
SPS: A Web Content Search System Utilizing Semantic Processing 
 

Joseph Leone 
Dept. of Computer Science and Engineering 

University of Connecticut 
Storrs, CT 06269-3155 USA 
Joseph.2.Leone@uconn.edu 

Dong-Guk Shin 
Dept. of Computer Science and Engineering 

University of Connecticut 
Storrs, CT 06269-3155 USA 

shin@engr.uconn.edu
 
 

Abstract—This paper describes a Web content search system 
that employs semantic processing. The system, called SPS 
(semantic processing system), consists of a crowd-sourced 
ontology, a component for updating and extending the 
ontology, an NL parser, a semantic matcher, and a content 
representation formalism called semantic processing (SP) 
logical form. A typical web search results in hundreds of pages. 
The user then carries out the tedious and daunting task of 
sifting through each page to find the relevant/interesting 
information.  SPS aims to improve the relevance by building a 
layer of automated filtering on top of conventional search 
engines. SPS takes a user’s natural language query, composes 
it into a keyword query, augments the keyword query with 
additional keywords, and presents it to the search engine.  The 
query when augmented with additional keywords produces a 
richer search result set.  SPS sifts through each search result 
page extracting grammatical and semantic information to 
compute page relevance. We present the architectural 
framework for SPS and also illustrate how it uses semantic 
processing to improve the quality of search results.  

Keywords-Web content mining; semantic processing; 
dynamic ontology development; collaboration system; 
information retrieval; biomedical literature mining 

I.  INTRODUCTION 
One of the major problems with the Internet is its 

inability to find quality information with a higher precision.  
Web search engines produce either a list of too many items 
or a list of too few, with most of the items not relevant to 
users' interest/query.  In many cases, the search outcome 
does include relevant items but currently, web surfers have 
the tedious and daunting task of sifting through web search 
result pages to find the relevant/interesting information. 

The current manner of web searching can be divided into 
two phases: the “look” phase and the “find” phase.  In the 
“look” phase a user presents keywords to the search engine 
and the search engine returns a set of pages the engine 
considers relevant to the user.  In the “find” phase the user 
sifts through the search engine results to find the actual 
relevant/interesting information. We say actual because 
search engines either may not return any relevant 
information at all or the relevant information is buried 
somewhere in the collection of returned pages. 

An examination of how look phase functions reveals why 
relevant information is usually buried.  Look phase proceeds 
as follows.  Using the user supplied keywords, a search 
engine retrieves pages that contain those keywords.  The 

search engine then applies ad-hoc heuristics and machine 
learning techniques to the retrieved pages to compute their 
relevance. The heuristics that a search engine employs are 
word position, and utilization of HTML markup; Google 
uses the PageRank [1] algorithm.  In Google's PageRank 
algorithm, linking determines relevance.  The more links 
point to a particular page the higher Google believes the page 
to be relevant.  If too few links point to a page, it will check 
whether the links are from pages that are deemed high 
quality (e.g., from universities, government offices, 
hospitals, etc.). The typical machine learning techniques 
search engines employ are word frequency, information gain, 
odds ratio, and Bayesian analysis on the text words. 

Using heuristics and machine learning is helpful in 
computing page relevance.  However, the relevance that 
search engines compute is generally not accurate because 
both heuristics and statistics-based machine learning 
techniques are unable to deal with 

 
1. polysemy at the phrase level (e.g. "juvenile victims 

of crime" vs. "victims of juvenile crime") 
2. synonymy at the word level, i.e. different words 

having almost the same meaning ("throttle" & 
"accelerator"; "road" & "street") 

3. same words having different meanings ("soap bar" & 
"singles' bar") 

 
In addition, heuristics and machine learning sometimes 

produce results for purely statistical reasons with no real 
“semantic” relevance to the user’s query. 

Given the innate ambiguity of expressing a query via 
keywords, the look phase provides less improvement 
potential. In contrast, the find phase has much greater 
potential for improvement/automation because it is presently 
expected to be carried out manually by a person. We argue 
that if Web search incorporates even partial natural language 
capabilities that could extract grammatical and semantic 
information from both the user's query and from visited 
pages, relevance could be computed more precisely and the 
quality of the search results would be greatly improved. 

This paper proposes a semantic processing system (SPS) 
that improves Web search by increasing keyword quality 
during the look phase and automating the find phase.  The 
intent of our approach is not to replace current search 
engines (e.g. Google), but to work in conjunction with them.  
The SPS is layered between the search engine and the human 
user.   

