
Internet Business Intelligence

Hao Tan
Service Oriented Computing (SOC)

LIRIS, University Lyon 1
LYON, FRANCE

Email: ferdinandfly@gmail.com

Parisa Ghodous
SOC

LIRIS, University Lyon 1
LYON, FRANCE

Email: parisa.ghodous@recherche.univ-lyon1.fr

Jacky Montiel
ALTERNANCE Soft

LYON, FRANCE
Email: jmontiel@ntsys.fr

Abstract—Business Intelligence (BI) refers to computer-based
techniques used in spotting, digging-out, and analyzing business
data. It is mainly focused on how to dig out business data. This
type of business data is a on-line web database which can be
searched through their Web query interfaces. Deep Web (often
called hidden web or invisible web) is composed of all the web
databases. With the evolution of the ”deep web”, more and
more researchers pay attention to the ”integration” of the web
database. However, to achieve this goal, it needs a complex system
and many applications to work together. We are interested in an
automatic extracting system to get the formulas or the lists of
the results from those websites in specific domain of government
procurement. To tackle this challenge, we propose a solution to
create a unified interface and to inquire resources in a predefined
domain. In this paper, we will discuss the automatic extracting
system in several steps. First of all, the web query interfaces
crawler which can execute JavaScript guarantees the coverage
of the web database. Secondly, the query interface extractor and
the interface integrator can allow us query all these founded
web databases through a global query interface. Thirdly, the
result page extractor and the result integrator can give a unified
presentation. Lastly, a feedback method is developed to gather
the result accuracy. A statistical model is built to improve the
performance of the step 2 and 3. We assume our system is a
dynamic system, which means the more we use it, the more
precise results we will get.

Keywords-schema matching; web-database integration;

I. INTRODUCTION

Deep web (often called invisible or hidden Web) is made
up of massive web databases. The traditional search engines
which use static URL based crawler are not able to access
most of the data on the Internet. The reason is that this
kind of information is hidden behind the query interfaces and
does not contain a unique URL link. The recent study [20]
shows that the top 3 famous search engine: Google, Yahoo
and MSN only cover respectively 32%,32% and 11% of the
result pages of the sample Web databases. More importantly,
even if we combine the three search engines, we can only get
37% coverage. Because of this, users often have difficulties
to find the sources of web database and query them to get the
results. On the other hand,the interfaces are built to be queried
and generate the dynamic result pages. As traditional access
methods cannot accomplish the work of searching the deep
web, it is imperative to find a new way to index the hidden
result pages.

Deploying an automatic system to understand and extract
the deep web information from the entire Internet is still
impracticable based on the existing technologies. Recent re-
search [10], [13] and [17] decomposed this into different
domain-based web database integration problems. For each
domain, a global interface can be built to integrate all the

web databases. To enable effective access to web databases,
our works focus on building a domain based, automatic web
database integration system that is independent of the domain
style. We choose the domain Government Procurement to
analyze and to test the performance of this system. The main
purpose of such technology is to be more efficient to get the
business information from the Internet as we called Internet
Business Intelligence. This application covers all the sites
found in the domain predefined and makes a unified query
form to list all the analyzed data. According to this objective,
we need to develop a system that has the following three
features. First, it should dynamically find the data sources
in a specific domain. The only input is some keywords of
this domain. Second, it needs to integrate these data sources
automatically, including query interfaces and the query results.
This integration should not have human intervention such
as predefined training samples, and query interface extractor
interpreted by programmer, etc. Third, the performance should
be measured and it needs a real-time feedback system to gather
information to adjust the integrator. That means this system
is a self-training system.

The remainder of the paper is organized as follows. In
Section 2, the related works are introduced. In Section 3,
the whole web-database integration system is explained and
the relationships between the subsystems are clarified by
diagrams. In Section 4, the Interface Extraction subsystem is
well developed and in Section 5, we focused on the Interfaces
Integration subsystem. A feedback method is introduced in
Section 6 and we conclude in Section 7.

II. RELATED WORK

The purpose of Internet Business Intelligence is not limited
to domain-based automatic web database integration. It can
be easily extended to a large scaled integration system by
supplying semantic ontology for additional domains. This
system considers the new problems come with the devel-
opments of technology, such as JavaScript embedded form
extraction. With the minimum query conditions matching and
the feedback modules, we can build a high accuracy, high
efficiency matching system.

