each peer as much
as possible, both for low-bandwidth and high-bandwidth
nodes.

• Sudden departures A node can leave the network at any
time, possibly leaving other nodes without data for a long
time.

• Security P2P networks have several security issues [15].
Here we simply cite the stream poisoning attack where
a node sends incorrect packets which cause an incorrect
decoding and are propagated to the whole network by the
P2P1 mechanism.

• Network Address Translators (NAT) Several residential
users are behind at least the NAT built-in in their modem
and this is a problem for P2P solutions since the NAT
makes the user PC unreachable by outside peers.

This article describes the Peer-to-Peer Epi-Transport Pro-
tocol (PPETP), a peer-to-peer protocol developed as part of
the project Corallo hosted on SourceForge. This paper is
organized as follows: Section II describes the design goals
that guided the development of PPETP, Section III gives an
overview of PPETP and introduces some “PPETP jargon,”
Section IV describes the idea of “reduction procedure” that is
at the core of PPETP, Section V shows the similarities between
PPETP and IP multicast and how these similarities allow one
to reuse with PPETP all the tools (protocols, formats, and so

74

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

2

on) developed for multicast with a minimal change, Section VI
illustrates some practical examples of use, Section VII shows
some results about some performance aspects of PPETP,
Section VIII presents the conclusions.

II. DESIGN GOALS

Our objective was to design a protocol that would solve
the problems enumerated above, that could be used in sev-
eral applicative contexts (not just video streaming) and that
would look, from the application level, like another transport
protocol. More precisely, our design goals were
• Multicast-like structure From the application level the

protocol must look like a multicast protocol, with an API
(Application Programming Interface) similar to the well-
known BSD sockets. This would simplify the integration
of the new protocol in existing protocols and applications.

• Usability with heterogeneous networks The system
must be able to exploit efficiently the bandwidth of each
user, both for high- and low-upload bandwidth users.

• Robustness with respect to data losses In particular, the
video must not stop even if one or more peer suddenly
leave the network.

• Security The protocol must counteract possible attacks
that a malicious user could try. In particular, it must be
difficult to poison the data stream and, in case of an
attack, it should be possible to find out the culprit.

• Usability with NAT The protocol must take care by
itself of the possible presence of NATs. The application
programmer should not worry about the presence of
NATs.

• Usability with any data type Like a true transport
protocol, the developed protocol must be able to carry
any type of data.

• Flexible topology The protocol must not be tied to a
specific network topology, nor to a specific peer-discovery
technique, but it must be possible to use it with different
peer discovery procedures and topologies.

Remark II.1 (What PPETP is not)
A P2P streaming system is a complex piece of software that
must take care of several things: transferring data, finding new
peers, tracking content and so on. We would like to emphasize
here that PPETP is designed to take care only of the efficient
data distribution; other important aspects of the P2P streaming
application (e.g., building the network) are demanded to extra-
PPETP means. This is similar to what happens with TCP: the
standard specifies how data is carried from a host to another,
but does not specify, for example, how one host finds the other,
this being handled by protocols such as DNS.

III. OVERVIEW OF PPETP

The goal of this section is to give a brief overview of the
structure of PPETP and to introduce some PPETP jargon that
will be used in the following. For the sake of brevity, many
details will be omitted. A more detailed description can be
found in the Internet Draft [16].

A PPETP network is made of several nodes that exchange
data and control information over a non necessarily reliable
protocol (currently PPETP is built on UDP, but other protocols,

Source

A B

C

F

G

E
D

Figure 1. Example of a PPETP network for multimedia streaming.

such as the Data Congestion Control Protocol [17], can be
added in the future). Since each node streams autonomously
to a (fairly stable) set of nodes, a PPETP network can be
considered a push network. If node A receives data from node
B, we will say that A is a lower peer of B and that B is an
upper peer of A. (This nomenclature is inspired to the typical
picture of a tree structured network with data flowing from
top to bottom).

A key characteristic of PPETP is that every node does
not upload to other nodes the whole content stream, but a
reduced version of it that requires less bandwidth. The details
of how the reduced streams are produced are described in the
following. Here it suffices to say that the original content can
be recovered as soon as the node receives a minimum number
Nmin (typically chosen off-line) of reduced data. It follows that
in a typical PPETP network a node has many upper peers and,
possibly, many lower peers.