48

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-157-1



Section II discusses related work.  Section III details 
SPS, its components, and SPS logical form (or simply, SP 
form) which is the internal knowledge representation 
formalism used by SPS.  Section IV shows an example of 
SPS processing a query against the biological literature.  In 
the biological literature genomic structures, proteins, and 
other phenonena are generally described using natural 
language.  We illustrate using examples why SPS 
outperforms traditional keyword search. 

II. RELATED WORK 
The Web search community has been exploring use of 
semantic processing to improve the relevance of query 
results. Sieg et al. [16] proposed a semantic approach 
utilizing ontology-based user profiles to personalize the 
Web search. In their work, each user’s search interests and 
preferences are modeled into ontological profiles. 
Unfortunately, this group’s proposal to use the ontology is 
limited to organizing the user’s context rather than modeling 
the general world knowledge. In utilizing the ontology to 
compute the relevance, this group uses conventional 
statistics methods. Another proposal for the use of semantic 
processing is SPARK by Zhou et al. [17]. Given a keyword 
query, SPARK outputs a ranked list of expanded queries 
which are obtained in three steps, term mapping, query 
graph construction and query ranking. The authors 
emphasize the novelty of query ranking, but this group’s 
ontology construction is rather ad hoc and is far from the 
general knowledge representation frameworks originating 
from natural language process. Most recently, Shabanzadeh 
et al. [18] proposed expanding query using semantic 
relations. In this work, semantic relations are extracted from 
a lexical database called WordNet where semantic relations 
are basically limited to hypernymy/hyponymy (is-a relation)  

Figure 1. Semantic Processing System (SPS) architecture 

and meronymy/holonym (part-of relation). As such, this 
group does not exploit the wealth of techniques available 
from the natural language processing either.    

III. SYSTEM ARCHITECTURE 
In comparison with previous attempts, our proposed 

approach is more comprehensive by encompassing phrase 
parsing, knowledge-representation, query formation, 
ontology construction, and semantic matching. Figure 1 
shows the three main parts (interface, retrieval subsystem, 
relevance computation subsystem) of the SPS architecture 
and their internal components:  

SP form:  A knowledge representation formalism used by 
SPS.  

Canonical forms. Internal (not shown in Figure 1) lexical 
templates that specify every possible mapping from natural 
language to SP forms.  Each canonical form represents a 
semantic pattern that occurs in English. 

Parser for converting natural language to SP form. 
Keyword Extract for creating a keyword query.  The 

number of keywords in the search engine query may be 
greater than the number of words in the natural language 
query.  The extra keywords account for synonymy and 
subtype/supertype. 

Knowledge Lattice.  A data structure for representing 
words, their subtype / supertype relationships, and their 
synonyms.  Included in the data structure is a set of 
operations for reasoning about the relations between words. 

Interactive Learning Component for updating and 
extending the Knowledge Lattice. 

Semantic Matcher for computing retrieved pages’ 
relevance.  

SPS assists in two ways. During the look phase SPS 
accepts a natural language query, extracts from the query 
significant concepts, composes the concepts into a keyword 
search query that accounts for polysemy at the phrase level 
and synonymy at the word level, and presents the search 
query to a global search engine (e.g. Google).  During the 
find phase, for each search engine result page, SPS 
semantically computes (using grammatical and semantic 
information extracted from retrieved pages and search query) 
the relevance of the result page to the user's natural language 
input query. This section is devoted to discussing five key 
computational aspects of SPS architecture. 

A. Computable Representation 
Every SPS architecture component, except NL Parser, is 

implemented in Lisp; and the core technology that underpins 
SPS, called SP form, is a computable internal knowledge 
representation expressed in Lisp notation.  SP form is 
inspired by the semantics and logical foundation of 
Conceptual Graph (CG) [2,3].  However, an SP form looks 
very different from conceptual graph interchange form 
(CGIF) and only superficially resembles CG linear form.  
Moreover, many elements from CG’s logical foundation 
(e.g., schematic cluster, prototypes, context, type definitions, 
aggregation, etc.) are not used.  Nonetheless, some CG 
nomenclature (e.g., Knowledge Lattice, graph, subgraph, 

49

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-157-1



projection) is retained where there is great similarity at the 
abstract level between CG elements and SPS elements. 