The Information Integration has been studied for a long
time. The early works focused on the traditional Database
Integration. Li and Clifton [21] developed a semi-automatic
semantic integration procedure (SEMINT) which can find the
corresponding attributes. Batini and Lenzerini [2] introduced
the conceptual foundation to the problem of schema integra-
tion, which integrates the different individual methodologies
and gave a general guideline for future improvement. The

19

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

traditional database integration is often divided into two steps,
the View Integration, which produces a global conceptual
description of a database, and the Database Integration, which
produces a global schema of the databases.

Since the late nineties, the deep web information inte-
gration(or Web Database Integration) is coming into the
view of the researchers. Early stage research focused on
small-scale, reconfigured, and manual intervened systems.
The recent works focus on dynamic, large-scaled systems.
As the web databases usually provide a integrated query
interface to let users query the databases, we may consider
that a global conceptual description for each database already
existed. We do not need to make such ”View Integration”
for Web Databases. On the other hand, in comparison with
the traditional databases integration problem, we do need
to ”understand” or ”get” the attribute descriptions from the
query interfaces and query result pages. Suppose a global
schema is built correctly, the search results should be also
correct. Therefore the Web database Integration can be viewed
in two parts, the Query Interface Integration(QII) and the
Query Result Integration(QRI). Rahm and Bernstein [6] gave
a survey of the approaches of traditional automatic schema
matching.

The research QII is mainly based on the visual elements
identification. Golin and Reissa [8] gave a specification of
visual language. Zhang ([19] and [22]) gave us an approach to
understand query interfaces: Best-Effort parsing with Hidden
Syntax. Liu and Meng [20] presented another approach V iDE
based on calculating the distance among visual elements.
Chuang and Chang [17] introduced a context aware wrap-
ping system which contains the peer sources to facilitate
the subsequent matching and to improve the extraction ac-
curacy. The matching between different interfaces is often
determined by calculating the semantic matching times (in
results of search). He and Chang [13] introduced an ap-
proach named DCM framework. This approach tried to build
a complex matching which matches a set of m attributes
to another set of n attributes. Madhavan and Bernstein [7]
introduced a new algorithm, Cupid Matchers in comparison
with the traditional schema matching, such as Linguistic based
Matchers, Constraint based Matchers, Individual matchers
and Combinational matchers. He and Meng [10] concerned
with the E-commerce interfaces and proposed a weight based
matcher. His approach tried to automatically construct a global
interface and the global attribute from the query interfaces.
Wang and Wen [12] proposed an approach based on query
probing and instance-based schema matching techniques. He
separated the schema-matching into two areas: intra-site and
inter-site. In other words, the matching between results and
query interfaces in the same source and the matching between
different sources.

The Web data extraction is a little bit different from
interface extraction. Laender and Silva [1] gave a survey of
traditional web data extraction tools. These tools are often
based on declarative languages, HTML structure analysis,
natural languages process, machine learning, data modeling
and ontology. All of these tools focused on the treatment of
HTML script. Chang and Hsu [4] introduced a method to trait
the HTML code and to find the repeated patterns in the query
result pages. Hu and Meng [5] introduced a semantic blocks,

section and data items identification system. The data items
which have the same role were mapped.

Our work has several main differences from the other
works. First, the new web-page parser can execute Java-
script and analyze the true web-page by visual relationships.
Second, we are not trying to match every attributes or query
conditions in every query-interface. Only the most closed
query conditions will be matched. In other words, through all
the query-interfaces, there exists a minimum query-condition
group which permits to construct a query and to get all the
records from the back-end databases. At last, a feedback
system based on automation theory of Nonlinear Discrete
Systems was never discussed before.

III. AUTOMATIC WEB-DATABASE INTEGRATION SYSTEM
ARCHITECTURE

In order to build such a domain based, automatic Web-
database integration system, we decompose it into several
parts:

1) Web database crawler: finds the web database of specific
domain.

2) Interface Extraction: parses the query form to the group
or element trees.

3) Interface Integration: applies to a domain specific se-
mantic ontology and builds a mapping from the query
form contents to the semantic model.

4) Query result integration: parses and matches the differ-
ent result lists from the different web query interfaces.

5) Collection system: collects the responses of end-users
by detecting the records rank of the search results. A
click is a user action when he clicks the hyper link in
the result page. We construct a table to save the times of
clicks for each record of search result. The record rank
can be built from this table. The mismatching query
conditions and query results normally should have a
record rank much lower than the correct ones.

