
Realtime Computation of a VST Audio Effect Plugin on the Graphics Processor

Wolfgang Fohl
HAW Hamburg

University of Applied Sciences
Hamburg, Germany

Email: fohl@informatik.haw-hamburg.de

Julian Dessecker
Steinberg Media Technologies GmbH

Hamburg, Germany
Email: J.Dessecker@steinberg.de

Abstract—A plugin system for GPGPU real time audio effect
calculation on the graphics processing unit of the computer system is
presented. The prototype application is the rendering of mono audio
material with head-related transfer functions (HRTFs) to create the
impression of a sound source located in a certain direction relative
to the listener’s head. The virtual source location can be controlled
in realtime. Since HRTFs are measured only for certain incident
angles, a interpolation for intermediate angles has to be performed in
realtime. Plugins are implemented using the VST software development
kit offered by Steinberg Media Technologies. Two GPU processing
frameworks for a NVIDIA graphics processor were evaluated: CUDA
and OpenCL. The overall processing speed can be increased by the
factor 2.2 with the GPGPU modules. When calculating the FIR filter
outputs by fast convolution on the GPU, the processing speed can even
be increased by the factor ten.

Keywords-GPGPU computing; VST plugin; Spatial audio; Head-
related transfer functions;

I. INTRODUCTION

This article presents a case study for the application of GPGPU
techniques to the realtime audio signal processing. GPGPU com-
puting (i.e., execution of general purpose computation on the
graphics processor) has raised considerable interest with the avail-
ability of software development kits (SDKs) that offer an access
to the massive parallel computing capabilities of modern graphics
processors. The two most common frameworks are OpenCL, which
provides an vendor-independent access to GPGPU computing, and
CUDA-C, which is an extension to the C language for GPGPU on
NVIDIA graphics processors [1] [2]. While CUDA is a proprietary
framework restricted to NVIDIA GPUs, OpenCL is an open
standard maintained and published by the Khronos Group [3]. The
actual OpenCL development framework is provided by the GPU
manufacturers.

The initial motivation for this work was the promise of GPGPU
to drastically accelerate tasks that can be parallelised. This is
the case for realtime audio processing. Input and output data of
audio processing units are buffered, which offers the opportunity
to calculate all the output samples of a buffer simultaneously from
the input samples. Furthermore, the calculation of a single output
sample offers opportunities for parallel execution: Most audio
processing tasks consist in evaluating a finite difference equation
for the N output buffer elements yout:

{yout} =

{
yi|yi =

N∑
k=0

fk(xi−k)−
N∑

k=1

gk(yi−k)

}
(i=0...N−1)

(1)
Here, {yout} is the array of output samples, i is the sample index,
x is the input signal, and k is a summation index.

In the case of a linear and time-invariant audio processor, the
functions of eq. 1 are merely multiplications with constant values
{ak} and {bk}:

{yout} =

{
yi|yi =

N∑
k=0

bk · xi−k −
N∑

k=1

ak · yi−k

}
(i=0...N−1)

(2)
Very often in audio processing, filters with a finite impulse

response (FIR filters) are employed , for which the difference
equation simplifies to

{yout} =

{
yi|yi =

N∑
k=0

bk · xi−k

}
(i=0...N−1)

(3)

which is the convolution of the impulse response {bi} of the filter
with the input signal {xi}. So for each value of the output buffer,
the summation of eq. 3 has to be performed, where the computation
for each output value as well as the computation of each summand
can be calculated simultaneously. The convolution operation of
eq. 3 can be considerably sped up by using the fast convolution
algorithm. The basic idea is given by:

{bi}
FFT
⇒ {Bj} (4)

{xi}
FFT
⇒ {Xj} (5)

{yout}
IFFT
⇐ {Bj ·Xj} (6)

A FFT is applied to the filter coefficients and the input signal block,
the resulting arrays are multiplied element-wise, and the product
is transformed back. The two arrays {bi} and {xi} have to be
brought to twice the buffer length by zero-padding, which in turn
will give an output signal of twice the buffer length. The first half
is added to the second half of the previous processing step and
transferred to the output buffer.

The audio processing task that shall be executed as prototype
application is the spatial rendering of mono audio signals by
head-related transfer functions (HRTFs) according to the procedure
described in [4].

In the following sections, the algorithm for spatial rendering
is described, followed by an overview of the GPGPU and VST
plugin architectures. Finally, our solution is described together
with some implementation details, and the results of performance
measurements are presented and discussed.