 
1) Canonical forms (i.e. semantic patterns) In their 

analysis of the English language Quirk et al. [4] determined 
that sentences are composed of clauses that in turn are made 
up of syntactic and semantic elements.  Syntactic elements, 
i.e., subject, verb, object, complement, adverb, etc. are 
participants in the meaning of a clause.  Semantic elements, 
i.e., agent, instrument, affected, etc. are the roles 
participants play [3,5].  Quirk identified thirty-three clause 
patterns, which account for all active English sentences. 

For each of Quirk’s clause patterns Leone [6,7] 
developed a canonical form.  A canonical form is a 
conceptual graph lexical structure capable of representing the 
semantics of an active English sentence.  Canonical forms 
are derived by mapping clause participants to concepts, and 
clause semantic roles to conceptual relations.  A canonical 
form conveys information about the possible semantic roles 
of the participating syntactic constituents, provides 
predicates for representing each semantic feature, functions 
as a semantic pattern or template for capturing a particular 
class of meaning, and serves as a guide for mapping 
language (i.e. parser output) to logic (i.e. SP form).  For each 
clause pattern, there is one and only one canonical form. 

Below are some sample English language phrases, the 
phrase clause pattern, a canonical form corresponding to the 
clause pattern, and the phrase expressed in conceptual graph 
linear form.  A complete set of clause patterns and canonical 
forms can be found in [6,7]. 

 
I bought her a gift. S  V  Oi  Od 
[c1]  (agent)  [c2]  (obj)  [c3]  (rec)  [c4]
[I]  (agent)  [buy]  (obj)  [gift]  (rec)  [her]

 
He put it on the shelf. S  V  Od  Aplace 
[c1]  (agent)  [c2]  (obj)  [c3]  (loc)  [c4]
[He]  (agent)  [put]  (obj)  [it]  (loc)  [shelf]

 
He caught the ball. S  V  Od  
[c1]  (agent)  [c2]  (obj)  [c3] 
[He]  (agent)  [catch]  (obj)  [ball] 
 

 
2) SP Form A sentence lexical structure consists of 
multiple phrases and each phrase is composed of a triple 
comprising a role and two participants. In SP form, each 
phrase is expressed as a role and two participants. 

(<role> (<direction1> <participant1>) 
(<direction2> <participant2>)) 

The collection of such phrases (i.e., sp forms) constitutes a 
sentence.   

Figure 2 shows the SP form syntax.  The direction 
symbol  that points away from the role is read as “is”, and 
the direction symbol  that points to the role is read as “of”.   

For example, (manner (  eat) (  fast)) is read as “manner 
of eat is fast”. 

 
 
 

<sentence> : ( <phrase>+ ) 
<phrase> : ( <role> <participant> <participant> 

<participant>* ) 
<role> : function word (e.g., determiners, adverbs and 

prepositions) that clarifies relationships 
between concepts 
e.g., color, agent, location, obj, etc., i.e., 
conceptual relation 

<participant> : ( <direction><kernel> ) 
<direction> : | 
<kernel> : <content> | ( <content> <referent> )
<content> : content word (e.g., noun, adjective and verb) 

from catalog of conceptual types, e.g., dog, 
train, etc., i.e., concept 

<referent> : <empty> | <individual> | <set> | <reference> | 
<measure> | <quantifier> 

<individual> : a proper noun e.g., Snoppy, Clifford, Emma, 
etc.

<set> : ( <individual>* ) 
<reference> : $
<measure> : @<number> 
<number> : integer or floating point number
<quantifier> : @every

Figure 2. SP form Syntax 

Participants could have a referent field.  Figure 3 shows 
examples of participant referent field types, referent values, 
and their representation syntax in both CG and SP form. 
Figure 4 shows a natural language sentence expressed in SP 
form.  Note that the sentence has three phrases.  

  
Type CG SP 
generic [dog ] dog  
generic set [dog: {*}] (dog (*))  
individual  [dog: Snoopy] (dog Snoopy)  
set referent  [dog: {Snoopy, Lassie}] (dog (Snoopy Lassie))  
definite reference [dog: #] (dog $) 
measure  [speed: @55] (speed @55) 
universal 
quantifier 

[man: ] (man )  (man @every) 

Figure 3. Participant Referent Field Types 

B. NL Parser: Stanford typed dependencies 
The Stanford typed dependency (SD) [8] parser represents 
sentence grammatical relationships as typed dependency 
relations, i.e., triples of a relation between pairs of words, 
such as “the subject of going is John” in the sentence “John 
is going to Boston by bus”. Each sentence word (except 
head of sentence) is the dependent of one other word.  The 
dependencies are represented as relation_name 
(<governor>, <dependent>).  All are binary relations: 
grammatical relation holds between a governor and a 
dependent. 