6) Feedback and Ranking System: includes the search
results ranking, element group matches ranking, in-
terface parsers ranking, and the web database sites
ranking. The accuracy and the integrity will be gathered
from the clients and send to the Ranking system. The
ranking system will then FeedBack to the formal
subsystems, like Interfaces Extraction subsystem,
Interfaces Integration subsystem and Query result
Integration subsystem.

Web database crawler may be viewed as a traditional search
engine with some predefined characters. This crawler can
travel through the web and identify the query interfaces. With
the study of [14], the depth of a web database is often very
limited. According to their work, 94% Web database have
a depth within 3, these database are found from 1,000,000
randomly selected IPs. Our approach to this subsection is
divided into 2 steps: First, a traditional crawler finds the
site root pages which contain the web database. Secondly, a
JavaScript concerned crawler find out all the query interfaces
in every site. JavaScript concerned is a conception in
comparison with the traditional site crawler. The traditional
crawler is designed to get the static HTML code from the
static links of pages. With the evolution of JavaScript and the
new technology, the original HTML code does not contain all

20

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

Figure 1. Web Query Interface Integration System

the information that we really see from the navigator. The final
HTML code is often treated by the initialization Javascript and
could be modified by the end-user’s action.

A layout engine, which can execute JavaScript from a
URL and simulate the end-user’s action, is necessary. The
most popular layout engines are Trident, WebKit and Gecko.
Trident is used by Internet Explorer, WebKit is the core of the
Safari and Chrome and Gecko is used in Mozilla Firefox. All
the layout engines share the same idea:

• Get resources from a URL include CSS, HTML,
JavaScript, image, video, etc.

• Construct the DOM tree and Render Tree. DOM tree
contains all the nodes of which should be showed in the
navigator. Render tree contains the visual definition of
the nodes in DOM tree.

• Draw the elements of DOM Tree and take the description
from Render Tree.

The new crawler embeds a layout engine to get resources from
a URL and to generate the DOM tree and the Render tree.
The last step, which draws the DOM elements, and consumes
most of the memory and time for a layout engine, will not
be executed. The DOM tree will be gathered by our crawler
and query interfaces could be detected after the analysis with
the semantic ontology. The render tree could also be used for
further analysis, like the position of elements, size, etc.

The Interface Extraction system will focus on
understanding the web query interfaces. The Interfaces
Integration system will focus on matching the groups of
query conditions from the different query interfaces. The
traditional schema matching process has been focusing on
identifying semantic relationships between two attributes.
Why do we talk about the query conditions matching instead
of the elements/attributes matching? We should take into
consideration the purpose of interface integration, which is
to build a mapping between query interfaces, to enable a
query condition pass through all of them. Not only the query
capabilities of query interfaces may not be equivalent, but also

the matched attributes/elements may play different roles in
the different web databases. Therefore the objective is to find
equivalent query conditions but not equivalent attributes.
Furthermore, how could we guarantee the precision and
integrity of the matching, not only for the query conditions
in all the interfaces, but also for the query records from the
different result pages? How could we associate the responses
of end-users to the interface extraction system, interfaces
integration, and query-result integration?

Figure 1 describes the relationships between the function
modules. The advantage of this structure is if we change the
domain, the only thing that we need to modify is the manually
collected Semantic Ontology. The process in Figure 1 can be
simply denoted as four parts:

Figure 2. Web interface crawler

• Query interface crawler find the site root that contains
web databases. It is showed in Figure 2

• Analyzes the structure of a known formula and then
realize a semantics association between the parameters
of the semantics model and the interface elements to
simulate the client’s query request. This part is indicated

21

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

Figure 3. Interface integration

Figure 4. Feed-back system

by black arrow line and showed in Figure 3. It shows how
we treat and merge the interfaces with the global interface
by the definition of semantic clusters. This interfaces
integration system focus on a so called ”Minimum Query
Condition Matching”. This matching does not attempt
to match every attribute pair found. It tries to find a
minimum query set across all the interfaces, which has
the highest accuracy and allows our system to get all
information from the back-end databases by the web
query interfaces.

• Analyzes and parse the results page: it defines the struc-
ture of a result page and then identifies the relevant result
fields and their associations with the semantics model
parameters. This part is indicated by red arrow line.

• Analyzes the feedback from end-users and modifies the
preferences of query interface matchers and query result
matchers. It involves users into the matching system.
Such kind of feedback mechanism can correct and im-
prove the likelihood of successful mapping. This part is
indicated by green arrow line and is showed in Figure 4.