58

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

II. OVERVIEW OF TECHNICAL CONCEPTS

A. Spatial Audio Rendering

In order to make a mono audio signal appear to be coming
from a certain direction of incidence, the signal is filtered by head-
related transfer functions (HRTFs), that mimic the inter-aural time
delays, level differences and differences in frequency response. If
the resulting stereo signal is replayed via headphones, the perceived
signals are similar to real signals emanating from a source at the
corresponding location.

Since the coefficients of the filters could only be measured at
certain discrete angles as indicated in Fig. 1, an interpolation has
to be performed for intermediate angles. The input signal is routed
to four filters, each representing one corner in the interpolation
grid of Fig. 1, then a linear interpolation of the output signals is
performed. Details are given in [4].

Figure 1. Grid of measured HRTF data

B. GPGPU Computing

The parallel processing architecture of the graphical processing
unit (GPU) found on modern hardware suits in an optimal way
the needs of many numerical processing tasks. The release of the
CUDA SDK by NVIDIA in 2007 and the approval of the OpenCL
standard in 2008 opened the field of GPGPU computing to the
community of developers and researchers.

GPGPU computing offers a performance boost for algorithms
that can be parallelised, as is shown in the code snippets in figure 2.
Both programs perform an array addition. While in conventional
CPU processing the program iterates over all array elements, the
GPU program starts one thread for each array element, provided
there are enough processing units. The threads on the GPU are
programmed as so-called “kernels”.

/ / Ke rn e l d e f i n i t i o n
_ _ g l o b a l _ _ void VecAdd (f l o a t ∗ A, f l o a t ∗ B , f l o a t ∗ C)
{

i n t i = t h r e a d I d x . x ;
C[i] = A[i] + B[i] ;

}

i n t main (void)
{

/ / CPU o p e r a t i o n
f o r (i n t i = 0 ; i < N, i ++)

C[i] = A[i] + B[i] ;
. . .
/ / Ke rn e l i n v o c a t i o n w i t h N t h r e a d s
VecAdd <<<1 , N>>>(A, B , C) ;
. . .

}

Figure 2. Array addition on the GPU with the CUDA SDK

One drawback of GPGPU computing on consumer-grade GPUs
has to be mentioned. Since these GPUs are designed for optimum
video game performance, there is no need for checking the integrity
of the GPU memory, since memory errors would only affect the
currently displayed video frame. High reliability can be either
attained by software means as described in [5], or by using GPU
hardware dedicated to GPGPU computing, which are equipped with
ECC-protected memory [6].

C. VST Plugin Architecture

Steinberg Media Technologies developed a plugin system for the
extension of audio workstation software with external effects and
with external virtual instruments. Developers can obtain a SDK
after registering on the Steinberg website [7].

A plugin consists of two parts, the processor and the edit
controller. The processor does the audio signal processing, the
edit controller provides the GUI for parameter visualisation and
modification.

Data transfer between host and plugin is performed by means
of the VST plugin interface methods: One block of audio data is
provided by the host in the input buffer of the plugin. Then the host
calls the process method of the plugin, the plugin then has to
compute the audio samples and transfer them to the output buffer,
where the host will fetch it.

III. SYSTEM IMPLEMENTATION

A. Technical Details

The software was implemented on a PC with an Intel Core2Quad
Q9400 processor operated at 2.66GHz, a NVIDIA GeForce 9600
graphics processor with 650MHz core clock, and a Creative ES
1371 sound card. The operating system was Windows XP SP 3, the
VST host application was Steinberg Cubase 5. The VST SDK was
version 3.1.0.

B. Filter Module Architecture

Figure 3. System architecture with VST Host (Cubase), VST plugin, and
HRTF processor

In this project, the CudaHRTF VST plugin was developed as a
wrapper for various filter modules with various implementation of

59

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

the HRTF rendering algorithm. The filters modules were created
as independent dll files. Four filter dlls were developed:

filt_cuda.dll
Filter implementation using the CUDA-C SDK and fast
convolution in the frequency domain

filt_ocl.dll
Filter implementation using the OpenCL SDK and time-
domain convolution

filt_sse.dll
Filter implementation on the CPU using the SSE2
(Streaming Single-Instruction-Multiple-Data) extension,
time-domain convolution

filt_fpu.dll
Filter implementation using standard FPU code and time-
domain convolution

Fig. 3 shows the component design, showing the VST host, the
VST plugin, and one filter module.