Fig. 1 shows an example of a possible PPETP network for
multimedia streaming with Nmin = 3. Each arrow represents
a reduced stream, each circle represents a node and the
node upload bandwidth is represented by the circle size. For
example in Fig. 1, node A (an upper peer of C, D and E) sends
to C two different reduced streams. Note also that the source
“feeds” directly nodes A and B by sending them three different
reduced streams. Finally, note that the network of Fig. 1 is an
irregular mesh, showing that not only tree-structured networks
are possible with PPETP. As already said, by design PPETP
does not mandate any particular network topology nor any
specific way to find the peers. The specific application can
construct the network as it sees fit.

IV. DATA REDUCTION PROCEDURES

As said above, the cornerstone of PPETP is a special type
of network coding called reduction procedure. The idea is
that, in order to take an advantage of even small upload
bandwidths, a node does not propagate the multimedia packets,
but a reduced version of them obtained by processing each
packet with a reduction function. The result of the reduction
function is a reduced packet whose size is (typically) a fraction
of the size of the original packet. Thus, the reduced packets

75

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

3

transmission can fit the limited upload bandwidth of each peer.
The reduction factor, that is the ratio between the size of
the content packet and the size of its reduced version, will
be denoted with R and supposed approximately constant (we
say approximately since we admit slightly variations due, for
example, to padding).

The reduction function is parametrized by a reduction
parameter so that different reduced versions of the packet can
be obtained by processing the same packet using different re-
duction parameters. The reduction procedure has the property
that a node can reconstruct the original content packet as soon
as it knows a sufficient number of reduced versions of the
packet itself.

An overview of the typical behavior of a PPETP node is
the following: the node, after receiving at least Nmin reduced
versions of the same content packet, recovers the packet itself
and moves it toward the application level. Moreover, if the
node has some lower peers, it reduces the recovered packet
and sends the reduced versions to its lower peers. Nodes
with larger upload bandwidth can serve several peers and also
send to the same peer several different reduced streams, as
exemplified in Fig. 1.

Example IV.1 (An example of reduction procedure)
The description of reduction function given above is very general
and abstract. This follows the specification of PPETP that, for the
sake of future extensions, does not impose a specific reduction
procedure, but demands its description to documents called
reduction profiles.

Since the abstract idea of a reduction procedure could be
difficult to grasp on an intuitive level, we cite as an example of
reduction procedure the algorithm described in [18] (used in the
Vandermonde reduction profile).

To reduce the size of a content packet by a factor R, the packet
is interpreted as a vector with entries b0, b1, . . . in GF(2d) (the
finite field with 2d elements) and every R-tuple of values b0, b1,
. . . , bR−1 ∈ GF(2d) is replaced by

cr = b0 + rb1 + · · ·+ rR−1bR−1

where r is an element of GF(2d) randomly chosen by (or
assigned to) the node at start-up. The reduced packet is obtained
by concatenating the values cr obtained as above. Note that since
this procedure replaces a sequence of R elements with a single
element, the required upload bandwidth will be R times smaller
than the bandwidth of the multimedia content.

In order to recover the original content packet a node contacts
at least R peers and receives from them their reduced packets.
It is easy to show that if each peer chooses a different value
for r, then the node can recover the original values b0, b1, . . . ,
by solving a linear system associated to a Vandermonde matrix
[18].

A. Reduction profiles

The reduction procedure described above is not the only
possible approach for data reduction. For example, other net-
work coding procedures (e.g., digital fountains) could be used.
In order to allow for future adoptions of different techniques,
PPETP does not define a specific reduction procedure, but
demands such a definition to side documents called reduction
profiles. This makes possible to extend PPETP with new
reduction procedures without changing its core definition.

Two profiles currently are defined: the Vandermonde profile
(described above) and the Basic profile that does no reduction
at all and it is thought for streams with very low bandwidth
(e.g., RTCP streams) where the bandwidth saving would not be
worth the additional complexity of a “true” reduction profile.

Although PPETP does not mandate any special characteris-
tic to a reduction profile, it is expected that future reduction
profiles will share with the Vandermonde profile the following
important characteristics.
• Size reduction The size of the reduced packet is a

fraction (≈ 1/R) of the size of the original content packet.
• Parametrization The reduction procedure depends on a

set of parameters. Using different parameters gives rise
to different reduced versions of the content packet. In the
Vandermonde profile the reduction parameter is the value
r.