IV. INTERFACE EXTRACTION

Query interfaces hide the data behind them from direct
access. A form extractor is a prerequisite for the mapping
works. Traditionally, we use a wrapper induction program
which is supplemented by a GUI for users to click and
highlight strings on a rendered Web page to produce a training
example. These training examples help the program build up
the patterns of the forms. If we can build all the patterns
of the forms and give them relationships correspondingly, we
can translate the queries from one interface to another. This
kind of work is time consuming. With the development of
the network, the ”manual” analysis is become impracticable.
An automatic extractor is thus required to a true web
database query system. As a general automatic extraction (in
all different domains) is almost impossible for an all-in-one
integration, the recent works of automatic extraction is always

”domain-based”. We enrich the study of Zhang [19] which
proposed a ”Best-effort” parsing with ”Hidden Syntax”. It
treats the web interface in a ”visual” way and introduces a
”Hidden Syntax” between the positions and the relationships.
The rules, named ”patterns specification”, are given and the
way of extraction, named ”pattern recognition”, is specified.
From the human point of view, this approach is much better
than HTML pattern extractors because all the interfaces are
designed for visual effect. The HTML code often contains
the clues for programmers. As a result, the related tags may
be placed scattered or the attributes and the corresponding
elements may not have the same name. However, the visual
presentation is always the main purpose of form design. So if
we can make a system which extracts the visual elements, the
accuracy will be guaranteed. In fact, the syntax or grammar of
visual language is not a huge set and can be defined properly.
On the other hand, the ”pattern recognition” is more flexible.
A more general and precise method will be proposed in the
following paragraph.

A. Hidden syntax

Figure 5. Query interface:Achatpublic.net

Figure 6. Query interface:TED

Suppose we have two different query interfaces as Figure 5
and Figure 6 in the domain of Government Procurement.
We could easily find out some simple rules: the attribute is
always on the left or above the input element. They are often
in the same line. Normally, this kind of formula is built for
human to read and understand. There exist many thorough
studies in the domain of diagram analyzing. As Zhang [22]
discussed, it assumed that there is a relationship between
the semantics and the presentations behind the query-form
creation, which is guided by some hidden syntax based on
topology and proximity. So we can easily get a set of pattern
specification,see [8]. On the other side, the form design also
has some hidden syntax in the style of the HTML code for
the query-form. He and Meng [9] has discussed some of the

22

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

rules of the HTML code. In fact, the pattern discovery has
been extensively studied, like [4] and [18]. But the main idea
of their works is to find out the maximum repeated patterns
which are mostly used in the query result. Normally a query-
form does not contain any repeated patterns, so the method
of find repeat cannot be used directly. However, on the
other hand, the definition of the pattern is useful for us if
we consider the visual analysis at the same time. Therefore
the Hidden Syntax of us is defined by a combination of
the pattern specification of HTML container and semantic
relationships of the visual elements. The definition of hidden
syntax could be defined as following:

The raw map of production rules: A production P in V/S
grammar Σ, N, s, Pd, Pf is a four-tuple H,M,C, F . Head
HεN is a non-terminal symbol. Components M ⊆ Σ

⋃
N

is a multi set of symbols. Constraint C is a Boolean function
defined on M . Constructor F is a function defined on M,
returning an instance of H.

The rules definition are well studied in the work of [19]
and [11]. The differences of the V/S grammar are that:

• Pd does not only contains the rules of visual elements,
but also contains some rules of HTML patterns.

• Pf does not only contains the preference beyond the
grammar, but also contains the preference by a method
of the result of searching and matching.

The definition of symbol: The smallest visual elements
⋂

the smallest HTML tag elements. For example, Figure 7 and
Figure 8 represent the two different symbol groups for the
same query condition, i.e., date range. For the 7, we find
the first three input elements that are connected by ’/’. The
fourth input element does not close to any attribute. So we can
associate the first three input elements as a date input and the
fourth is a selection. These four elements with the attribute
build a group.

Figure 7. Date analysis: Achat public.net

Figure 8. Date analysis: TED
B. Preferences

A preference of Σ, N, s, Pd, Pf is defined in I, U,W
• conflicting instances I = A,B where A,BεM
• conflicting condition: a Boolean expression on A,B

• probability criteria W: a probability function on A,B that
specifies the winner or both of them.

W should be considered as two branches. A threshold τ should
be considered:

• W > τ and W < (1− τ) : A and B should be taken as
2 branches.