Note on Time-Domain Convolution: The computation steps
for time-domain convolution of the input signal xi with the
FIR filter coefficients {bi}i=0...L−1, where L is the filter length
according to

yi =

L∑
k=0

xi−k · bk (7)

can only be parallelised for the products in the sum. The
summation itself has to be either performed in a sequential loop,
or by successively cutting the summand array into halves and
adding these halves in parallel operations. With the abbreviation
si,k = xi−k · bk the sum of eq. 7 can be rewritten as

yi =

L/2∑
k=0

si,k + si,k+L/2+1 (8)

This procedure of cutting the summand array into halves can be
repeated log2 L times.

The plugin accepts mono audio data from the VST host, and
provides stereo audio data.

The class HRTFModule connects the VST plugin and the filter
component. The class diagram is given in Fig. 4.

Figure 4. HRTF filter component class diagram

The data structure HRTFProcessData contains the necessary
data for the HRTFModule to perform the HRTF rendering.

Four filters are referenced by their ID, containing the coefficients
for the interpolation limits for azimuth and elevation angles. Two

t y p e d e f s t r u c t HRTFProcessData {
i n t numSamples ; / / I /O b u f f e r s i z e
i n t f i l t e r I D [4] ; / / F i l t e r s f o r i n t e r p o l a t i o n
f l o a t w e i g h t S t a r t [4] ; / / We igh t s a t b l o c k s t a r t
f l o a t weightEnd [4] ; / / We igh t s a t b l o c k end
f l o a t ∗ i n p u t ; / / Mono i n p u t s i g n a l
f l o a t ∗ l e f t O u t p u t ; / / S t e r e o o u t p u t : l e f t
f l o a t ∗ r i g h t O u t p u t ; / / S t e r e o o u t p u t : r i g h t

} HRTFProcessData ;

Figure 5. HRTFProcessData data structure

sets of weight factors contain the interpolation weights at block
start and block end, so that a smooth movement of the source can
be rendered. A problem occurs when the source position crosses the
limit of the current interpolation cell. Possible solutions were either
to extrapolate beyond the limits or to limit the source movement
to the end of the interpolation interval and continue with a new
interpolation interval in the next blocks (see Fig. 6). Prototypes
for both approaches were implemented in Matlab. It turned out,
that the extrapolation approach resulted in audible clicks at block
limits, whereas there were no audible clicks in the second approach.

0 1 2 3 4 5 6 7 8 9 10
0
◦

30
◦

60
◦

90
◦

Azimuth
angle

blocks

Nominal Angle:

Modified Angle:

Figure 6. Dynamic angle interpolation at interval limits. The gray line
shows the desired values of the azimuth angle of the virtual source, the black
line shows the actual rendered angles due to block-wise data processing.

C. Filter Design

HRTF filters were designed in Matlab as FIR filters using
previously measured data of a dummy-head system. Frequency
and phase responses were measured at azimuth angles from 0◦

to 180◦ in steps of 30◦. The data for the interval from 180◦ to
360◦ were obtained by interchanging the left and right channels.
Elevation angles were -45◦(below), 0◦(plane), and 45◦(above). In
order to easily configure the plugin filter components, a XML
DTD was defined, and the Matlab filter design program produced
a corresponding XML file as output, which in turn could be read
by the filter component. For XML parsing the TinyXML library is
used [8].

D. Code Instrumentation

An audio plugin is a realtime application and as such very
sensitive to modifications of the runtime environment of the plugin.
This makes it difficult or impossible to use standard tools like
debuggers and profilers. The approach used in this project is code
instrumentation. Each call to the process methode of the filter
module is framed with calls to the start and stop methods of

60

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

the timer object which in turn calls the Windows API function
QueryPerformanceCounter, to get high resolution timing in-
formation. The stop method calculates the elapsed time and updates

HRTFResult HRTFProcess (HRTFProcessData∗ d a t a)
{

REQUIRE(h r t f P r o c e s s P t r) ;
t i m e r . s t a r t () ;
HRTFResult r e s u l t = h r t f P r o c e s s P t r (h r t f C o n t e x t , d a t a) ;
t i m e r . s t o p () ;
re turn r e s u l t ;

}

/ / . . The t i m e r methods
i n l i n e void s t a r t ()
{

Que ryPe r fo rmanceCoun te r (& t 0) ;
}

i n l i n e double s t o p ()
{

Que ryPe r fo rmanceCoun te r (& t 1) ;
double c u r = (t 1 . QuadPar t − t 0 . QuadPar t) ∗ f a c t o r ;
avg = (avg + c u r) ∗ 0 . 5 ;
max = max > c u r ? max : c u r ;
min = min < c u r ? min : c u r ;

re turn c u r ;
}

Figure 7. Code Instrumentation for Performance Measurement

the log. This approach implements a performance measurement
with minimum interference with the normal plugin operation. It
has to be noted tough, that the measured time is “wall-clock time”,
not CPU time, so to a small extent the measured results depend on
the scheduling of the plugin by the operating system.