This representation, as triples of a relation between pairs 
of words, is well suited for mapping SD parser output to SP 
forms.   

50

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-157-1



Figure 4 shows an SD parse of the sentence “John is 
going to Boston by bus”.  The parse output, which is the 
syntax tree and the SD dependencies, is mapped to SP forms 
via canonical forms. Note that for very complex sentences an 
additional parser that outputs parts of speech tags, for 
example [9,19], may be needed to determine the appropriate 
canonical form. 
Parsing [sent. 1 len. 8]: [John, is, going, to, Boston, by, bus,.]
 (ROOT 
     (S 

 (NP (NNP John)) 
 (VP (VBZ is) 
     (VP (VBG going) 
        (PP (TO to) 
           (NP (NNP Boston))) 
         (PP (IN by) 
            (NP (NN bus))))) 
   (..))) 

nsubj(going-3, John-1) 
aux(going-3, is-2) 
prep_to(going-3, Boston-5) 
prep_by(going-3, bus-7) 

(agent (  go) (  (person John)))
(dest (  go) (  (city Boston)) 
(inst ( go) (  bus)) 

Figure 4.  Stanford dependency parser output and sp form 

C. Crowd-Sourced Knowledge Lattice & Interactive 
Learning Component 
Systems built using a knowledge-engineered approach 

suffer a disadvantage: they require much labor-intensive, 
difficult, manual work from a knowledge engineer in 
creating the ontology (i.e., explicitly defining every concept 
to be represented).  The few general-purpose content 
languages that have been developed [10, 11] are usually 
bloated and unlikely to capture the intricacies of every 
possible domain. 

This shortcoming is addressed by having SPS end users 
construct the knowledge lattice collaboratively.  Will users 
provide extensive feedback?  The Oxford English 
Dictionary, the world's greatest dictionary, was built in the 
19th-century by a network of far-flung etymologists using 
postal mail.  Today we have the Internet and the ideals of 
open source: share the goal, share the work, and share the 
results.  Existing collaboration environments (e.g., Usenet 
News, eBay, Amazon reader surveys, epinions, tor, Foldit, 
Phylo, EteRNA) and community projects (e.g., Linux, GNU, 
Emacs, standards working groups, the Human Genome 
Project, raising a barn, etc.) demonstrate that users do 
provide feedback because of shared interest and perceived 
benefit. 

The knowledge lattice resides on a central server and is 
accessible and modifiable by the Interactive Learning 
Component (ILC) of every SPS instance.  The ILC is a 
teachable system [12,13] that acquires knowledge through 
dialog, and is responsible for maintaining and extending the 
knowledge lattice. 

When SPS encounters a word not present in the 
Knowledge Lattice, SPS’ Interactive Learning Component 
asks the user the position of the word in relation to other 
words in the lattice, and the word’s synonyms if these are not 
available from a digital dictionary.  Users are expected to 

indicate the position of the word in relation to other words.  
Updating the Knowledge Lattice may trigger other recursive 
Knowledge Lattice updates.  The small incremental 
contributions from SPS’ global population of users allow the 
Knowledge Lattice to be built quickly and with little effort 
from any one individual user. Figure 5 shows a Knowledge 
Lattice fragment and Figure 6 the lattice’s computational 
representation.  

 
Figure 5.  Knowledge Lattice Fragment 

  
Word Supertype Subtype Synonyms 

carnivore (animal 
vertebrate 
mammal) 

(cat dog 
bear 
skunk) 

(meat-eating flesh-eating 
predatory raptorial) 

red ( ) (crimson) (scarlet ruby cardinal 
flushed rosy wine 
sanguine ) 

crimson (red) ( ) ( ) 

Figure 6.  Knowledge Lattice Internal Representation 
 
The Knowledge Lattice stores no word definitions but 

only the subtype / super-type relations of a word and the 
word’s synonyms. One key architectural decision of SPS is 
that computing relevance would not require use of 
“electronic” word definitions. In SPS, the relation of a word 
to other words in a phrase (e.g., role of agent, obj, etc.), the 
synonyms of a word (e.g., scarlet, red), and the subtype / 
super-type relation of a query word to a target word (e.g., 
person, girl) are used to determine if a target phrase matches 
(i.e., is relevant) a query phrase. 