• W < τ or W > τ : A and B should be taken as a confect
and take A if W < τ , take B if W > τ

For example, in the Figure 8, the attribute ”du” is very
close to the ratio button, while it is also very close to the
input element on its right hand. Which one should be chosen?
Considering the semantic relations, it should connect to the
attribute ”au”, and next to ”au” there is only one input element
on its right hand. So we prefer to link the ”du” attribute with
the input element on its right hand. Furthermore, we could
even link the attribute ”du” with the ratio button. When we
try to match a range date, the attribute ”du” will associate with
a value 1/0, which cannot make any valuable query condition
in date search. Formally, the preferences are constructed by
three parts.

1) preference from the topology
2) preference from the constraint of HTML TAG
3) probability function from the responses of end-users

With the preferences, we need a parser to generate an original
parse forest which eliminates all the obvious conflicts and
ambiguities. In this parser, a probability function, which
gathers the information from end-users, will influence the
parse tree. Suppose we get n pair different parse trees after
the parse process. Each pair is decided by the three constraints.
If the parse tree still contains some different parse results after
we have pruned all the obvious conflicts and ambiguities, how
could we decide the preferences? To answer this question, we
need to know only the end-users can decide which query result
is what they want. Hence, the question is how can we allow
the end-user influence the preferences of the Parser. We build
a subsystem to gather the feedback from end-users and build
preferences for each combination of nodes. If we can choose
a proper threshold of the preference, then we can choose the
parse condition and resolve the conflicts or ambiguities.

C. Dynamic page

There is a problem that has never been well considered in
Interface Extraction, i.e., the dynamic query interfaces which
contain java script. The query interfaces often have some java
script or even Ajax to modify the form structures and the form
contents. For example, Figure 10 is the result of a selection
from 9. Before we select a value in the selection tag, we only
have a form which contains one element: select tag. After we
chose something in the selection tag, we get a totally different
form to extract.

Figure 9. Before choosing the option

Take account of the JavaScript, we need a layout engine
which allows us to execute of JavaScript. Also, we need this
layout engine to simulate the actions of a navigator such as
click, drag and drop etc.. After each step of the action that we
simulate, the whole parse tree should be rebuilt with grammar

23

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

Figure 10. After choosing the option

Σ, N, s, Pd, Pf . By comparing with the original parse tree, we
got a new one. The new nods construct a new sub tree which
can be pasted to the main tree. If there are several different
results of JavaScript, we consider that the query interface has
several different equivalent parse tree. The selection value
should be considered as a search condition such as in Figure
9 and Figure 10.

V. INTERFACES INTEGRATION

Query interfaces integration is a fundamental problem of
Web Database Integration system. After the studies of related
works, the types of matching can be described as: Query
interfaces matching, Query results matching, Multi interfaces
complex matching [13], Query interfaces and Query results
matching. We can consider these kinds of matching is a type
of flat matching because they do not pay attention to the
feedback of end-users. Meanwhile, if we also consider the
research presentation, there is a big misunderstanding in Query
Interfaces matching. The Web database integration does not
really need to integrate or match every attribute in every Web
database Interface. Logically it is impossible if we concern
about the differences of the query abilities among the Query
interfaces. Due to the purpose of our system, forming a unified
result to end-users, we only need to integrate/match the main
attributes/query conditions or the clue of elements/attributes
groups which enable our query system to query through all the
Web databases and get all the information behind the interface.
The purpose of interface integration is not to find the entire
attribute pairs or group pairs and match them. On the contrary,
the purpose is to find a minimum matching set to query them.
Hence our Web database integration system should solve the
following two problems:

• how can we find the minimum set of attributes which
allow us to query all the information of the database.
This attribute set could be the most easily matched set.

• How to match them.
To answer these two questions, we assume every pair of
matching between global interface and web query interfaces
have preferences, and the groups of the matching of all inter-
faces have preferences. A very high threshold of preference
is defined as default and a small subset of matches can be
selected. The selected matches are used to be the minimum
matching set to query the web databases. The results-queries
matching will be executed. For instance, if the results do not

have matching with the queries for one of the Web Database,
we consider our minimum subset is not suitable for it. The
system will cut down the threshold and rebuild the minimum
subset of matches.

A. Interface Analysis

First, elements of the query interface have generally the
following types of format: text box, ratio button, check
box, and selection list. Text box allows an input ”infinite”. A
selection list provides a pre-determined value which is ”finite”.
Radio box is like a single-select list. Check box is like a multi-
select list. So we can say there are only two types of format:
String S/ array()K, where S is infinite and array K is finite.
Secondly, the elements have some types of relationships that
need to be grouped together:

• Range type: it refers to the situation where two or more
elements are used to specify the range.