• Reconstruction The content packet can be recovered
from the knowledge of a suitable number Nmin of different
reduced versions (intuitively, Nmin ≥ R). In some cases,
such as in the Vandermonde profile describe above,
Nmin = R, but this can be different in other profiles. For
example, in an hypothetical reduction profile based on
digital fountains, Nmin would be a random variable with
average slightly larger than R. In the following, for the
sake of simplicity, we will suppose Nmin deterministic.

B. Consequences of the reduction procedure

The reduction procedure in PPETP allows us to meet some
of the previously stated design goals.

a) Exploitation of low-bandwidth nodes: Since the size
of a reduced packet is a fraction of the size of the original
content packet, the corresponding upload bandwidth is a
fraction of the bandwidth of the content stream.

For very small upload bandwidths (that would required
too large reduction factors) PPETP allows to introduce a
puncturing that can be random (the packet is sent with a given
probability) or deterministic (packets are sent according to a
pattern). A careful use of puncturing allows for a finer control
of the upload bandwidth.

b) Usage with heterogeneous networks: It is easy to
manage the case when nodes have different bandwidths. For
example, nodes with large upload bandwidth can serve several
peers, Moreover, nodes with a large upload bandwidth can
produce different reduced streams (by using different reduction
parameters with the same content packet) and send more than
one stream to the same lower peer (see Fig. 1).

c) Robustness to data loss: To counteract the risk of
packet losses (due, e.g., to network congestion or peer leaving)
the node requests data to N > Nmin peers and recovers the
content as soon as it receives Nmin packets.

d) Security: To prevent stream poisoning, the node re-
quests data from N > Nmin peers, recovers the packet using
Nmin reduced packets and checks that the remaining packets
are coherent with the reconstructed packet. This procedure can
counteract a coordinated attack from N−Nmin peers and, with
a slightly variation, it allows to find (and punish) the node(s)
that tried the attack.

76

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

4

If we punish who tries a poisoning attack, a malicious user
could try a defamatory attack by sending corrupt packets while
pretending to be another peer. In order to avoid this type of
attack, PPETP allows a node to sign the packets that transmits.

e) Distributed parameter assignment: The reduction pa-
rameter used by the node can be assigned by an external
entity or it can be chosen autonomously by the node (maybe
at random). The latter is especially interesting, since it does
not require a centralized actor for parameter assignment. The
probability that two peers choose the same parameter can be
made negligible by using a large enough parameter space.

f) Independence on the data type: Since the reduction
procedure handles the content packets just as “sequences
of bits,” PPETP can be used with any type of data (e.g.,
audio/video, encoded with scalable or multiple description
encoders, even encrypted data).

V. PPETP AND MULTICAST

As said above, one of our objectives was to design a
protocol that looked, from the application point of view, like
a multicast protocol. A first step toward this objective was
the development of a protocol such that all the “P2P-related
matters” (e.g., data reduction and reconstruction, handshaking
with new peers and so on) could be handled inside the library
implementing PPETP. In this way, the PPETP API could be
made similar to the BSD socket API.

Moreover, in order to make the integration of PPETP with
existing protocols (e.g., SDP [19], RTSP [20], SIP [21])
simpler, we decided to introduce the concept of address of
a PPETP session in the form of an (host, port) pair. The
problem is that a PPETP network, being distributed, has
not a “natural” address. However, since a PPETP session
needs to be configured (e.g., to set the reduction profile, the
reduction parameters or any cryptographic credential used to
communicate with other peers), the host part was chosen
to be the address of a configuration server used to get the
configuration data. (Note that every P2P network needs at least
a “starting point” used by users to join the network; the starting
point for a PPETP network is the configuration server.) The
role of the port is played by the session number, a 16-bit
integer that, together with the host address, uniquely identifies
the PPETP session.

The configuration server is queried via a special protocol
designed to be light-weight and stateless, so that it is less
prone to Denial-of-Service (DoS) attacks and it can handle also
a large number of connections. If needed, the configuration
server can redirect the users, after authentication, to a more
powerful protocol (e.g., an HTTP-based one) or maybe a
distributed one (where the configuration data are obtained from
others peers).