Now we introduce Knowledge Lattice operations. A 
lattice [2] is a structure consisting of a set L (of type labels), 
a partial ordering ≤, and two dyadic operators ∪ and ∩.  If 
a and b are elements of L, a∩b is the maximal common 
subtype of a and b, and a∪b is the minimal common 
supertype of a and b.  For any a, b, and c in L, these 
operators satisfy the following axioms: 
• a∩b≤a and a∩b≤b.  
• If c is any element of L for which c≤a and c≤b, then c≤a

∩b.  
• a≤a∪b and b≤a∪b.  
• If c is any element of L for which a≤c and b≤c, then a∪

b≤c. 
Below are examples of Knowledge Lattice operations 

applied on the lattice fragment shown in Figure 5. 
• ≤ subtype 

e.g., [crimson] ≤ [red] 
• ∪ minimal common supertype  i.e. least upper bound. 

e.g. [cat] ∪ [dog] = [carnivore] 

51

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-157-1



[cat] and [dog] have  many common supertypes including 
[animal], [vertebrate], and [mammal].  However, [carnivore] 
is the minimal common supertype.  
• ∩ maximal common subtype i.e. greatest lower bound. 

e.g. [vertebrate] ∩ [mammal] = [carnivore] 
[vertebrate] and [mammal] have many common subtypes 

including [cat], [dog], [bear], etc.  However, [carnivore] is 
the greatest common subtype. 

D. Keyword Extract 
Keyword Extract creates a keyword query for a 

traditional search engine (e.g., Google).  Each keyword of 
the natural language query is augmented with additional 
keywords that account for synonymy and with its maximal 
common subtypes and minimal common supertypes.  For 
example, if the natural language query is “Carpets in Toyota 
cars cause accelerator to stick.” and the Knowledge Lattice 
is as shown in Figure 7 then the generated keyword query 
contains all the synonyms, supertypes, and subtypes of each 
word in the natural language query.  E.g., (or “accelerator 
throttle pedal choke car vehicle …”). 

Word Supertype Subtype Synonym 
accelerator ( ) ( ) (throttle choke pedal)
car (vehicle) ( ) (auto automobile motor-

vehicle wheels clunker 
rustbucket) 

carpet ( ) ( ) (rug mat floor-covering 
blanket cover cloak) 

cause ( ) ( ) (root origin mainspring 
basis trigger foster 
make-happen create 
produce generate induce 
beget provoke ) 

stick (wood) ( ) (cane pole club baton 
attach affix fasten paste 
pin tack stay last persist 
hold) 

Toyota (car 
automobile) 

(Lexus 
Camry 
Corolla) 

( ) 

Figure 7.  Knowledge Lattice – car, carpet, cause 

E. Semantic Matcher 
Semantic Matcher (SM) determines which retrieved 

pages are relevant to the user’s query.  The inputs to SM are 
the user’s query and the retrieved pages.  SM carries out the 
relevance computation by applying the restriction, 
projection, maximal-common-subgraph, and match 
operations against the retrieved pages, each of which is 
explained below briefly. We note that these operations 
consult the Knowledge Lattice. 

 
Restriction This operation transforms a concept into a 

more specific type.  It replaces  
• a more general concept with a more specific one, e.g. 

(animal) & (dog) => dog 
• a generic referent with an individual referent e.g. 

(dog) & (dog Rufus) => (dog Rufus) 

• individual/set-referent and set-referent with their 
union e.g. (dog Rufus) & (dog (Snoopy Lassie)) => 
(dog (Rufus Snoopy Lassie)) 

• two individuals with their union e.g. (dog Lassie)  & 
(dog Rufus)) => (dog (Lassie Rufus)) 

• numerous other combinations for each participant 
type (see Figure 3), not listed due to space limitation 

 
Maximal-Common-Subgraph This operation finds the 

largest subgraph that two graphs u and v have in common.  
For example, 
u v 
(color ( (dog Rufus)) ( brown)) 
(location (  (dog Rufus)) (  
porch))

(agent (  dog) ( eat))
(obj (  eat) (  bone)) 
(color (  dog) ( brown))

 
The common subgraph is (color (  (dog Rufus)) (  

brown)) the generic referent (dog) is restricted to the 
individual referent (dog Rufus). 