• constraint type: like radio box: last name / first name
should be grouped with element which has an attribute
”name”. An element could be used as a constraint for
another element. The constraint could be ”or” if they are
radio box, and could be ”and” if they are check box.

B. Semantic relationships for elements matching

We identify three semantic relationships among elements
or the groups of elements. Suppose they have some kind of
matching. If they do not have any relationships or exclusive
relationships, it is not discussed here.

• Synonymy T1 is a synonym of T2
• Hypernymy T1 is more generic than T2,denote
H(T1, T2)

• Meronymy T1 is a part of T2, denote M(T1, T2)

There is a case that should be noticed: T1 is a group of two
text boxes, attribute is ”price”. T2 is an element of select list,
attribute is price, the list is (0-100,100-200,200-400,¿ 400) we
can say they are Synonymy because they play the same role in
the query system. But all the option of T2 is a Meronymy of
T1. For example, T1 condition is 0-300, the correspondence
of T2 should be 3 query combined together: (0-100)

⋃
(100-

200)
⋃

(200-400). More generally, this phenomenon deduces
another important problem: Query translation.

C. Query translation

To translate Qs from T1 to T2 in the above example, there
are 3 query heterogeneities defined in [22]:

• Attribute level: Two sources may not support query
the same concept or may query the same concept using
different attribute names.

• Predicate level: Two sources may use different predicate
templates for the same concept. For instance, price pred-
icate template in T2 is a different set of value range from
T1.

• Query level: Two sources may have different capabilities
of querying valid combinations of predicate templates. In
this case, the query translation is almost impossible.

According to the three different query heterogeneities, we can
consider our minimum attribute set problem as: a group of
attribute which can be matched from all the web database
interfaces with no query heterogeneities, e.g., Figure 7 and
Figure 8. The capability of Figure 7 can only define a period

24

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

of several months before or after a certain date which is given
by a formal input value. If we need a period from 01-01-
2008 to 15-02-2008, the closest condition is 2 month after
01-01-2008. For the interface of Figure 8, we need to choose
the second option of the radio and just give the exact time
interval. Moreover, in the query interface of Figure 5 we
do not have the condition pays but in the second interface
of Figure 6, it has. So the query condition of pays can
never be matched between the two interfaces. There are two
possibilities: Figure 5 contains only the information of one
country, or Figure 5 do not distinguish the property pays.
We cannot solve the matching problem by just analyzing the
semantic means, a statically method based on the feedback
system will be introduced in sector 5.

D. Matching discovery

1) Preparation of matching discovery: We take query in-
terfaces as flat schema with sets of attribute entities. Due
to domain-specific integration, we need to define a semantic
ontology for the domain. Relying on the semantic ontology, a
set of groups of attribute can be built from the web query
interfaces. According to our study, the projects which are
being carried out from other’s studies always have a global
interface and some kind of groups of attribute. The matching
discovery problem is to find out the attribute entities matching
to the global interface.

The matching discovery needs another precondition, which
is data processing step. The data processing for our system
here is attributes normalization. We consider the text of
attributes like the natural languages. There are many studies
about natural language normalization or attribute normaliza-
tion such as [13]. The data preprocessing step consists of

• standard normalization [16] is a process of removing
the commoner morphological and the flexional endings
from words in English. It is mainly used as part of term
normalization process that usually done when setting up
Information Retrieval systems.

• normalize irregular nouns and verbs
• removes common stop words
2) Merging: All kinds of merging intends to construct the

semantic relationship groups. This process will reduce the
quantity of the final semantic relationship groups. The less we
have the semantic relationships groups, the easier we establish
the matching.

Type recognition Sometimes the same attribute name could
have different meanings if they are in different types.

Syntactic Merging
• name base merging: It is based on the occurrence

frequency of attributes. The statistics result of occurrence
will give some preferences of merging rules.

• domain−based merging: It is based on the occurrence
frequency of attribute groups. If some groups are similar
and have a high occurrence, even they denote to different
meanings, we can merge them together.

E. Matching construction

The approach of [13] is much more convincing than the
works of [3] and [10]. He and Chang [13] introduce a ranking
system who considers the samples of N : M matching among
the query interfaces. It does not consider any influence of

the feedback from end-users. The accuracy and the integrity
of matching can only be judged by the end-users. We will
introduce the matching construction system which includes
two steps, Rank and selection.