VI. EXAMPLES OF USE

In order to make clearer the just given overview of PPETP,
this section describes two possible typical uses of PPETP: a
live streaming application and a conference application.

Configuration

Server

192.168.10.0

RTSP

Server

2

Server

HTTP

1

Alice

3

4

6

m=audio 1234 RTP/AVP/PPETP

c=IN IP4 192.168.10.0

application/sdp

Concert

<html>

5

PPETP

Library

D
E

S
C

R
IB

E

GET

connect()

recv()

C
o
n
fig

 d
a
ta

Q
u
e
ry 1

2
3
4

Peer

S
e
n
d
 t
o
 A

lic
e

D
ata

��
��
��
��
��

��
��
��
��
��

����������
����������
����������
����������

����
����
����

����
����
����

Figure 2. Example of establishment of a PPETP session

A. Live streaming

Suppose Alice wants to watch a concert streamed over
PPETP. A possible sequence of actions is the following (see
also Fig. 2)

1) Alice goes to the web page of the streamer, finds a link
related to the concert and clicks on it.

2) The link points to an RTSP server. The browser launches
a “viewer” that queries the RTSP server to get a program
description (in SDP format [19]) that says that the
program is streamed over PPETP.

3) The viewer opens a PPETP socket and connects it to the
session address found in the SDP description by using
a function similar to the BSD connect().

4) The connection function queries the configuration server
that replies with the configuration data.

5) Now Alice’s upper peers must be notified to send data
to Alice. This can be done in several ways, for example

a) The PPETP network is fully managed by the video
provider. In this case, the configuration server
chooses the upper peers and asks them (via suitable
control packets) to send data to Alice. If an upper
peer is behind a NAT, the control packet will also
cause the initiation of a suitable NAT traversal
procedure. This is the case shown in Fig. 2.
Although this centralized solution could seem to
introduce a “single point of failure,” it must be said
that in this case there is an actor (the streaming
provider) that is interested in doing the streaming.
If the provider’s host fails, the whole system makes
no sense. Moreover, this centralized solution allows
for a finer control of some PPETP network char-
acteristics such as the quality of service assigned
to Alice and the locality of the network.

b) The server chooses the upper peers, sends the list
to Alice and let her contact the peers.

c) The server sends to Alice a list with some possible
peers. Alice contacts few peers, asking for data; if
a peer has no more bandwidth available, it refuses
the request and Alice tries another peer until she
gets enough peers. Note that, with this setup, it is
difficult to make sure that Alice gets only its fair

77

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

5

share of resources.
d) A possible “strongly distributed” solution is the

following: the nodes are organized in a Distributed
Hash Table (DHT) where a set of “keys” (e.g., b-
bit integers) is assigned to each node. The address
of the DHT “entry points” is included in the
configuration data. Alice randomly draws few keys,
searches for the corresponding nodes and contacts
them. Nodes that run out of bandwidth, refuse the
request.

6) Alice receives reduced data. As soon as enough data
are available, content packets are recovered and moved
to the application level. The viewer reads the recovered
data by means of a function similar to the BSD recv(),
gives the data to the decoder and the result is shown to
the user.

7) Suppose now that Bob joins the network and that the
server assigns him Alice as an upper peer. Alice’s host
will receive a control packet that asks to send data to
Bob.

8) In response to the received request, Alice’s host applies
the reduction procedure to the recovered packets and
sends the result to Bob.

9) When Alice wants to stop to watch the concert, sends
a TEARDOWN request to the RTSP server that in turn
sends suitable control packets to Alice’s upper peers,
asking them to stop the transmission toward Alice and
maybe redirecting them to the lower peers of Alice.
Alternatively, Alice herself can redirect her upper peers
to her lower peers.

10) If Alice suddenly leaves (maybe because of a bug),
her lower peers notice her absence because they stop
receiving data from her. As a consequence of this, they
search for new peers. Note that if the network was built
with redundancy, the users associated to Alice’s lower
peers would not notice the sudden departure since they
will keep receiving enough data to recover the content
packets.