Match  Two graphs u and v match if there is a subgraph 
u’ of u such that 

==> roles are the same in v and u’ 
==> pairs of corresponding concepts in v and u’ have a 

maximal common subtype 
For example, 
u : “John likes white elephants.” 
v : “The boy likes animals.” 
 

u parser output: u SP form: 
nsubj(likes-2, John-1)
amod(elephants-4, white-3) 
dobj(likes-2, elephants-4)

(agent (  like) ( (person John)))
(color (  elephant) (  white)) 
(obj (  like) (  elephant))

 
v parser output: v SP form: 
nsubj(likes-2, Boy-1)
dobj(likes-2, animals-3)

(agent (  like) ( boy))
(obj (  like) (  animal))

 
Knowledge lattice operations indicate that (person) is a 

supertype of (boy), and (animal) is a supertype of (elephant); 
therefore, the graphs u and v match. 

Projection This operation maps a general graph v to a 
more specialized graph u.  The mapping is a subgraph of u, 
called a projection of v in u.  A projection determines if a 
graph is a subgraph of another graph. E.g. adapted from [14]. 

 
u v 
(child ( (man John)) ( (girl Mary))) 
(child (  (man John)) (  (boy Bob))) 
(agent (  love) (  (boy Bob))) 
(obj ( love) ( (girl Mary)))

(child ( person) (
person)) 

 
projection of v in u:
(child (← (man John)) (→ (girl Mary))) 
(child (← (man John)) (→ (boy Bob))) 

 
Knowledge Lattice indicates that (person) is a super-type 

of (man), (boy), and (girl). 
The difference between projection and match is that in 

match either graph can be specific or general; in projection, a 
more general graph is used to find a more specific one. 

52

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-157-1



IV. KEYWORD SEARCH VS PHRASE SEARCH 
One specific application of SPS has been developing a 

phrase search mechanism for text mining of biomedical 
literature. Text mining of biomedical literature is a trendy 
topic in bioinformatics and we illustrate how SPS can 
improve relevancy in this application. Given below are two 
sentences from two different web pages [15]. These two 
pages are polysemous at the phrase level. 

Page 1 We then present evidence that Sip1, Sip2, and Gal83 
each interact independently with both Snf1 and Snf4 via 
distinct domains. 

Page 2 The catalytic subunits of Arabidopsis SnRKs, AKIN10 
and AKIN11, interact with Snf4 and suppress the snf1 
and snf4 mutations in yeast. 

A Google search against these pages with the query 
“interact with snf1” returns both pages 1 and 2 because all 
the search query keywords appear in both pages.  But a SPS 
search returns only page 1 because the search query phrase 
occurs in page 1, but not page 2. This difference is the result 
of using the Semantic Matcher which utilizes the Knowledge 
Lattice and the Semantic Matcher operations to compute the 
relevance of page 2 to the user’s query.  

Figure 8 shows the SP form of each sentence.  The search 
query in SP form is (obj (  interact) (   (protein Snf1))).  
This SP form search query matches the page 1 phrase (obj 
(  interact) (   (protein (Snf1 Snf4)))) but does not match 
any SP forms in page 2.  There is a page 2 phrase, (obj (  
interact) (  (protein Snf4))), similar to the search query; but 
the page 2 phrase contains a different protein than the search 
query protein.  

 
Page 1 sp form: Page 2 sp form: 
(agent (  present) (  (person 
We))) 
(obj (  present) (  $evidence)) 

 
$evidence: 
(agent (  interact) (  (protein 
(Sip1 Sip2 Gal83)))) 
(obj (  interact) (  (protein 
(Snf1 Snf4)))) 
(manner (  interact) (  
independent)) 
(instr (  interact) (  domain)) 
(type (  domain) (  distinct)) 
 
 
 
 
 
1SnRKs [Snf1 (sucrose non-
fermenting-1)-related protein 
kinases 

(type (  subunits) ( catalytic))
(agent (  interact) (  subunits)) 

 
(kind (  subunits) (  SnRKs1)) 
(type (  SnRKs) (  (plant 
Arabidopsis))) 
(equi (  SnRKs) (  (protein 
(AKIN10 AKIN11)))) 

 
 

(obj (  interact) (  (protein 
Snf4))) 

 
(agent (  suppress) (  
subunits)) 
(obj (  suppress) (  mutation)) 
(type (  mutation) (  (protein 
(snf1 snf4)))) 
(loc (  suppress) (  yeast)) 