Given a set of discovered matching candidates,
R = {M1,M2, ...,MV }, the ranked matching is
RC = {Mt1 , ...,MtV }. For a n-array complex matching
Mj in R : Gj1 = Gj2 = ... = Gjω , Cmax the maximal
mn value among pairs of groups in a matching is :
Cmax(Mj ,mn) = maxmn(Gjr , Gjt),∀Gjr , Gjt , jr 6= jt.

We rank matching with the following rules:
1) if s(Mj ,mn) > s(Mk,mn),Mj is ranked higher than

Mk

2) if s(Mj ,mn) = s(Mk,mn), and Mj � Mk,Mj is
ranked higher than Mk

3) the � is a semantically subsumption which is described
as a ”top-k” approach.

In the theory of [13], the ranked matching RC only con-
siders the relationship between interfaces, the match ratio
does not depend on any feedback of the end-users. Our
consideration is based on this fact: in the statistical point
of view, a correct matching will get more click ratio than
a mismatching. Now the problem for us is how to decide the
feedback coefficient.

F. Matching Selection

The selection rules are:
1) among the remaining matching in RC, choose the high-

est ranked matching Mt.
2) Remove matching conflicting with Mt in RC.
3) If RC is empty, stop; otherwise, go to step 1.

The main purpose of these rules is to remove all the conflicts
and keep the highest ranked items.

VI. FEEDBACK RANKING INTEGRATION

As the Figure 4 shows, the click ratio of end-users will be
gathered by the system. We take the two examples of Figure
5 and Figure 6. The query condition pay is not contained
in interface 1 but in interface 2. Suppose end-users execute
queries by our global interface of government procurement.
They want to find out all the procurement contracts. Suppose
Figure 5 contains only the information of French government
and Figure 6 contains the information of Europe. The match-
ing between the two interfaces does not contain the condition
”pay”. Our system will not find any difference between the
two web databases at the beginning. After this system has ran
for a period of time, the feedback from the end-users will
be distinguished. When condition ”pay=French” is selected in
the global interface, suppose the condition ”pay” exist in our
global interface, interface of Figure 5 and Figure 6 will give
the same result. The feedback system will get the same click
ratio of the results from the two databases. When condition
”pay!=French” is selected, the click ratio of the result from
query interface of Figure 5 get 0 and the click ratio for Figure
6 will be very high. The feedback system will then give the
query interface in Figure 5 a precondition ”pay=French”.

Proposition: Consider every web database is an input,
denote x1, x2, ..., xn, suppose that we have find n web
database sources need to be searched. The request query is
an input denote u. After the interface extraction and interface

25

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

matcher, each database will give us a search result, denote
y1, y2, ..., yn. The process of extraction, match denote as
k11, k21, ..., knn. The transfer function could be noted as:

y1
y2
. . .
yn

 = u×


k11 k12 . . . k1n
k21 k22 . . . k1n
.
kn1 kn2 . . . knn

×

x1
x2
. . .
xn


This is the transfer function of open-loop. For the close-

loop function, it denotes:
yn1
yn2
. . .
ynn

 = u×


k11 k12 . . . k1n
k21 k22 . . . k1n
.
kn1 kn2 . . . knn

×

x1
x2
. . .
xn



+

n∑
i=1

(


c11 c12 . . . c1n
c21 c22 . . . c1n
.
cn1 cn2 . . . cnn

×

yi1
yi2
. . .
yin

)

Where c11, c12, ..., cnn are the coefficients of feedback func-
tion. Specially, ∀nεN,∀jεn,

∑n
i=1(Cij) = 1. It means the

sum of the probability distribution is 1. The difficulty here
is how to define the presentation of x and y. If we can
find the presentation function of x and y, the stability and
the convergence speed can be calculated by the theory of
automatic control.

VII. CONCLUSION

In this article, we have shown some associated mapping
approaches for understanding the web interfaces and their
limitations. The proposed method needs improvements and
tests of performance in real conditions. Several elements are
to be assessed:

• Improve the quality of the model: the user interaction
allows it to quickly converge to a reliable mapping, which
is the speed of convergence and stability.

• Quality of mapping techniques, configuration and opti-
mization.

In addition, unsolved problems have been identified as:
• how can we assure the minimum matching attributes

groups are sufficient for querying the web database?
• how can we find out the best parameters to assure the

convergence speed and stability of the feedback system?
• how can we specify the transfer function with the known

attribute matcher theory?
Further work is to evaluate this approach through a prototype
of our case study in the domain of government procurement.