IV. RESULTS AND DISCUSSION

A. Listening Impression

All filter components were tested with pieces of solo vocal
music. The filters produced naturally sounding position rendering
of the input audio material without clicks and other artefacts when
moving the controls to change the virtual source location.

B. Performance Measurements

All performance measurements were executed with 20 seconds
of audio playback. During this time the azimuth and elevation
angles of the virtual source are varied according to a path that
has been recorded once and was replayed by the automation
functionality of the VST host.

Module tmin/ms tmax/ms tavg/ms

CUDA-C
Fast Convolution 2 56 2
OpenCL
Time Domain Convolution 8 18 10
CPU-SSE2
Time Domain Convolution 12 36 17
CPU.dll
Time Domain Convolution 12 31 22

It can be seen, that the GPU algorithms perform significantly
faster than the FPU algorithms, which was to be expected. An
irritating observation is the large maximum value of the execution
time for the CUDA filter module, while the average execution

time is equal to the minimum execution time. This indicates, that
this long time has occurred very few times, probably only once.
Unfortunately the way of code instrumentation does not give any
information, when and how often such a large execution time
occurs. It can be assumed, that this large time occurs during the
setup phase of the FFT algorithm (during setup a plan is created).
If this assumption is confirmed by further experiments, the creation
of the FFT plan can be moved to the plugin constructor, so it would
not cause audio dropouts.

V. CONCLUSION

In this article, a GPGPU based realtime audio effects processor
was presented. In particular, spatial audio rendering by filtering
the mono input signal with the head related transfer functions for
the corresponding angle of sound incidence has been performed.
The FIR filtering algorithm has been moderately customised to
exploit the benefits of GPGPU computing, leading to an increase
in computation speed by a factor of 2.2.

During the listening and performance measurement test no ob-
servable memory errors occurred. A systematic test for memory er-
ror problems has to be conducted. For high reliability requirements
a graphics card dedicated to GPGPU computing must be employed.
These cards have ECC protected memory, which consumer level
cards do not have.

The reason for the large maximum execution time for the CUDA
fast convolution implementation has to be identified and removed.

VI. ACKNOWLEDGEMENTS

This article is the result of a project course on professional audio
application development held at the Hamburg University of Applied
Sciences (HAW) together with Steinberg Media Technologies.
Thanks to the Steinberg developers, especially Ralf Kürschner, Dr.
Nico Becherer and Yvan Grabit for their support and thanks to
the students Leonhard Dahl, Tobias Hassenklöver, Ines Ouanes,
Marcus Rohwer, Areg Siradeghyan, Alexander Vette, and Özhan
Yavuz for their contributions to the software.

REFERENCES

[1] OpenCL Programming Guide for the CUDA Architecture, 3rd ed.,
NVIDIA Corp., 2010.

[2] NVIDIA CUDA C Programming Guide, 3rd ed., NVIDIA Corp.,
2010.

[3] “Khronos opencl api registry,” Khronos Group, Accessed 2011-
05-05. [Online]. Available: http://www.khronos.org/opencl/

[4] W. Fohl, J. Reichardt, and J. Kuhr, “A System-On-Chip Platform
for HRTF-Based Realtime Spatial Audio Rendering,” in Proc. of
the Second International Conference on Creative Content Tech-
nologies (Content10), Lisbon, Portugal, 2010.

[5] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software
approaches for GPGPU reliability,” in Proceedings of 2nd Work-
shop on General Purpose Processing on Graphics Processing
Units, ser. GPGPU-2. New York, NY, USA: ACM, 2009, pp.
94 –104, ACM ID: 1513907.

[6] “Why choose tesla,” NVIDIA Corp., Accessed 2011-05-05.
[Online]. Available: http://www.nvidia.com/object/why-choose-
tesla.html

61

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

[7] “Vst plugin sdk,” Accessed 2011-05-02. [Online]. Available:
http://www.steinberg.net/en/company/developer.html

[8] L. Thomason, Y. Berquin, and A. Ellerton, “TinyXML
Project Page,” Accessed 2011-04-28. [Online]. Available:
http://www.grinninglizard.com/tinyxml/index.html

62

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-157-1