Figure 8.  Page 1 and 2 SP forms 
 

V. CONCLUSION AND FUTURE WORK 
This example, albeit simple, demonstrates that phrase 

search produces results with higher relevance.  Phrase search 
is superior because the atomic unit for matching is not a 

keyword but an inter-related collection of keywords, i.e. a 
phrase, that form meaning.  The inter-relation expresses 
grammatical and semantic information, and is captured in SP 
forms.  In contrast, in keyword search, the interrelation of 
keywords is only approximated by statistical quantities (e.g., 
word frequency, information gain, odds ratio, etc.) of the 
page containing the keywords.  

We are currently examining the scalability of our method 
by applying the phrase search to flexibly finding gene 
regulatory relationships reported in the biomedical literature. 

REFERENCES 
[1] S. Brin and L. Page, “The Anatomy of a Large-Scale 

Hypertextual Web Search Engine,” 
www.db.stanford.edu/~backrub/google.html 

[2] John F. Sowa, Conceptual Structures: Information Processing 
in Mind and Machine, Addison-Wesley, 1984. 

[3] John F. Sowa and David Dietz, Knowledge Representation: 
Logical,  Philosophical, and Computational Foundations, 
Brooks/Cole Pub Co, 1999. 

[4] Randolph Quirk, et al.  A Grammar of Contemporary English, 
Longman Group UK Limited, 1987. 

[5] Fillmore, Charles J. (1968) "The case for case", in E. Bach & 
R. T. Harms, eds. Universals in Linguistic Theory, Holt, 
Rinehart and Winston, New York, pp. 1-88. 

[6] J. Leone, "Synergistic Model for Memory Recall", Master’s 
thesis, University of Connecticut, Storrs, CT, Aug. 1989. 

[7] D. G. Shin and J. Leone, “AM/AG Model: A Hierarchical 
Social System Metaphor for Distributed Problem Solving,” 
International Journal of Pattern Recognition and Artificial 
Intelligence, Vol. 4, No. 3, September 1990. 

[8] http://www-nlp.stanford.edu/software/stanford-
dependencies.shtml (last accessed 6/22/2011). 

[9] http://www.connexor.eu/technology/machinese/demo/syntax/i
ndex.html (last accessed 6/22/2011). 

[10] M. R. Genesereth and S. P. Ketchpel, “Software Agents”, 
Communications of the ACM 37 (7), 1994, pp. 48-53. 

[11] D. B. Lenat, “CYC: A large-scale investment in knowledge 
infrastructure”, CACM 38(11), 1995, pp. 33–38. 

[12] N. Haas and G. G. Hendrix, "An approach to acquiring and 
applying knowledge," Proc. of AAAI, 1980, pp. 235-239. 

[13] N. Haas and G. G. Hendrix, "Learning by Being Told: 
Acquiring Knowledge for Information Management". In 
Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (Eds.), 
Machine Learning: An Artificial Intelligence Approach. 
Morgan Kaufmann Publishers, Inc., Vol. I, 1983, Chapter 13. 

[14] Jean Fargues, et al., “Conceptual graphs for semantics and 
knowledge processing”, IBM Journal of Research and 
Development, Vol. 30, No. 1, January 1986. 

[15] http://www.ihop-net.org/UniPub/iHOP/gs/32484.html (last 
accessed 6/22/2011). 

[16] A. Sieg, B. Mobasher, and R. Burke, “Learning Ontology-
Based User Profiles: A Semantic Approach to Personalized 
Web Search”, IEEE Intelligent Informatics Bulletin, Vol. 8, 
No.1. Nov. 2007. 

[17] Q. Zhou, C. Wang, M. Xiong, H. Wang and Y. Yu, “SPARK: 
Adapting Keyword Query to Semantic Search”, The Semantic 
Web (2007),  Vol: 4825, Publisher: Springer, Pages: 694-707 

[18] M. Shabanzadeh, MA Nematbakhsh, N. Nematbakhsh, “A 
Semantic based query expansion to search”, in International 
Conference on Intelligent Control and Information Processing 
(ICICIP) 2010, IEEE, Pages: 523–528, (2010). 

[19] http://www-nlp.stanford.edu/software/tagger.shtml (last 
accessed 6/22/2011). 

53

CONTENT 2011 : The Third International Conference on Creative Content Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-157-1