REFERENCES

[1] A.H.F. Laender, A.S. da Silva, B.A. Ribeiro-Neto, and J.S.
Teixeira A brief Survey of Web Data Extraction Tools ACM
SIGMOD Record, vol. 31, pp.80-93,Jun 2002

[2] C. Batini ,M. Lenzerini, and S.B. Navathe A Comparative
Analysis of Methodologies for Database Schema Integration
ACM Computing Surveys, vol. 18, pp.323-364, Dec 1986

[3] B. He and K.C. Chang Statistical Schema Matching across Web
Query Interfaces Proc. ACM SIGMOD international conference
on Management of data, pp.217-228, 2003

[4] C. Chang, C. Hsu, and S. Lui Automatic information extraction
from semi-structured Web pages by pattern discoveryDecision
Support Systems,vol. 35, pp.129-147, Apr 2003

[5] D. Hu and X. Meng Automatic Data Extraction from Data-rich
Web Pages DASFAA , LNCS 3453, pp.828-839, 2005

[6] E. Rahm and P. Bernstein A survey of approaches to automatic
schema matching VLDB, vol. 10, pp.334-350, Dec 2001

[7] J. Madhavan ,P. Bernstein, and E. Rahm Generic Schema
Matching with Cupid Proc. of the 27th International Conference
on VLDB, pp.49-58, 2001

[8] E.J. Golin and S.P. Reissa The specification of Visual Language
Syntax Journal of Visual Languages and Computing, vol. 1,
pp.141-157, Jun 1990

[9] H. He, W. Meng, C. Yu and Z. Wu Constructing Interface
schemas for Search Interfaces of Web Databases WISE, LNCS
3806, pp.29-42, 2005

[10] H. He, W. Meng, C. Yu and Z. Wu WISE-Integrator: An
Automatic Integrator of Web Search Interfaces for E-Commerce
Proc. of the 29th international conference on VLDB, vol. 29,
pp.357-368, 2003

[11] G. Costagliola and V. Deufemia Visual language editors based
on lr parsing techniques 8Th International Workshop On Pars-
ing Technologies, IWPT’03, pp.79-90, 2003

[12] J. Wang, J. Wen, F. Lochovsky and W. Ma Instance-based
Schema Matching for web databases by Domain-specific Query
Probing Proc. of the 13th international conference on VLDB,
vol. 30, pp.408-419, 2004

[13] B. He and K.C.C. Chang Automatic complex Schema Matching
across web Query Interfaces: A Correlation Mining Approach
ACM Transactions on Database Systems, vol. 31, pp.346-395,
Mar 2006

[14] K.C.C Chang, B. He, C. Li, M. Patel and Z. Zhang Structured
databases on the web: Observations and Implications ACM
SIGMOD Record, vol. 33, pp.61-70, Sep 2004

[15] M.R. Genesereth and A.M. Keller Infomaster: An Information
Integration System Proceedings of the 1997 ACM SIGMOD
international Conference on Management of Data, pp.539-542,
May 1997

[16] Martin Poter The porter stemming algorithm http://tartarus.org/
\∼martin/PorterStemmer/ unpublished

[17] S. Chuang and K.C.C Chang Context-Aware Wrapping: Syn-
chronized Data Extraction Proc. of the 33rd international Con-
ference on VLDB, pp.699-710, Sep 2007

[18] Y. Yang and H.J. Zhang HTML Page Analysis Based on Visual
Clues Proc. 6th International Conference on Document Analysis
and Recognition, pp.859-864, Sept 2001

[19] Z. Zhang, B. He and K.C.C Chang Understanding Web Query
Interfaces: Best-Effort Parsing with Hidden Syntax Proc. of the
2004 ACM SIGMOD, pp.107-118, June 2004

[20] W. Liu, X.F. Meng, and W. Meng ViDE: A Vision-based Ap-
proach for Deep Web Data Extraction IEEE Trans. on Knowl.
and Data Eng, vol. 22, pp.447-460, Mar 2010

[21] W.S. Li and C. Clifton SEMINT: A tool for identifying attribute
correspondences in heterogeneous databases using neural net-
works Data & Knowledge Engineering, vol. 33, pp.49-84, 2000

[22] Z. Zhang Large scale information integration on the web: find-
ing, understanding and querying web databases unpublished,
PhD thesis, 2007

26

CONTENT 2010 : The Second International Conference on Creative Content Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-110-6