B. Conferencing

The multicast-like nature of PPETP makes it an interesting
solution for conferences. Conference management can be done
via SIP [21], including in the session description the address
of the PPETP session. In this case, every node “injects” its
data on the network via a function similar to the BSD send()
and reads from the PPETP socket the packets produced by the
other nodes. The problem of separating the packets according
to their source is outside the scope of PPETP and it pertains
to the application. For example, if RTP is used, packets can
be partitioned according to their SSRC [22].

C. Comments to the examples

It is worth to emphasize that most of the P2P manage-
ment (e.g., NAT traversal, handshaking with the new peer)
is handled by the PPETP library and it does not arrive at the
application level. It should be clear from the examples above
that the application just needs to (i) open a PPETP socket and

1 1.1 1.2 1.3 1.4 1.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ρ=N/Nmin

P
fa

il

S=2
8
, N =10min

S=2
8
, N =20min

S=2
8
, N =40min

S=2
16

, N =10min

S=2
16

, N =20min

S=2
16

, N =40min

Figure 3. Failure probability Pfailure as function of the redundancy ρ and the
parameter space size S.

connect it to the PPETP address, (ii) read/write data from/to
it and (iii) close it when done.

Note also that since for PPETP a packet is just “a collection
of bytes,” any type of data can be transmitted over PPETP. This
means that all the currently available streaming tools (e.g.,
RTP, RTCP, audio/video coders, scalable or multiple descrip-
tion coding, encryption procedures) can be transparently used
with PPETP.

VII. PPETP PERFORMANCE

In this section we give some figures about the performance
of PPETP. For the sake of simplicity we will suppose that
Nmin = R (as it happens with the Vandermonde profile).

g) Failure probability: If each peer chooses at random its
reduction parameters, it could happen that the set of reduction
parameters associated to the N upper peers of a node has less
than Nmin different parameters (failure event) and the node
will never be able to recover the content packets. Intuitively,
the probability Pfailure of such event gets lower when the
redundancy ratio ρ = N/Nmin or the parameter space size get
larger. This intuition is confirmed by Fig. 3 that shows Pfailure
as a function of the redundancy ρ and of the parameter space
size S.

h) Robustness to sudden departures: In order to give
a feeling of the robustness to departures offered by PPETP,
assume that a node has N > Nmin upper peers and as soon as
a peer leaves the node searches for a new one. If too many
peers leave in a short time, the node could remain with less
than Nmin upper peers (underflow event).

The probability Punder of the underflow event can be com-
puted by modeling the set of upper peers as a queue with N
servers, system size N, mean inter-arrival time (i.e., the time
required to find a new peer) equal to Tfind, and mean service
time (i.e., the mean time a node remains connected) equal to
Tleave. With this model, Punder is the probability of having less
than Nmin peers in the system.

A plot of Punder as function of ρ and Nmin when Tleave/Tfind =
70 and with the hypothesis of Poisson arrival times can be
seen in Fig. 4 [18]. Probability Punder gets smaller when ratio
Tleave/Tfind gets larger.

78

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

6

15 20 25 30 35 40
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

N
min

P
u
n
d
e
r

ρ=1.2

ρ=1.3

ρ=1.5

ρ=2.0

Figure 4. Underflow probability Punder as function of Nmin for Tleave/Tfind =
70.

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

J
it
te

r
[n

o
rm

a
liz

e
d

]

N =N/5min

N =N/4min

N =N/2min

N =(7/10) Nmin

N =(3/4) Nmin

Figure 5. Jitter as a function of N (peer delays distributed as N (0,1))

i) Jitter reduction: A nice side effect of the use of
network coding in PPETP is the reduction of the jitter observed
by the node. Intuitively, this happens because the time a
content packet is recovered is the time necessary for the
arrival of the Nmin fastest packets out of N. Fig. 5 shows the
theoretical prediction of the jitter (i.e., the standard deviation
of the reconstruction time), as a function of Nmin and N, when
the delays are Gaussian with mean m and variance σ2. The
values on the vertical axis are measured in units of σ . Note
that the jitter decays as 1/

√
N [23]. This behavior was also

verified experimentally [24].

VIII. CONCLUSIONS

This article has described PPETP, an overlay multicast
protocol that allows for efficient data propagation even when
some nodes have limited resources. The protocol is designed to
appear at the application level as a multicast protocol, allowing
for its easy inclusion in existing protocols and software.
PPETP is robust against packet losses and it has tools that
help counteracting possible attacks such as stream poisoning
or DoS tentatives. PPETP is currently hosted by SourceForge
as part of the open source project Corallo.

A. Acknowledgments

PPETP is partially funded by Italian Ministry PRIN project
Arachne.

REFERENCES

[1] E. Adar and B. A. Huberman, “Free riding on Gnutella,” First Monday,
vol. 5, October 2000.

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” in Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols
for computer communications, SIGCOMM ’03, (New York, NY, USA),
pp. 407–418, ACM, 2003.

[3] V. Fodor and G. Dán, “Resilience in live peer-to-peer streaming,” IEEE
Communications Magazine, vol. 45, pp. 116–123, June 2007.

[4] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distribut-
ing streaming media content using cooperative networking,” in Proc. of
NOSSDAV 2002, (Miami, Florida, USA), ACM, May 2002.

[5] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in BitTorrent?,” in Proceedings
of 4th USENIX Symposium on Networked Systems Design & Implemen-
tation (NSDI 2007), (Cambridge, MA), USENIX, April 2007.

[6] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM conference on In-
ternet measurement, (Rio de Janeriro, Brazil), pp. 189–202, SIGCOMM,
2006.

[7] M. Wang and B. Li, “R2: Random push with random network coding
in live peer-to-peer streaming,” IEEE Journal on Selected Areas in
Communications, vol. 25, pp. 1655–1666, December 2007.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in IN PROC. ACM SIGCOMM
2001, pp. 161–172, 2001.

[9] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: High-bandwidth multicast in cooperative envi-
ronments,” in 19th ACM Symposium on Operating Systems Principles,
2003, 2003.

[10] S. Marti and H. Garcia-molina, “Taxonomy of trust: Categorizing p2p
reputation systems,” Computer Networks, vol. 50, pp. 472–484, 2006.

[11] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized peer-to-
peer web cache,” in 12th ACM Symposium on Principles of Distributed
Computing (PODC 2002), pp. 1–10, July 2002.

[12] Y. Yue, C. Lin, and Z. Tan, “Analyzing the performance and fairness
of bittorrent-like networks using a general fluid model,” Computer
Communications, vol. 29, no. 18, pp. 3946 – 3956, 2006.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, pp. 149–160, August 2001.

[14] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), pp. 329–350, Nov. 2001.

[15] X. Hei, Y. Liu, and K. W. Ross, “IPTV over P2P streaming networks:
The mesh-pull approach,” IEEE Communications Magazine, vol. 46,
pp. 86–92, Feb. 2008.

[16] R. Bernardini, R. C. Fabbro, and R. Rinaldo, “Peer-to-peer epi-transport
protocol.” http://tools.ietf.org/html/draft-bernardini-ppetp, Jan. 2011. In-
ternet Draft, work in progress.

[17] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP).” RFC 4340 (Proposed Standard), Mar. 2006.

[18] R. Bernardini, R. Rinaldo, and A. Vitali, “A reliable chunkless peer-to-
peer architecture for multimedia streaming,” in Proc. Data Compr. Conf.,
(Snowbird, Utah), pp. 242–251, Brandeis University, IEEE Computer
Society, Mar. 2008.

[19] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description
Protocol.” RFC 4566 (Proposed Standard), July 2006.

[20] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol
(RTSP).” RFC 2326 (Proposed Standard), Apr. 1998.

[21] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol.” RFC 3261 (Proposed Standard), June 2002. Updated by RFCs
3265, 3853, 4320, 4916.

[22] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications.” RFC 3550 (Standard),
July 2003.

[23] H. A. David, Order Statistics 2nd edition. Wiley-Interscience, 1981.
[24] R. Bernardini, R. C. Fabbro, and R. Rinaldo, “Peer-to-peer streaming

based on network coding improves packet jitter,” in Proc. of ACM
Multimedia 2010, (Florence, Italy), Oct. 2010.

79

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

http://tools.ietf.org/html/draft-bernardini-ppetp

	Introduction
	Design goals
	Overview of PPETP
	Data reduction procedures
	Reduction profiles
	Consequences of the reduction procedure

	PPETP and multicast
	Examples of use
	Live streaming
	Conferencing
	Comments to the examples

	PPETP Performance
	Conclusions
	Acknowledgments

	References

